51
|
Nie L, Wu Q, Long H, Hu K, Li P, Wang C, Sun M, Dong J, Wei X, Suo J, Hua D, Liu S, Yuan H, Yang S. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1636-1657. [PMID: 31393229 DOI: 10.1080/09205063.2019.1654210] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chitosan/gelatin hydrogel incorporated with biphasic calcium phosphate nanoparticles (BCP-NPs) as scaffold (CGB) for bone tissue engineering was reported in this article. Such nanocomposite hydrogels were fabricated by using cycled freeze-thawing method, of which physicochemical and biological properties were regulated by adjusting the weight ratio of chitosan/gelatin/BCP-NPs. The needle-like BCP-NPs were dispersed into composites uniformly, and physically cross-linked with chitosan and gelatin, which were identified via Scanning Electron Microscope (SEM) images and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The porosity, equilibrium swelling ratio, and compressive strength of CGB scaffolds were mainly influenced by the BCP-NPs concentration. In vitro degradation analysis in simulated body fluids (SBF) displayed that CGB scaffolds were degraded up to at least 30 wt% in one month. Also, CCK-8 analysis confirmed that the prepared scaffolds had a good cytocompatibility through in culturing with bone marrow mesenchymal stem cells (BMSCs). Finally, In vivo animal experiments revealed that new bone tissue was observed inside the scaffolds, and gradually increased with increasing months, when implanted CGB scaffolds into large necrotic lesions of rabbit femoral head. The above results suggested that prepared CGB nanocomposites had the potential to be applied in bone tissue engineering.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University , Xinyang , China.,Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven) , Leuven , Belgium
| | - Qiaoyun Wu
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Haiyue Long
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Kehui Hu
- Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven) , Leuven , Belgium.,Department of Mechanical Engineering, Tsinghua University , Beijing , China
| | - Pei Li
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Can Wang
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Jing Dong
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Xiaoyan Wei
- Max Planck Institute for Molecular Genetics , Berlin , Germany
| | - Jinping Suo
- State Key Laboratory of Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan , China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University , Zhengzhou , China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University , Zhengzhou , China
| | - Hongyu Yuan
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Shoufeng Yang
- Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven) , Leuven , Belgium
| |
Collapse
|
52
|
Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids Surf B Biointerfaces 2019; 181:994-1003. [DOI: 10.1016/j.colsurfb.2019.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
|
53
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
54
|
Rahmanian M, seyfoori A, Dehghan MM, Eini L, Naghib SM, Gholami H, Farzad Mohajeri S, Mamaghani KR, Majidzadeh-A K. Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Ikono R, Li N, Pratama NH, Vibriani A, Yuniarni DR, Luthfansyah M, Bachtiar BM, Bachtiar EW, Mulia K, Nasikin M, Kagami H, Li X, Mardliyati E, Rochman NT, Nagamura-Inoue T, Tojo A. Enhanced bone regeneration capability of chitosan sponge coated with TiO 2 nanoparticles. ACTA ACUST UNITED AC 2019; 24:e00350. [PMID: 31304101 PMCID: PMC6606563 DOI: 10.1016/j.btre.2019.e00350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability. Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges. Chitosan – nanoTiO2 scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO2 sample.
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Radyum Ikono
- Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia
- Department of Metallurgical Engineering, Sumbawa University of Technology, Jl. Raya Olat Maras, 84371, Nusa Tenggara Barat, Indonesia
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
- Corresponding author at: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia.
