51
|
Gao Y, Cho HJ. Quantifying the trade-off between stiffness and permeability in hydrogels. SOFT MATTER 2022; 18:7735-7740. [PMID: 36205349 DOI: 10.1039/d2sm01215d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels have a distinct combination of mechanical and water-transport behaviors. As hydrogels stiffen when they de-swell, they become less permeable. Here, we combine de Gennes' semi-dilute polymer theory with the Kozeny-Carman equation to develop a simple, succinct scaling law describing the relationship between mechanical stiffness and hydraulic permeability where permeability scales with stiffness to the -8/9 power. We find a remarkably close agreement between the scaling law and experimental results across four different polymer families with varied crosslinkings. This inverse relationship establishes a fundamental trade-off between permeability and stiffness.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| | - H Jeremy Cho
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
52
|
da Costa Silva V, do Nascimento TG, Mergulhão NLON, Freitas JD, Duarte IFB, de Bulhões LCG, Dornelas CB, de Araújo JX, dos Santos J, Silva ACA, Basílio ID, Goulart MOF. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022; 27:6959. [PMID: 36296550 PMCID: PMC9609202 DOI: 10.3390/molecules27206959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
The main objectives of this study were to develop and characterize hydrophilic polymeric membranes impregnated with poly-lactic acid (PLA) nanoparticles (NPs) combined with red propolis (RP). Ultrasonic-assisted extraction was used to obtain 30% (w/v) red propolis hydroalcoholic extract (RPE). The NPs (75,000 g mol-1) alone and incorporated with RP (NPRP) were obtained using the solvent emulsification and diffusion technique. Biopolymeric hydrogel membranes (MNPRP) were obtained using carboxymethylcellulose (CMC) and NPRP. Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenols (TPC) and flavonoids contents (TFC), and antioxidant activity through the radical scavenging assay with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric reducing antioxidant power (FRAP). The identification and quantification of significant RP markers were performed through UPLC-DAD. The NPs were evaluated for particle size, polydispersity index, and zeta potential. The TPC for RPE, NPRP, and MNPRP was 240.3 ± 3.4, 191.7 ± 0.3, and 183.4 ± 2.1 mg EGA g-1, while for TFC, the value was 37.8 ± 0.9, 35 ± 3.9, and 26.8 ± 1.9 mg EQ g-1, respectively. Relevant antioxidant activity was also observed by FRAP, with 1400.2 (RPE), 1294.2 (NPRP), and 696.2 µmol Fe2+ g-1 (MNPRP). The primary markers of RP were liquiritigenin, isoliquiritigenin, and formononetin. The particle sizes were 194.1 (NPs) and 361.2 nm (NPRP), with an encapsulation efficiency of 85.4%. Thermal analysis revealed high thermal stability for the PLA, nanoparticles, and membranes. The DSC revealed no interaction between the components. FTIR allowed for characterizing the RPE encapsulation in NPRP and CMC for the MNPRP. The membrane loaded with NPRP, fully characterized, has antioxidant capacity and may have application in the treatment of skin wounds.
Collapse
Affiliation(s)
- Valdemir da Costa Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Ticiano G. do Nascimento
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Johnnatan D. Freitas
- Department of Chemistry, Federal Institute of Education, Science and Technology, Alagoas, Maceio 57035-660, AL, Brazil
| | - Ilza Fernanda B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | | | - Camila B. Dornelas
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - João Xavier de Araújo
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Jucenir dos Santos
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Anielle C. A. Silva
- Physics Institute, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Irinaldo D. Basílio
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Marilia O. F. Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| |
Collapse
|
53
|
Podaru IA, Stănescu PO, Ginghină R, Stoleriu Ş, Trică B, Şomoghi R, Teodorescu M. Poly(N-vinylpyrrolidone)-Laponite XLG Nanocomposite Hydrogels: Characterization, Properties and Comparison with Divinyl Monomer-Crosslinked Hydrogels. Polymers (Basel) 2022; 14:4216. [PMID: 36236165 PMCID: PMC9571604 DOI: 10.3390/polym14194216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
The present work investigates, for the first time, the synthesis and properties of some nanocomposite (NC) hydrogels obtained by the aqueous solution free radical polymerization of N-vinylpyrrolidone (NVP) in the presence of Laponite XLG (XLG) as a crosslinker, in comparison with the corresponding hydrogels prepared by using two conventional crosslinking divinyl monomers: N,N'-methylenebisacrylamide (MBA) and tri(ethylene glycol) divinyl ether (DVE). The structure and properties of the hydrogels were studied by FTIR, TEM, XRD, SEM, swelling and rheological and compressive mechanical measurements. The results showed that DVE and XLG are much better crosslinking agents for the synthesis of PNVP hydrogels than MBA, leading to larger gel fractions and more homogeneous network hydrogels. The hydrogels crosslinked by either DVE or XLG displayed comparable viscoelastic and compressive mechanical properties under the experimental conditions employed. The properties of the XLG-crosslinked hydrogels steadily improved as the clay content increased. The addition of XLG as a second crosslinker together with a divinyl monomer strongly enhanced the material properties in comparison with the hydrogels crosslinked by only one of the crosslinkers involved. The FTIR analyses suggested that the crosslinking of the NC hydrogels was the result of two different interactions occurring between the clay platelets and the PNVP chains. Laponite XLG displayed a uniform distribution within the NC hydrogels, the clay being mostly exfoliated. However, a small number of platelet agglomerations were still present. The PNVP hydrogels described here may find applications for water purification and in the biomedical field as drug delivery systems or wound dressings.