| | - Ni Li
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan
| | - Nanda Hendra Pratama
- Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia
| | - Agnia Vibriani
- Department of Biology, Bandung Institute of Technology, Jl. Ganesha No. 10, 40132, Bandung, Indonesia
| | - Diah Retno Yuniarni
- Department of Chemistry, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia
| | - Muhammad Luthfansyah
- Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia
| | - Boy Muchlis Bachtiar
- Oral Science Laboratory, Department of Dentistry, University of Indonesia, Jl. Salemba Raya, 10430, Central Jakarta, Indonesia
| | - Endang Winiati Bachtiar
- Oral Science Laboratory, Department of Dentistry, University of Indonesia, Jl. Salemba Raya, 10430, Central Jakarta, Indonesia
| | - Kamarza Mulia
- Department of Chemical Engineering, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia
| | - Mohammad Nasikin
- Department of Chemical Engineering, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia
| | - Hideaki Kagami
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan
- Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan
| | - Etik Mardliyati
- Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology (BPPT), PUSPIPTEK Area, 15314, Tangerang Selatan, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Physics, Indonesian Institute of Science (LIPI), PUSPIPTEK Area, 15314, Tangerang Selatan, Indonesia
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
| |
Collapse
|
56
|
Goodarzi H, Hashemi-Najafabadi S, Baheiraei N, Bagheri F. Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO) for Bone Tissue Engineering. Tissue Eng Regen Med 2019; 16:237-251. [PMID: 31205853 PMCID: PMC6542929 DOI: 10.1007/s13770-019-00184-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Nowadays, production of nanocomposite scaffolds based on natural biopolymer, bioceramic, and metal ions is a growing field of research due to the potential for bone tissue engineering applications. Methods In this study, a nanocomposite scaffold for bone tissue engineering was successfully prepared using collagen (COL), beta-tricalcium phosphate (β-TCP) and strontium oxide (SrO). A composition of β-TCP (4.9 g) was prepared by doping with SrO (0.05 g). Biocompatible porous nanocomposite scaffolds were prepared by freeze-drying in different formulations [COL, COL/β-TCP (1:2 w/w), and COL/β-TCP-Sr (1:2 w/w)] to be used as a provisional matrix or scaffold for bone tissue engineering. The nanoparticles were characterized by X-ray diffraction, Fourier transforms infrared spectroscopy and energy dispersive spectroscopy. Moreover, the prepared scaffolds were characterized by physicochemical properties, such as porosity, swelling ratio, biodegradation, mechanical properties, and biomineralization. Results All the scaffolds had a microporous structure with high porosity (~ 95-99%) and appropriate pore size (100-200 μm). COL/β-TCP-Sr scaffolds had the compressive modulus (213.44 ± 0.47 kPa) higher than that of COL/β-TCP (33.14 ± 1.77 kPa). In vitro cytocompatibility, cell attachment and alkaline phosphatase (ALP) activity studies performed using rat bone marrow mesenchymal stem cells. Addition of β-TCP-Sr to collagen scaffolds increased ALP activity by 1.33-1.79 and 2.92-4.57 folds after 7 and 14 days of culture, respectively. Conclusion In summary, it was found that the incorporation of Sr into the collagen-β-TCP scaffolds has a great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Hamid Goodarzi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-331, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| |
Collapse
|
57
|
Humberto Valencia C. Hydrolytic degradation and in vivo resorption of poly-l-lactic acid-chitosan biomedical devices in the parietal bones of Wistar rats. J Int Med Res 2019; 47:1705-1716. [PMID: 30880548 PMCID: PMC6460618 DOI: 10.1177/0300060519828935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES This study sought to describe events related to the degradation/resorption of a device composed of polylactic acid (PLA) after implantation into Wistar rats. METHODS Five-millimeter-diameter PLA rigid scaffolds and flexible analogs were elaborated, bioactivated through culture with osteoblasts, and implanted into the parietal bones of adult Wistar rats after 15 days. After 3 months, the samples were recovered and analyzed via optical microscopy (histochemical techniques) and scanning electron microscopy. This research was approved by the animal ethics review committee of Universidad of Valle in Cali, Colombia, according to the endorsement of the ethics committee CEAS 001-016. RESULTS Initially, there was surface erosion and fragmentation of the device, inducing an inflammatory response compatible with the foreign body reaction, in addition to the presence of a pseudocapsule and a mixed inflammatory infiltrate that was responsible for phagocytosis of the material. Regeneration of the defect via the apposition of new bone occurred simultaneously with resorption of the material. CONCLUSIONS The results illustrated that the degradation/resorption of PLA occurs in a centripetal pattern.
Collapse
|
58
|
Wu P, Hu S, Liang Q, Guo W, Xia Y, Shuai C, Li Y. A polymer scaffold with drug-sustained release and antibacterial activity. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ping Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Shi Hu
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Qin Liang
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yang Xia
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
| | - Yongmin Li
- Hunan Key Laboratory of Chinese Medicine Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| |
Collapse
|
59
|
Rasheed T, Bilal M, Zhao Y, Raza A, Shah SZH, Iqbal HMN. Physiochemical characteristics and bone/cartilage tissue engineering potentialities of protein-based macromolecules - A review. Int J Biol Macromol 2019; 121:13-22. [PMID: 30291929 DOI: 10.1016/j.ijbiomac.2018.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin have emerged as potential candidate materials with unique structural and functional characteristics. Despite many advantages, the development of tissue-engineered constructs that can match the biological context of real tissue matrix remains a challenge in tissue engineering (TE). The tissue-engineered constructs should also support vascularization. Protein-based macromolecules, in pristine or combine form, provide a promising platform to engineer constructs with unique design and functionalities which are highly essential for an appropriate stimulation and differentiation of cells in a specific TE approach. However, much work remains to be undertaken with particular reference to in-depth interactions between constructed cues and target host tissues. Thus, modern advancements are emphasizing to understand critiques and functionalization of protein-based macromolecule that organize not only cellular activities but also tissue regenerations. In this review, numerous physicochemical, functional, and structural characteristics of protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin are discussed. This review also presents the hope vs. hype phenomenon for tissue engineering. Later part of the review focuses on different requisite characteristics and their role in TE. The discussion presented here could prove highly useful for the construction of scaffolds with requisite features.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
60
|
Bakopoulou A, Georgopoulou Α, Grivas I, Bekiari C, Prymak O, Loza Κ, Epple M, Papadopoulos GC, Koidis P, Chatzinikolaidou Μ. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater 2018; 35:310-327. [PMID: 30527589 DOI: 10.1016/j.dental.2018.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/19/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Biomimetic chitosan/gelatin (CS/Gel) scaffolds have attracted great interest in tissue engineering of several tissues. However, limited information exists regarding the potential of combining CS/Gel scaffolds with oral cells, such as dental pulp stem cells (DPSCs), to produce customized constructs targeting alveolar/orofacial bone reconstruction, which has been the aim of the present study. METHODS Two scaffold types, designated as CS/Gel-0.1 and CS/Gel-1, were fabricated using 0.1 and 1% (v/v) respectively of the crosslinker glutaraldehyde (GTA). Scaffolds (n=240) were seeded with DPSCs with/without pre-exposure to recombinant human BMP-2. In vitro assessment included DPSCs characterization (flow cytometry), evaluation of viability/proliferation (live/dead staining, metabolic-based tests), osteo/odontogenic gene expression analysis (qRT-PCR) and structural/chemical characterization (scanning electron microscopy, SEM; energy dispersive X-ray spectroscopy, EDX; X-ray powder diffraction, XRD; thermogravimetry, TG). In vivo assessment included implantation of DPSC-seeded scaffolds in immunocompromised mice, followed by histology and SEM-EDX. Statistical analysis employed one/two-way ANOVA and Tukey's post-hoc tests (significance for p<0.05). RESULTS Both scaffolds supported cell viability/proliferation over 14 days in culture, showing extensive formation of a hydroxyapatite-rich nanocrystalline calcium phosphate phase. Differential expression patterns indicated GTA concentration to significantly affect the expression of osteo/odontogenic genes, with CS/Gel-0.1 scaffolds being more effective in upregulating DSPP, IBSP and Osterix. In vivo analysis demonstrated time-dependent production of a nanocrystalline, mineralized matrix at 6, 8 and 10 weeks, being more prominent in constructs bearing rhBMP-2 pre-treated cells. The latter showed higher amounts of osteoid and fully mineralized bone, as well as empty space reduction. SIGNIFICANCE These results reveal a promising strategy for orofacial bone tissue engineering.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Αnthie Georgopoulou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Ioannis Grivas
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, A.U.Th, Greece
| | - Chryssa Bekiari
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, A.U.Th, Greece
| | - Oleg Prymak
- Inorganic Chemistry & Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Germany
| | - Κateryna Loza
- Inorganic Chemistry & Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry & Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Germany
| | - George C Papadopoulos
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, A.U.Th, Greece
| | - Petros Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Μaria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece; Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece.
| |
Collapse
|
61
|
Campodoni E, Heggset EB, Rashad A, Ramírez-Rodríguez GB, Mustafa K, Syverud K, Tampieri A, Sandri M. Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:867-878. [PMID: 30423774 DOI: 10.1016/j.msec.2018.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
Biopolymers such as gelatin (Gel) and cellulose nanofibrils (CNF) have many of the essential requirements for being used as scaffolding materials in tissue regeneration; biocompatibility, surface chemistry, ability to generate homogeneous hydrogels and 3D structures with suitable pore size and interconnection, which allows cell colonization and proliferation. The purpose of this study was to investigate whether the mechanical behaviour of the Gel matrix can be improved by means of functionalization with cellulose nanofibrils and proper cross-linking treatments. Blending processes were developed to achieve a polymer nanocomposite incorporating the best features of both biopolymers: biomimicry of the Gel and structural reinforcement by the CNF. The designed 3D structures underline interconnected porosity achieved by freeze-drying process, improved mechanical properties and chemical stability that are tailored by CNF addition and different cross-linking approaches. In vitro evaluations reveal the preservation of the biocompatibility of Gel and its good interaction with cells by promoting cell colonization and proliferation. The results support the addition of cellulose nanofibrils to improve the mechanical behaviour of 3D porous structures suitable as scaffolding for tissue regeneration.