Collapse
Affiliation(s)
- Ionela Alice Podaru
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
- Armament Systems and Mechatronics Department, Military Technical Academy “Ferdinand I”, 39–49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Paul O. Stănescu
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Raluca Ginghină
- Chemical Technologies for CBRN Defense Department, Research and Innovation Center for CBRN Defense and Ecology, 225 Olteniţei Ave., 041327 Bucharest, Romania
| | - Ştefania Stoleriu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Raluca Şomoghi
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Spl. Independentei 202, 060021 Bucharest, Romania
- Faculty of Petroleum Technology and Petrochemistry, Petroleum and Gas University of Ploiesti, 39 Bucuresti Blvd., 100680 Ploiesti, Romania
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
| |
Collapse
|
54
|
Tsou CH, Chen S, Li X, Chen JC, De Guzman MR, Sun YL, Du J, Zhang Y. Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
55
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
56
|
Polycarbonate/polyvinyl alcohol thin film nanocomposite membrane incorporated with silver nanoparticles for water treatment. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
57
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
58
|
Dong M, Jiao D, Zheng Q, Wu ZL. Recent progress in fabrications and applications of functional hydrogel films. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
59
|
Guo S, Ren Y, Chang R, He Y, Zhang D, Guan F, Yao M. Injectable Self-Healing Adhesive Chitosan Hydrogel with Antioxidative, Antibacterial, and Hemostatic Activities for Rapid Hemostasis and Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34455-34469. [PMID: 35857973 DOI: 10.1021/acsami.2c08870] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Engineered wound dressing materials with excellent injectability, self-healing ability, tissue-adhesiveness, especially the ones possessing potential therapeutic effects have great practical significance in healthcare. Herein, an injectable quaternary ammonium chitosan (QCS)/tannic acid (TA) hydrogel based on QCS and TA was designed and fabricated by facile mixing of the two ingredients under physiological conditions. In this system, hydrogels were mainly cross-linked by dynamic ionic bonds and hydrogen bonds between QCS and TA, which endows the hydrogel with excellent injectable, self-healing, and adhesive properties. Benefitting from the inherent antioxidative, antibacterial, and hemostatic abilities of TA and QCS, this hydrogel showed superior reactive oxygen species scavenging activity, broad-spectrum antibacterial ability, as well as rapid hemostatic capability. Moreover, the QCS/TA2.5 hydrogel (containing 2.5% TA) exhibited excellent biocompatibility. The in vivo experiments also showed that QCS/TA2.5 hydrogel dressing not only rapidly stopped the bleeding of arterial and deep incompressible wounds in mouse tail amputation, femoral artery hemorrhage, and liver incision models but also significantly accelerated wound healing in a full-thickness skin wound model. For the great potentials listed above, this multifunctional QCS/TA2.5 hydrogel offers a promising network as a dressing material for both rapid hemostasis and skin wound repair.