Collapse
Affiliation(s)
- Elisabetta Campodoni
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy.
| | | | - Ahmad Rashad
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Gloria B Ramírez-Rodríguez
- BioNanoMetals Group, Department of Inorganic Chemistry, Facultad de Ciencias, Universidad de Granada, Granada
| | - Kamal Mustafa
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kristin Syverud
- RISE-PFI, Trondheim, Norway; Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Monica Sandri
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy.
| |
Collapse
|
62
|
Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomater 2018; 79:168-181. [PMID: 30121374 DOI: 10.1016/j.actbio.2018.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023]
Abstract
Innterconnected porous architecture is critical for tissue engineering scaffold as well as biomimetic nanofibrous structure. In addition, a paradigm shift is recently taking place in the scaffold design from homogeneous porous scaffold to heterogeneous porous scaffold for the complex tissues. In this study, a versatile and simple one-pot method, dual phase separation, is developed to fabricate macroporous nanofibrous scaffold by phase separating the mixture solutions of immiscible polymer blends without using porogens. The macropores in the scaffold are interconnected, and their size can be tuned by the polymer blend ratio. Moreover, benefiting from the easy operation of dual phase separation technique, an innovative, versatile and facile two-step phase separation method is developed to fabricate heterogeneous porous layered nanofibrous scaffolds with different shapes, such as bilayered tubular scaffold and tri-layered cylindrical scaffold. The bilayered tubular nanofibrous scaffold composed of poly(l-lactic acid) (PLLA)/poly(l-lactide-co-ε-caprolactone) (PLCL) microporous inner layer and PLLA/poly(ε-caprolactone) (PCL) macroporous outer layer matches simultaneously the functional growth of endothelial cells (ECs) and smooth muscle cells (SMCs), and shows the favorable performance for potential small diameter blood vessel application. Therefore, this study provides the novel and facile strategies to fabricate macroporous nanofibrous scaffold and heterogeneous porous layered nanofibrous scaffold for tissue engineering applications. STATEMENT OF SIGNIFICANCE The fabrication of porous tissue engineering scaffold made of non-water-soluble polymer commonly requires the use of porogen materials. This is complex and time-consuming, resulting in greater difficulty to prepare heterogeneous porous layered scaffold for multifunctional tissues repair, such as blood vessel and osteochondral tissue. Herein, a novel, versatile and simple one-pot dual phase separation technique is developed for the first time to fabricate porous scaffold without using porogens. Simultaneously, it also endows the resultant scaffold with the biomimetic nanofibrous architecture. Based on the easy operation of this dual phase separation technique, a facile two-step phase separation method is also put forward for the first time and applied in fabricating heterogeneous porous layered nanofibrous scaffold for tissue engineering applications.
Collapse
|
63
|
Peixoto T, Pereira FAM, Silva PL, Guedes RM, Torres J, Lopes MA. Fibrous structures in augmentation for rotator cuff repair: an experimental comparison. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac63e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
64
|
Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
65
|
Lou CW, Wu ZH, Lee MC, Lin JH. Highly efficient antimicrobial electrospun PVP/CS/PHMGH nanofibers membrane: preparation, antimicrobial activity and in vitro evaluations. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3347-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
66
|
Zhou X, Weng W, Chen B, Feng W, Wang W, Nie W, Chen L, Mo X, Su J, He C. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B 2018; 6:740-752. [DOI: 10.1039/c7tb01246b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly porous composite scaffold with localized and sustained antibiotic release property for treatment of infected bone defects.
Collapse
|
67
|
Boonjamnian S, Trakulsujaritchok T, Srisook K, Hoven VP, Nongkhai PN. Biocompatible zwitterionic copolymer-stabilized magnetite nanoparticles: a simple one-pot synthesis, antifouling properties and biomagnetic separation. RSC Adv 2018; 8:37077-37084. [PMID: 35557778 PMCID: PMC9089288 DOI: 10.1039/c8ra06887a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/27/2018] [Indexed: 12/16/2022] Open
Abstract
A simple one-pot synthesis of biocompatible and antifouling magnetite nanoparticles (Fe3O4NPs) was developed. The process involves co-precipitation and in situ coating of zwitterionic copolymer poly[(methacrylic acid)-co-(2-methacryloyloxyethyl phosphorylcholine)] (PMAMPC). The influence of one-step and two-step coating methods on the performance of modified Fe3O4NP was investigated. The PMAMPC-Fe3O4NP with a narrow particle size distribution obtained from the two-step approach were highly stable in aqueous media within a wide range of pH. The particles exhibited superparamagnetic behavior with high saturation magnetization values so that they could be easily separated from solution by a magnet. Their antifouling characteristics against 2 selected proteins, lysozyme (LYZ) and bovine serum albumin (BSA), as a function of copolymer molecular weight and composition were also evaluated. Moreover, taking advantage of having carboxyl groups in the coated copolymer, the PMAMPC-Fe3O4NP were conjugated with a model biomolecular probe, biotin. The biotin-immobilized PMAMPC-Fe3O4NP were then tested for their specific capturing of a target molecule, streptavidin. The results have demonstrated the potential of PMAMPC-Fe3O4NP prepared by the two-step in situ coating method for probe immobilization and subsequent biomagnetic separation of target molecules. The fact that the developed functionalizable magnetite nanoparticles are biocompatible and antifouling also opens up the possibility of their use in other biomedical-relevant applications. A simple one-pot synthesis of biocompatible and antifouling magnetite nanoparticles (Fe3O4NPs) was developed.![]()
Collapse
Affiliation(s)
| | - Thanida Trakulsujaritchok
- Department of Chemistry
- Faculty of Science
- Burapha University
- Thailand
- Center of Excellence for Innovation in Chemistry
| | - Klaokwan Srisook
- Center of Excellence for Innovation in Chemistry
- Burapha University
- Thailand
- Department of Biochemistry
- Faculty of Science
| | - Voravee P. Hoven
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piyaporn Na Nongkhai
- Sensor Innovation Research Unit (SIRU)
- Burapha University
- Thailand
- Department of Chemistry
- Faculty of Science
| |
Collapse
|
68
|
Pajovich HT, Banerjee IA. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration. J Funct Biomater 2017; 8:E41. [PMID: 29036882 PMCID: PMC5618292 DOI: 10.3390/jfb8030041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Fucoidan (Fuc), a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel) were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc-Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN) derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc-Gel-MTN assemblies were incubated in simulated body fluid (SBF) to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp). The formed Fuc-Gel-MTN-beta-TCP/HAP scaffolds were found to display an average Young's Modulus value of 0.32 GPa (n = 5) with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc-Gel-MTN-beta-TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering.
Collapse
Affiliation(s)
- Harrison T Pajovich
- Department of Chemistry, Fordham University, 441 E Fordham Rd, Bronx, NY 10458, USA.
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 E Fordham Rd, Bronx, NY 10458, USA.
| |
Collapse
|
69
|
Pipattanawarothai A, Suksai C, Srisook K, Trakulsujaritchok T. Non-cytotoxic hybrid bioscaffolds of chitosan-silica: Sol-gel synthesis, characterization and proposed application. Carbohydr Polym 2017; 178:190-199. [PMID: 29050585 DOI: 10.1016/j.carbpol.2017.09.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023]
Abstract
Biohybrid chitosan-silica scaffolds were synthesized through the sol-gel and the freeze drying processes. Hydrolysis and condensation of chitosan with tetraethylorthosilicate (TEOS) in the presence of 3-isocyanatopropyl triethoxysilane (ICPTES) were successfully carried out. Results obtained from FTIR, swelling test and pyrolysis confirmed that the hybrid scaffolds containing covalent coupling between the organic and inorganic networks were formed with high crosslink density of SiOSi bridging and could be classified as the class II material. The hybridization also resulted in improvements on mechanical strength and stability comparing to the pure chitosan. In vitro investigations on the guided bone regeneration and the cytotoxicity were also performed. SEM-EDS was used to examine the proliferation of calcium phosphate mineral at the scaffold surface after an immersion in simulated body fluid. The results revealed that the hybrid scaffolds exhibited a rapid induction of calcium phosphate mineral without cytotoxicity effect, reflecting an excellent in vitro bone bioactivity which was superior to the pure chitosan scaffold.
Collapse
Affiliation(s)
- Athit Pipattanawarothai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Chomchai Suksai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Klaokwan Srisook
- Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Thanida Trakulsujaritchok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
70
|
Sun B, Zhou Z, Wu T, Chen W, Li D, Zheng H, El-Hamshary H, Al-Deyab SS, Mo X, Yu Y. Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26684-26696. [PMID: 28718615 DOI: 10.1021/acsami.7b06707] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the study of hollow nerve guidance conduit (NGC), the dispersion of regenerated axons always confused researchers. To address this problem, filler-containing NGC was prepared, which showed better effect in the application of nerve tissue engineering. In this study, nanofiber sponges with abundant macropores, high porosity, and superior compressive strength were fabricated by electrospinning and freeze-drying. Poly(l-lactic acid-co-ε-caprolactone)/silk fibroin (PLCL/SF) nanofiber sponges were used as filler to prepare three-dimensional nanofiber sponges-containing (NS-containing) NGC. In order to study the effect of fillers for nerve regeneration, hollow NGC was set as control. In vitro cell viability studies indicated that the NS-containing NGC could enhance the proliferation of Schwann cells (SCs) due to the macroporous structure. The results of hematoxylin-eosin (HE) and immunofluorescence staining confirmed that SCs infiltrated into the nanofiber sponges. Subsequently, the NS-containing NGC was implanted in a rat sciatic nerve defect model to evaluate the effect in vivo. NS-containing NGC group performed better in nerve function recovery than hollow NGC group. In consideration of the walking track and triceps weight analysis, NS-containing NGC was close to the autograft group. In addition, histological and morphological analyses with HE and toluidine blue (TB) staining, and transmission electron microscope (TEM) were conducted. Better nerve regeneration was observed on NS-containing NGC group both quantitatively and qualitatively. Furthermore, the results of three indexes' immuno-histochemistry and two indexes' immunofluorescence all indicated good nerve regeneration of NS-containing NGC as well, compared with hollow NGC. The results demonstrated NS-containing NGC had great potential in the application of peripheral nerve repair.