Collapse
Affiliation(s)
- Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yikun Ren
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Dan Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
60
|
A novel visible light-curing chitosan-based hydrogel membrane for Guided Tissue Regeneration. Colloids Surf B Biointerfaces 2022; 218:112760. [DOI: 10.1016/j.colsurfb.2022.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
|
61
|
Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng 2022; 8:2196-2219. [PMID: 35649119 DOI: 10.1021/acsbiomaterials.1c01436] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designing biomaterials capable of biomimicking wound healing and skin regeneration has been receiving increasing attention recently. Some biopolymers behave similarly to the extracellular matrix (ECM), supporting biointerfacial adhesion and intrinsic cellular interactions. Polydopamine (PDA) is a natural bioadhesive and bioactive polymer that endows high chemical versatility, making it an exciting candidate for a wide range of biomedical applications. Moreover, biomaterials based on PDA and its derivatives have near-infrared (NIR) absorption, excellent biocompatibility, intrinsic antioxidative activity, antibacterial activity, and cell affinity. PDA can regulate cell behavior by controlling signal transduction pathways. It governs the focal adhesion behavior of cells at the biomaterials interface. These features make melanin-like PDA a fascinating biomaterial for wound healing and skin regeneration. This paper overviews PDA-based biomaterials' synthesis, properties, and interactions with biological entities. Furthermore, the utilization of PDA nano- and microstructures as a constituent of wound-dressing formulations is highlighted.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 141663-4793, Iran
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad 96914, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University─Erbil, Erbil, Kurdistan Region 44001, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran, Kurdistan Regional Government 44008, Iraq
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences,Tehran 144961-4535, Iran
| |
Collapse
|
62
|
A Weed-Derived Hierarchical Porous Carbon with a Large Specific Surface Area for Efficient Dye and Antibiotic Removal. Int J Mol Sci 2022; 23:ijms23116146. [PMID: 35682825 PMCID: PMC9181242 DOI: 10.3390/ijms23116146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Adsorption is an economical and efficient method for wastewater treatment, and its advantages are closely related to adsorbents. Herein, the Abutilon theophrasti medicus calyx (AC) was used as the precursor for producing the porous carbon adsorbent (PCAC). PCAC was prepared through carbonization and chemical activation. The product activated by potassium hydroxide exhibited a larger specific surface area, more mesopores, and a higher adsorption capacity than the product activated by sodium hydroxide. PCAC was used for adsorbing rhodamine B (RhB) and chloramphenicol (CAP) from water. Three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich–Peterson models), and thermodynamic equations were used to investigate adsorption processes. The pseudo-second kinetic and Sips isotherm models fit the experimental data well. The adsorption mechanism and the reusability of PCAC were also investigated. PCAC exhibited a large specific surface area. The maximum adsorption capacities (1883.3 mg g−1 for RhB and 1375.3 mg g−1 for CAP) of PCAC are higher than most adsorbents. Additionally, in the fixed bed experiments, PCAC exhibited good performance for the removal of RhB. These results indicated that PCAC was an adsorbent with the advantages of low-cost, a large specific surface area, and high performance.
Collapse
|
63
|
Niu K, Luo J, Yang Q, Wang C, Tan S, Wu Y. Monoammonium salts of multiprotic acids as dopants for proton-conductive hydrogel membranes: the effects of anions. RSC Adv 2022; 12:15098-15104. [PMID: 35702440 PMCID: PMC9115645 DOI: 10.1039/d2ra01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Monoammonium salts of diprotic acid (NH4HSO4) and triprotic acid (NH4H2PO4), whose cations and anions are both potential proton carriers, were employed as dopants for proton-conductive hydrogel membranes to explore the effects of anions on thermal, mechanical, and electrochemical performance. Robust hydrogel membranes were obtained by radical copolymerization of acrylamide and ethylene glycol dimethacrylate dissolved in aqueous solutions of NH4HSO4 and NH4H2PO4. By virtue of the protonated ammonium cation, the ionic conductivities of the hydrogels doped with NH4HSO4 and NH4H2PO4 were superior to those doped with the corresponding inorganic acids (H2SO4 and H3PO4). The hydrogel doped with NH4HSO4 exhibited a higher ionic conductivity but lower mechanical strength and thermostability than that with NH4H2PO4. Ionic conduction in the doped hydrogels was dominated by the vehicle mechanism and NH4HSO4 resulted in lower activation energy for the conduction than NH4H2PO4. In addition, the fuel cell performances of the hydrogel membranes at room temperature were evaluated.
Collapse
Affiliation(s)
- Kainan Niu
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China
| |
Collapse
|
64
|
Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. NANOMATERIALS 2022; 12:nano12101707. [PMID: 35630932 PMCID: PMC9146209 DOI: 10.3390/nano12101707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023]
Abstract
The aim of this review is to bring together the main natural polymer applications for environmental remediation, as a class of nexus materials with advanced properties that offer the opportunity of integration in single or simultaneous decontamination processes. By identifying the main natural polymers derived from agro-industrial sources or monomers converted by biotechnology into sustainable polymers, the paper offers the main performances identified in the literature for: (i) the treatment of water contaminated with heavy metals and emerging pollutants such as dyes and organics, (ii) the decontamination and remediation of soils, and (iii) the reduction in the number of suspended solids of a particulate matter (PM) type in the atmosphere. Because nanotechnology offers new horizons in materials science, nanocomposite tunable polymers are also studied and presented as promising materials in the context of developing sustainable and integrated products in society to ensure quality of life. As a class of future smart materials, the natural polymers and their nanocomposites are obtained from renewable resources, which are inexpensive materials with high surface area, porosity, and high adsorption properties due to their various functional groups. The information gathered in this review paper is based on the publications in the field from the last two decades. The future perspectives of these fascinating materials should take into account the scale-up, the toxicity of nanoparticles, and the competition with food production, as well as the environmental regulations.