Collapse
Affiliation(s)
- Binbin Sun
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Zifei Zhou
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200080, China
| | - Tong Wu
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Weiming Chen
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Dawei Li
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Hao Zheng
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University , Tanta 31527, Egypt
| | - Salem S Al-Deyab
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Kingdom of Saudi Arabia
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
- Shandong International Biotechnology Park Development Company, Ltd. , Yantai 264003, China
| | - Yinxian Yu
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200080, China
| |
Collapse
|
71
|
Mesgar AS, Mohammadi Z, Khosrovan S. Improvement of mechanical properties and in vitro bioactivity of freeze-dried gelatin/chitosan scaffolds by functionalized carbon nanotubes. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1320663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abdorreza S. Mesgar
- Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Zahra Mohammadi
- Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Setareh Khosrovan
- Bioceramics and Implants Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| |
Collapse
|
72
|
Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R. Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1335615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ayushi Shukla
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, India
| | - Satnam Singh
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| | - Ramalingam Chidambram
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| |
Collapse
|
73
|
Liu Y, Ji P, Lv H, Qin Y, Deng L. Gentamicin modified chitosan film with improved antibacterial property and cell biocompatibility. Int J Biol Macromol 2017; 98:550-556. [DOI: 10.1016/j.ijbiomac.2017.01.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/09/2016] [Accepted: 01/26/2017] [Indexed: 01/29/2023]
|
74
|
Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A, Kamali A. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. J Control Release 2017; 254:65-74. [DOI: 10.1016/j.jconrel.2017.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/21/2017] [Indexed: 12/19/2022]
|
75
|
Zou Q, Li J, Niu L, Zuo Y, Li J, Li Y. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1271-1285. [PMID: 28402219 DOI: 10.1080/09205063.2017.1318029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Qin Zou
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Junfeng Li
- b Department of Materials Science & Engineering , Chengdu University of Technology , Chengdu , China
| | - Lulu Niu
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yi Zuo
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Jidong Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yubao Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| |
Collapse
|
76
|
De Sá KD, Figueira DR, Miguel SP, Correia TR, Silva AP, Correia IJ. 3D scaffolds coated with nanofibers displaying bactericidal activity for bone tissue applications. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1236338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin D. De Sá
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Daniela R. Figueira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sónia P. Miguel
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago R. Correia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Abílio P. Silva
- Centro de Ciência e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
77
|
Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 2017; 104:1975-1985. [PMID: 28089930 DOI: 10.1016/j.ijbiomac.2017.01.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 01/07/2017] [Indexed: 01/23/2023]
Abstract
Critical-sized bone defects are augmented with cell free and cell loaded constructs to bridge bone defects. Improving the properties of three-dimensional scaffolds with multiple polymers and others is of growing interest in recent decades. Chitosan (CS), a natural biopolymer has limitations for its use in bone regeneration, and its properties can be enhanced with other materials. In the present study, the composite scaffolds containing CS, gelatin (Gn) and graphene oxide (GO) were fabricated through freeze-drying. These scaffolds (GO/CS/Gn) were characterized by the SEM, Raman spectra, FT-IR, EDS, swelling, biodegradation, protein adsorption and biomineralization studies. The inclusion of GO in the CS/Gn scaffolds showed better physico-chemical properties. The GO/CS/Gn scaffolds were cyto-friendly to rat osteoprogenitor cells, and they promoted differentiation of mouse mesenchymal stem cells into osteoblasts. The scaffolds also accelerated bridging of the rat tibial bone defect with increased collagen deposition in vivo. Hence, these results strongly suggested the potential nature of GO/CS/Gn scaffolds for their application in bone tissue regeneration.
Collapse
|
78
|
Shi J, Sun J, Zhang W, Liang H, Shi Q, Li X, Chen Y, Zhuang Y, Dai J. Demineralized Bone Matrix Scaffolds Modified by CBD-SDF-1α Promote Bone Regeneration via Recruiting Endogenous Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27511-27522. [PMID: 27686136 DOI: 10.1021/acsami.6b08685] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34+ and c-kit+ endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.
Collapse
Affiliation(s)
- Jiajia Shi
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China , Hefei 230026, China
| | - Jie Sun
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Wen Zhang
- Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University , Suzhou 215007, China
| | - Hui Liang
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Qin Shi
- Orthopedic Department, First Affiliated Hospital of Soochow University , Suzhou 215006, China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
79
|
Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. J Mech Behav Biomed Mater 2016; 62:10-23. [DOI: 10.1016/j.jmbbm.2016.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
|
80
|
Yadav I, Shaw GS, Nayak SK, Banerjee I, Shaikh H, Al-Zahrani SM, Anis A, Pal K. Gelatin and amylopectin-based phase-separated hydrogels: An in-depth analysis of the swelling, mechanical, electrical and drug release properties. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0468-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Atila D, Keskin D, Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1103-15. [PMID: 27612808 DOI: 10.1016/j.msec.2016.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 07/23/2016] [Accepted: 08/07/2016] [Indexed: 11/25/2022]
Abstract
Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P80/CA20, P50/CA50, and P20/CA80%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10min. Fiber morphologies of P50/CA50 were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P20/CA80 and P50/CA50 were higher than that of P80/CA20. After crosslinking strain values of P50/CA50 scaffolds were improved and these scaffolds became more stable. Unlike P80/CA20, uncrosslinked P50/CA50 and P20/CA80 were not lost in PBS. Among all groups, crosslinked P50/CA50 scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P50/CA50 scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P50/CA50 scaffolds were proposed as candidate cell carriers for bone tissue engineering applications.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Turkey; Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Turkey; Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Turkey.
| |
Collapse
|
82
|
López Angulo DE, do Amaral Sobral PJ. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int J Biol Macromol 2016; 92:645-653. [PMID: 27453523 DOI: 10.1016/j.ijbiomac.2016.07.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
Biologically active scaffolds used in tissue engineering and regenerative medicine have been generating promising results in skin replacement. The present study aims to test the hypothesis that the incorporation of Aloe vera and snail mucus into scaffolds based on gelatin and chitosan could improve their structure, composition and biodegradability, with a potential effect on bioactivity. Homogeneous pore diameter as well as pore walls in the composite scaffold could be seen in the SEM image. The pores in the scaffolds were interconnected and their sizes ranged from 93 to 296μm. The addition of Aloe vera and snail mucus enlarged the mean pore size with increased porosity and caused changes in the pore architecture. The FTIR analysis has shown good affinity and interaction between the matrix and the Aloe, which may decrease water-binding sites, so this fact hindered the water absorption capacity of the material. The mechanical properties could explain the highest swelling capacity of the snail scaffold, because the high percentage of elongation could facilitate the entry of liquid in it, generating a matrix with plenty of fluid retention. The real innovation in the present work could be the use of these substances (Aloe and snail mucus) for tissue engineering.
Collapse
Affiliation(s)
- Daniel Enrique López Angulo
- University of São Paulo. Depto de Eng. de Alimentos - FZEA - USP, Av. Duque de Caxias Norte, 225, CEP, 13635-900 Pirassununga, (SP), Brazil.
| | - Paulo José do Amaral Sobral
- University of São Paulo. Depto de Eng. de Alimentos - FZEA - USP, Av. Duque de Caxias Norte, 225, CEP, 13635-900 Pirassununga, (SP), Brazil
| |
Collapse
|
83
|
Correia TR, Figueira DR, de Sá KD, Miguel SP, Fradique RG, Mendonça AG, Correia IJ. 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int J Biol Macromol 2016; 93:1432-1445. [PMID: 27267575 DOI: 10.1016/j.ijbiomac.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Nowadays, the incidence of bone disorders has steeply ascended and it is expected to double in the next decade, especially due to the ageing of the worldwide population. Bone defects and fractures lead to reduced patient's quality of life. Autografts, allografts and xenografts have been used to overcome different types of bone injuries, although limited availability, immune rejection or implant failure demand the development of new bone replacements. Moreover, the bacterial colonization of bone substitutes is the main cause of implant rejection. To vanquish these drawbacks, researchers from tissue engineering area are currently using computer-aided design models or medical data to produce 3D scaffolds by Rapid Prototyping (RP). Herein, Tricalcium phosphate (TCP)/Sodium Alginate (SA) scaffolds were produced using RP and subsequently functionalized with silver nanoparticles (AgNPs) through two different incorporation methods. The obtained results revealed that the composite scaffolds produced by direct incorporation of AgNPs are the most suitable for being used in bone tissue regeneration since they present appropriate mechanical properties, biocompatibility and bactericidal activity.