Collapse
|
65
|
Li Y, Chen P, Gao G, Qin L, Yang H, Zhang X. A smart microhydrogel membrane sensor realized by pipette tip. Biosens Bioelectron 2022; 211:114341. [PMID: 35594625 DOI: 10.1016/j.bios.2022.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
In this paper, we describe a simple and practical way to prepare hydrogel membranes in a conical channel (pipette tip). We used a pipette to create a gas pressure difference on both sides of the gel precursor, which drove the gel precursor to move in the pipette tip. During movement, the shape of the hydrogel precursor gradually becomes thinner as the radius of the tapered channel becomes larger. We use this principle to realize the highly controllable preparation of the hydrogel membrane structure (130 μm at its thinnest). Moreover, we fabricated a hydrogel membrane sensor in one step by implanting smart molecules in the hydrogel, which achieved rapid and sensitive detection of 0.5 μM-500 mM potassium ions. This method of preparing the hydrogel membrane sensor does not rely on professional membrane production equipment and complex molecular design processes, has high gel utilization and simple and controllable membrane thickness, and has a wide range of application value in the field of intelligent hydrogel-based analysis technology.
Collapse
Affiliation(s)
- Yansheng Li
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, 100192, PR China; Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing, 100192, PR China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Guowei Gao
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, 100192, PR China; Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing, 100192, PR China.
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, 100192, PR China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
66
|
Analysis of model drug permeation through highly crosslinked and biodegradable polyethylene glycol membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Vatanpour V, Jouyandeh M, Mousavi Khadem SS, Paziresh S, Dehqan A, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Munir MT, Mohaddespour A, Rabiee N, Habibzadeh S, Mashhadzadeh AH, Nouranian S, Formela K, Saeb MR. Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152228. [PMID: 34890675 DOI: 10.1016/j.scitotenv.2021.152228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | | | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117-13137, Iran
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Science, Tehran 14117-13137, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amin Hamed Mashhadzadeh
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, MS 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
68
|
Wu H, Bu N, Chen J, Chen Y, Sun R, Wu C, Pang J. Construction of Konjac Glucomannan/Oxidized Hyaluronic Acid Hydrogels for Controlled Drug Release. Polymers (Basel) 2022; 14:polym14050927. [PMID: 35267750 PMCID: PMC8912606 DOI: 10.3390/polym14050927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Konjac glucomannan (KGM) hydrogel has favorable gel-forming abilities, but its insufficient swelling capacity and poor control release characteristics limit its application. Therefore, in this study, oxidized hyaluronic acid (OHA) was used to improve the properties of KGM hydrogel. The influence of OHA on the structure and properties of KGM hydrogels was evaluated. The results show that the swelling capacity and rheological properties of the composite hydrogels increased with OHA concentration, which might be attributed to the hydrogen bond between the KGM and OHA, resulting in a compact three-dimensional gel network structure. Furthermore, epigallocatechin gallate (EGCG) was efficiently loaded into the KGM/OHA composite hydrogels and liberated in a sustained pattern. The cumulative EGCG release rate of the KGM/OHA hydrogels was enhanced by the increasing addition of OHA. The results show that the release rate of composite hydrogel can be controlled by the content of OHA. These results suggest that OHA has the potential to improve the properties and control release characteristics of KGM hydrogels.
Collapse
|
69
|
Rabiee N, Fatahi Y, Asadnia M, Daneshgar H, Kiani M, Ghadiri AM, Atarod M, Mashhadzadeh AH, Akhavan O, Bagherzadeh M, Lima EC, Saeb MR. Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127130. [PMID: 34530276 DOI: 10.1016/j.jhazmat.2021.127130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The 1,1,1-tris[[(2'-benzyl-amino-formyl)phenoxy]methyl]ethane (A), 4-amino-benzo-hydrazide (B), and 4-(2-(4-(3-carboxy-propan-amido)benzoyl)hydrazineyl)-4-oxobutanoic acid (B1) were synthesized to obtain green ligands based on 4-X-N-(…(Y(hydrazine-1-carbonyl)phenyl)benzamide, with X denoting fluoro (B2), methoxy (B3), nitro (B4), and phenyl-sulfonyl (B5) substitutes. The chemical structure of ligand-decorated adenosine triphosphate (ATP) molecules (S-ATP) was characterized by FTIR, XRD, AFM, FESEM, and TEM techniques. The cytotoxicity of the porous membrane was patterned by applying different cell lines, including HEK-293, PC12, MCF-7, HeLa, HepG2, and HT-29, to disclose their biological behavior. The morphology of cultured cells was monitored by confocal laser scanning microscopy. The sensitivity of S-ATP to different cations of Na+, Mg2+, K+, Ba2+, Zn2+, and Cd2+ was evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) in terms of extraction efficiency (η). For pH of 5.5, the η of A-based S-ATP followed the order Na+ (63.3%) > Mg2+ (62.1%) > Ba2+ (7.6%) > Ca2+ (5.5%); while for pH of 7.4, Na+ (37.0%) > Ca2+ (33.1%) > K+ (25.7%). The heat map of MTT and dose-dependent evaluations unveiled acceptable cell viability of more than 90%. The proposed green porous nanomembranes would pave the way to use multifunctional green porous nanomembranes in biological membranes.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Monireh Atarod
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317-51167, Iran
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | | | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
70
|
Miao H, Hao W, Liu H, Liu Y, Fu X, Huang H, Ge M, Qian Y. Highly Flexibility, Powder Self-Healing, and Recyclable Natural Polymer Hydrogels. Gels 2022; 8:gels8020089. [PMID: 35200470 PMCID: PMC8871090 DOI: 10.3390/gels8020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Based on the good self-healing ability to repair mechanical damage, self-healing hydrogels have aroused great interest and been extensively applied as functional materials. However, when partial failure of hydrogels caused by breaking or dryness occurs, leading to recycling problems, self-healing hydrogels cannot solve the mentioned defects and have to be abandoned. In this work, a novel recyclable and self-healing natural polymer hydrogel (Chitosan/polymethylacrylic acid-: CMA) was prepared. The CMA hydrogel not only exhibited controlled mechanical properties from 26 kPa to 125 kPa with tensile strain from 1357% to 3012%, but also had good water retaining property, stability and fast self-healing properties in 1 min. More importantly, the CMA hydrogel displayed attractive powder self-healing performance. After drying–powdering treatment, the mentioned abandoned hydrogels could easily rebuild their frame structure to recover their original state and performance in 1 min only by adding a small amount of water, which could significantly prolong their service life. These advantages guarantee the hydrogel can effectively defend against reversible mechanical damage, water loss and partial hydrogel failure, suggesting great potential applications as a recyclable functional hydrogel for biomaterials and electronic materials.
Collapse
Affiliation(s)
- Haiyue Miao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (H.M.); (W.H.)
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (H.M.); (W.H.)
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Yiyang Liu
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Xiaobin Fu
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
- Correspondence: (X.F.); (H.H.); (Y.Q.)
| | - Hailong Huang
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
- Correspondence: (X.F.); (H.H.); (Y.Q.)
| | - Min Ge
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (H.L.); (Y.L.); (M.G.)
- Correspondence: (X.F.); (H.H.); (Y.Q.)
| |
Collapse
|
71
|
Wei L, Tan J, Li L, Wang H, Liu S, Chen J, Weng Y, Liu T. Chitosan/Alginate Hydrogel Dressing Loaded FGF/VE-Cadherin to Accelerate Full-Thickness Skin Regeneration and More Normal Skin Repairs. Int J Mol Sci 2022; 23:ijms23031249. [PMID: 35163172 PMCID: PMC8835731 DOI: 10.3390/ijms23031249] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
The process of full-thickness skin regeneration is complex and has many parameters involved, which makes it difficult to use a single dressing to meet the various requirements of the complete regeneration at the same time. Therefore, developing hydrogel dressings with multifunction, including tunable rheological properties and aperture, hemostatic, antibacterial and super cytocompatibility, is a desirable candidate in wound healing. In this study, a series of complex hydrogels were developed via the hydrogen bond and covalent bond between chitosan (CS) and alginate (SA). These hydrogels exhibited suitable pore size and tunable rheological properties for cell adhesion. Chitosan endowed hemostatic, antibacterial properties and great cytocompatibility and thus solved two primary problems in the early stage of the wound healing process. Moreover, the sustained cytocompatibility of the hydrogels was further investigated after adding FGF and VE-cadherin via the co-culture of L929 and EC for 12 days. The confocal 3D fluorescent images showed that the cells were spherical and tended to form multicellular spheroids, which distributed in about 40-60 μm thick hydrogels. Furthermore, the hydrogel dressings significantly accelerate defected skin turn to normal skin with proper epithelial thickness and new blood vessels and hair follicles through the histological analysis of in vivo wound healing. The findings mentioned above demonstrated that the CS/SA hydrogels with growth factors have great potential as multifunctional hydrogel dressings for full-thickness skin regeneration incorporated with hemostatic, antibacterial, sustained cytocompatibility for 3D cell culture and normal skin repairing.