Collapse
Affiliation(s)
- Tiago R Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Daniela R Figueira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Kevin D de Sá
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sónia P Miguel
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ricardo G Fradique
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, R. Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
84
|
Cañas AI, Delgado JP, Gartner C. Biocompatible scaffolds composed of chemically crosslinked chitosan and gelatin for tissue engineering. J Appl Polym Sci 2016. [DOI: 10.1002/app.43814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Isabel Cañas
- Grupo De Investigación Ciencia De Los Materiales; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
- Grupo Genética, Regeneración Y Cáncer; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
| | - Jean Paul Delgado
- Grupo Genética, Regeneración Y Cáncer; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
| | - Carmiña Gartner
- Grupo De Investigación Ciencia De Los Materiales; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
| |
Collapse
|
85
|
Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1354-1365. [PMID: 26845481 DOI: 10.1016/j.ijbiomac.2016.01.112] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The clinical demand for scaffolds and the diversity of available polymers provide freedom in the fabrication of scaffolds to achieve successful progress in bone tissue engineering (BTE). Chitosan (CS) has drawn much of the attention in recent years for its use as graft material either as alone or in a combination with other materials in BTE. The scaffolds should possess a number of properties like porosity, biocompatibility, water retention, protein adsorption, mechanical strength, biomineralization and biodegradability suited for BTE applications. In this review, CS and its properties, and the role of CS along with other polymeric and ceramic materials as scaffolds for bone tissue repair applications are highlighted.
Collapse
Affiliation(s)
- S Saravanan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
86
|
Suchý T, Šupová M, Sauerová P, Verdánová M, Sucharda Z, Rýglová Š, Žaloudková M, Sedláček R, Kalbáčová MH. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. ACTA ACUST UNITED AC 2015; 10:065008. [PMID: 26586611 DOI: 10.1088/1748-6041/10/6/065008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nanocomposite scaffolds which aimed to imitate a bone extracellular matrix were prepared for bone surgery applications. The scaffolds consisted of polylactide electrospun nano/sub-micron fibres, a natural collagen matrix supplemented with sodium hyaluronate and natural calcium phosphate nano-particles (bioapatite). The mechanical properties of the scaffolds were improved by means of three different cross-linking agents: N-(3-dimethylamino propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in an ethanol solution (EDC/NHS/EtOH), EDC/NHS in a phosphate buffer saline solution (EDC/NHS/PBS) and genipin. The effect of the various cross-linking conditions on the pore size, structure and mechanical properties of the scaffolds were subsequently studied. In addition, the mass loss, the swelling ratio and the pH of the scaffolds were determined following their immersion in a cell culture medium. Furthermore, the metabolic activity of human mesenchymal stem cells (hMSCs) cultivated in scaffold infusions for 2 and 7 days was assessed. Finally, studies were conducted of cell adhesion, proliferation and penetration into the scaffolds. With regard to the structural stability of the tested scaffolds, it was determined that EDC/NHS/PBS and genipin formed the most effectively cross-linked materials. Moreover, it was discovered that the genipin cross-linked scaffold also provided the best conditions for hMSC cultivation. In addition, the infusions from all the scaffolds were found to be non-cytotoxic. Thus, the genipin and EDC/NHS/PBS cross-linked scaffolds can be considered to be promising biomaterials for further in vivo testing and bone surgery applications.
Collapse
Affiliation(s)
- Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, Prague 8, 182 09, Czech Republic. Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague 6, 166 07, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zhang X, Zhang C, Xu W, Zhong B, Lin F, Zhang J, Wang Q, Ji J, Wei J, Zhang Y. Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering. Int J Nanomedicine 2015; 10:6699-708. [PMID: 26604746 PMCID: PMC4630181 DOI: 10.2147/ijn.s92598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The structural features of bone engineering scaffolds are expected to exhibit osteoinductive behavior and promote cell adhesion, proliferation, and differentiation. In the present study, we employed synthesized ordered mesoporous calcium-magnesium silicate (om-CMS) and polybutylene succinate (PBSu) to develop a novel scaffold with potential applications in osseous tissue engineering. The characteristics, in vitro bioactivity of om-CMS/PBSu scaffold, as well as the cellular responses of MC3T3-E1 cells to the composite were investigated. Our results showed that the om-CMS/PBSu scaffold possesses a large surface area and highly ordered channel pores, resulting in improved degradation and biocompatibility compared to the PBSu scaffold. Moreover, the om-CMS/PBSu scaffold exhibited significantly higher bioactivity and induced apatite formation on its surface after immersion in the simulated body fluid. In addition, the om-CMS/PBSu scaffold provided a high surface area for cell attachment and released Ca, Mg, and Si ions to stimulate osteoblast proliferation. The unique surface characteristics and higher biological efficacy of the om-CMS/PBSu scaffold suggest that it has great potential for being developed into a system that can be employed in osseous tissue engineering.
Collapse
Affiliation(s)
- Xinxin Zhang
- TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chi Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Xu
- TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Biao Zhong
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Feng Lin
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Quanxiang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiajin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yang Zhang
- TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|