Collapse
Affiliation(s)
| | | | | | | | | | - Junying Chen
- Correspondence: ; Tel.: +86-028-87634148; Fax: +86-028-87600625
| | | | | |
Collapse
|
72
|
Manmana Y, Hiraoka N, Naito T, Kubo T, Otsuka K. Development of a microfluidic dispensing device for multivariate data acquisition and application in molecularly imprinting hydrogel preparation. J Mater Chem B 2022; 10:6664-6672. [DOI: 10.1039/d2tb00685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymer (MIP) is the superior material with molecular recognition ability that applies to various applications. In order to get high specificity recognition for target molecules, selecting polymerization conditions,...
Collapse
|
73
|
A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review discusses, in brief, the various synthetic methods of two widely-used nanofillers; phyllosilicate and graphene. Both are 2D fillers introduced into hydrogel matrices to achieve mechanical robustness and water uptake behavior. Both the fillers are inserted by physical and chemical gelation methods where most of the chemical gelation, i.e., covalent approaches, results in better physical properties compared to their physical gels. Physical gels occur due to supramolecular assembly, van der Waals interactions, electrostatic interactions, hydrophobic associations, and H-bonding. For chemical gelation, in situ radical triggered gelation mostly occurs.
Collapse
|
74
|
Rahimnejad M, Rabiee N, Ahmadi S, Jahangiri S, Sajadi SM, Akhavan O, Saeb MR, Kwon W, Kim M, Hahn SK. Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS APPLIED BIO MATERIALS 2021; 4:8110-8128. [PMID: 35005915 DOI: 10.1021/acsabm.1c00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials focusing on MPC polymers and highlight their attractive potentials for applications in micro/nanofabricated fluidic devices, biosensors, lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages for early diagnosis and even treatment, and artificial extracellular matrix scaffolds for cellular engineering.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Sepideh Jahangiri
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil 44001, Kurdistan Region, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran City 44008, Kurdistan Region, Iraq
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk 80-233, Poland
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
75
|
Bowry SK, Chazot C. The scientific principles and technological determinants of haemodialysis membranes. Clin Kidney J 2021; 14:i5-i16. [PMID: 34987782 PMCID: PMC8711766 DOI: 10.1093/ckj/sfab184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
In most biological or industrial (including medical) separation processes, a membrane is a semipermeable barrier that allows or achieves selective transport between given compartments. In haemodialysis (HD), the semipermeable membrane is in a tubular geometry in the form of miniscule pipes (hollow fibres) and separation processes between compartments involve a complex array of scientific principles and factors that influence the quality of therapy a patient receives. Several conditions need to be met to accomplish the selective and desired removal of substances from blood in the inner cavity (lumen) of the hollow fibres and across the membrane wall into the larger open space surrounding each fibre. Current HD membranes have evolved and improved beyond measure from the experimental membranes available in the early developmental periods of dialysis. Today, the key functional determinants of dialysis membranes have been identified both in terms of their potential to remove uraemic retention solutes (termed ‘uraemic toxins’) as well subsidiary criteria they must additionally fulfill to avoid undesirable patient reactions or to ensure safety. The production of hundreds of millions of kilometres of hollow fibre membranes is truly a technological achievement to marvel, particularly in ensuring that the fibre dimensions of wall thickness and inner lumen diameter and controlled porosity—all so vital to core solute removal and detoxification functions of dialysis—are maintained for every centimetre length of the fragile fibres. Production of membranes will increase in parallel with the increase in the number of chronic kidney disease (CKD) patients expected to require HD therapies in the future. The provision of high-quality care entails detailed consideration of all aspects of dialysis membranes, as quality cannot in any way be compromised for the life-sustaining—like the natural membranes within all living organisms—function artificial dialysis membranes serve.
Collapse
Affiliation(s)
- Sudhir K Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | | |
Collapse
|
76
|
Alagumalai K, Musuvadhi Babulal S, Chen SM, Shanmugam R, Yesuraj J. Electrochemical evaluation of naproxen through Au@f-CNT/GO nanocomposite in environmental water and biological samples. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
77
|
Hernandez-Martinez AR. Poly(2-Hydroxyethyl methacrylate-co-N,N-dimethylacrylamide)-Coated Quartz Crystal Microbalance Sensor: Membrane Characterization and Proof of Concept. Gels 2021; 7:151. [PMID: 34698146 PMCID: PMC8544454 DOI: 10.3390/gels7040151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Application-oriented hydrogel properties can be obtained by modifying the synthesis conditions of the materials. The purpose of this study is to achieve customized properties for sensing applications of hydrogel membranes based on poly(2-hydroxyethyl methacrylate), HEMA and N,N-dimethylacrylamide, DMAa. Copolymer p(HEMA-co-DMAa) hydrogels were prepared by varying the DMAa monomer ratio from 0-100% in 20% increments. Hydrogel membranes were characterized by attenuated infrared spectroscopy. Swelling and sorption were evaluated using cation solutions. Copolymers were also synthesized on the gold surface of quartz crystal microbalances (QCM) as coating membranes. A proof of concept was conducted for approaching the design and development of QCM sensors based on P(DMAa-co-HEMA)-membranes. Results showed that the water and ion adsorption capacity of hydrogel membranes increased with higher DMAa content. Membranes are not selective to a specific location but did show different transport features with each cation. The QCM coated with the selected membrane presented linear relationships between resonance frequency and ions concentration in solution (10-120 ppm). As a consequence, hydrogel membranes obtained are promising for the development of future biosensing devices.
Collapse
Affiliation(s)
- Angel Ramon Hernandez-Martinez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Queretaro 76230, Queretaro, Mexico
| |
Collapse
|
78
|
Moraes Schambeck C, Ribeiro da Costa RH, Derlon N. Phosphate removal from municipal wastewater by alginate-like exopolymers hydrogels recovered from aerobic granular sludge. BIORESOURCE TECHNOLOGY 2021; 333:125167. [PMID: 33894450 DOI: 10.1016/j.biortech.2021.125167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This worked assessed the potential of alginate-like exopolymers (ALE) hydrogels recovered from aerobic granular sludge (AGS) in removing compounds commonly present in municipal wastewater. Batch sorption experiments were performed with ALE hydrogels at different operating conditions. Results showed that ALE hydrogels can only remove phosphate, at removal efficiencies of up to 90.8% and practical loadings of 1.22 ± 0.07 mg PO43--P/g TSALE. Phosphate removal was observed even in the presence of competing ions. Moreover, neutral to acidic pH values strongly impaired the phosphate removal (28.9 ± 0.8% at pH = 6.00), while basic pH at around 8.50 was the most favourable (up to 90.8% at pH = 8.67). However, ALE hydrogels contributed to the increase in COD, total nitrogen and total phosphorus in the bulk liquid, what suggests that ALE need to be further tailored. Therefore, this study demonstrates that ALE represent a relevant approach for the recovery of phosphates from municipal wastewater.
Collapse
Affiliation(s)
- Cássio Moraes Schambeck
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, 88040-970 Florianópolis, Brazil; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Rejane Helena Ribeiro da Costa
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, 88040-970 Florianópolis, Brazil
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
79
|
Nicolella P, Lauxen D, Ahmadi M, Seiffert S. Reversible Hydrogels with Switchable Diffusive Permeability. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Nicolella
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| | - Daniel Lauxen
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| | - Mostafa Ahmadi
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| | - Sebastian Seiffert
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| |
Collapse
|
80
|
Berillo D, Al-Jwaid A, Caplin J. Polymeric Materials Used for Immobilisation of Bacteria for the Bioremediation of Contaminants in Water. Polymers (Basel) 2021; 13:1073. [PMID: 33805360 PMCID: PMC8037671 DOI: 10.3390/polym13071073] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. This review evaluates applications of macroporous cryogels as tools for the bioremediation of contaminants in wastewater.
Collapse
Affiliation(s)
- Dmitriy Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Areej Al-Jwaid
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
- Environment and Pollution Engineering Technical Department, Basrah Engineering Technical College, Southern Technical University, Basra 61003, Iraq
| | - Jonathan Caplin
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
| |
Collapse
|
81
|
Paraskevopoulou P, Raptopoulos G, Leontaridou F, Papastergiou M, Sakellari A, Karavoltsos S. Evaluation of Polyurea-Crosslinked Alginate Aerogels for Seawater Decontamination. Gels 2021; 7:gels7010027. [PMID: 33806357 PMCID: PMC8005931 DOI: 10.3390/gels7010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Polyurea-crosslinked Ca-alginate (X-Ca-alginate) aerogel beads (diameter: 3.3 mm) were evaluated as adsorbents of metal ions, organic solvents, and oils. They were prepared via reaction of an aromatic triisocyanate (Desmodur RE) with pre-formed Ca-alginate wet gels and consisted of 54% polyurea and 2% calcium. X-Ca-alginate aerogels are hydrophobic nanoporous materials (90% v/v porosity), with a high BET surface area (459 m2/g−1), and adsorb PbII not only from ultrapure water (29 mg/g−1) but also from seawater (13 mg/g−1) with high selectivity. The adsorption mechanism involves replacement of CaII by PbII ions coordinated to the carboxylate groups of the alginate backbone. After treatment with a Na2EDTA solution, the beads can be reused, without significant loss of activity for at least two times. X-Ca-alginate aerogels can also uptake organic solvents and oil from seawater; the volume of the adsorbate can be as high as the total pore volume of the aerogel (6.0 mL/g−1), and the absorption is complete within seconds. X-Ca alginate aerogels are suitable for the decontamination of aquatic environments from a broader range of inorganic and organic pollutants.
Collapse
Affiliation(s)
- Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.R.); (F.L.); (M.P.)
- Correspondence: (P.P.); (S.K.); Tel.: +30-210-727-4381 (P.P.); 30-210-727-4269 (S.K.)
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.R.); (F.L.); (M.P.)
| | - Faidra Leontaridou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.R.); (F.L.); (M.P.)
| | - Maria Papastergiou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.R.); (F.L.); (M.P.)
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece;
| | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece;
- Correspondence: (P.P.); (S.K.); Tel.: +30-210-727-4381 (P.P.); 30-210-727-4269 (S.K.)
| |
Collapse
|
82
|
Taghizadeh M, Taghizadeh A, Vatanpour V, Ganjali MR, Saeb MR. Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
83
|
Mora-Boza A, López-Ruiz E, López-Donaire ML, Jiménez G, Aguilar MR, Marchal JA, Pedraz JL, Vázquez-Lasa B, Román JS, Gálvez-Martín P. Evaluation of Glycerylphytate Crosslinked Semi- and Interpenetrated Polymer Membranes of Hyaluronic Acid and Chitosan for Tissue Engineering. Polymers (Basel) 2020; 12:E2661. [PMID: 33187239 PMCID: PMC7697555 DOI: 10.3390/polym12112661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, semi- and interpenetrated polymer network (IPN) systems based on hyaluronic acid (HA) and chitosan using ionic crosslinking of chitosan with a bioactive crosslinker, glycerylphytate (G1Phy), and UV irradiation of methacrylate were developed, characterized and evaluated as potential supports for tissue engineering. Semi- and IPN systems showed significant differences between them regarding composition, morphology, and mechanical properties after physicochemical characterization. Dual crosslinking process of IPN systems enhanced HA retention and mechanical properties, providing also flatter and denser surfaces in comparison to semi-IPN membranes. The biological performance was evaluated on primary human mesenchymal stem cells (hMSCs) and the systems revealed no cytotoxic effect. The excellent biocompatibility of the systems was demonstrated by large spreading areas of hMSCs on hydrogel membrane surfaces. Cell proliferation increased over time for all the systems, being significantly enhanced in the semi-IPN, which suggested that these polymeric membranes could be proposed as an effective promoter system of tissue repair. In this sense, the developed crosslinked biomimetic and biodegradable membranes can provide a stable and amenable environment for hMSCs support and growth with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - María Luisa López-Donaire
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
| | - José Luis Pedraz
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | | |
Collapse
|
84
|
Amiri S, Asghari A, Vatanpour V, Rajabi M. Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117216] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
85
|
Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, Farokhimanesh S, Mohammadi Amirabad L, Zarrintaj P, Saeb MR, Hamblin MR, Zare M, Mozafari M. Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomater Sci Eng 2020; 6:5096-5109. [DOI: 10.1021/acsbiomaterials.0c00988] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samila Farokhimanesh
- Department of Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Taghizadeh A, Taghizadeh M, Jouyandeh M, Yazdi MK, Zarrintaj P, Saeb MR, Lima EC, Gupta VK. Conductive polymers in water treatment: A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
87
|
Agarose-based biomaterials for advanced drug delivery. J Control Release 2020; 326:523-543. [PMID: 32702391 DOI: 10.1016/j.jconrel.2020.07.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Agarose is a prominent marine polysaccharide representing reversible thermogelling behavior, outstanding mechanical properties, high bioactivity, and switchable chemical reactivity for functionalization. As a result, agarose has received particular attention in the fabrication of advanced delivery systems as sophisticated carriers for therapeutic agents. The ever-growing use of agarose-based biomaterials for drug delivery systems resulted in rapid growth in the number of related publications, however still, a long way should be paved to achieve FDA approval for most of the proposed products. This review aims at a classification of agarose-based biomaterials and their derivatives applicable for controlled/targeted drug delivery purposes. Moreover, it attempts to deal with opportunities and challenges associated with the future developments ahead of agarose-based biomaterials in the realm of advanced drug delivery. Undoubtedly, this class of biomaterials needs further advancement, and a lot of critical questions have yet to be answered.
Collapse
|