51
|
Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z, Roghani M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol 2016; 794:69-76. [PMID: 27887948 DOI: 10.1016/j.ejphar.2016.11.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is associated with learning, memory, and cognitive deficits. S-allyl cysteine (SAC) is the main organosulfur bioactive molecule in aged garlic extract with anti-diabetic, antioxidant, anti-inflammatory and nootropic property. This research was conducted to evaluate the efficacy of SAC on alleviation of learning and memory deficits in streptozotocin (STZ)-diabetic rats and to explore involvement of toll-like receptor 4 (TLR4), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor-kappa B (NF-κB), and heme oxygenase 1 (HO-1) signaling cascade. Male Wistar rats were divided into control, diabetic, SAC-treated diabetic, and glibenclamide-treated diabetic (positive control) groups. SAC was administered at a dose of 150mg/kg for seven weeks. Treatment of diabetic rats with SAC lowered serum glucose, improved spatial recognition memory in Y maze, discrimination ratio in novel object recognition task, and restored step-through latency (STL) in passive avoidance paradigm. In addition, SAC reduced acetylcholinesterase activity, lipid peroxidation marker malondialdehyde (MDA) and augmented antioxidant defensive system including superoxide dismutase (SOD), catalase and reduced glutathione (GSH) in hippocampal lysate. Meanwhile, SAC lowered hippocampal NF-kB, TLR4, and TNFα and prevented reduction of Nrf2 and heme oxygenase-1 (HO-1) in diabetic rats. Taken together, chronic SAC treatment could ameliorate cognitive deficits in STZ-diabetic rats through modulation of Nrf2/NF-κB/TLR4/HO-1, and acetylcholinesterase and attenuation of associated oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | | | - Zahra Ghasemi
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
52
|
Design of chalcogen-containing norepinephrines: efficient GPx mimics and strong cytotoxic agents against HeLa cells. Future Med Chem 2016; 8:2185-2195. [PMID: 27845568 DOI: 10.4155/fmc-2016-0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Numerous chronic diseases exhibit multifactorial etiologies, so focusing on a single therapeutic target is usually an inadequate treatment; instead, multi-target drugs are preferred. Herein, a panel of phenolic thioureas and selenoureas were designed as new prototypes against multifactorial diseases concerning antioxidation and cytotoxicity, as a pro-oxidant environment is usually found in such diseases. RESULTS Selenoureas were excellent antiradical agents and biomimetic catalysts of glutathione peroxidase for the scavenging of H2O2. They were also potent and selective cytotoxic agents against cancer cells, in particular HeLa (IC50 2.77-6.13 μM), apoptosis being involved. Selenoureas also reduced oxidative stress in HeLa cells (IC50= 3.76 μM). CONCLUSION Phenolic selenoureas are promising lead structures for the development of drugs targeting multifactorial diseases like cancer.
Collapse
|
53
|
Dvořáková M, Heroutová I, Němeček D, Adámková K, Krejčová T, Nevoral J, Kučerová Chrpová V, Petr J, Sedmíková M. The antioxidative properties of S-allyl cysteine not only influence somatic cells but also improve early embryo cleavage in pigs. PeerJ 2016; 4:e2280. [PMID: 27602268 PMCID: PMC4991846 DOI: 10.7717/peerj.2280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/31/2023] Open
Abstract
In vitro cultivation systems for oocytes and embryos are characterised by increased levels of reactive oxygen species (ROS), which can be balanced by the addition of suitable antioxidants. S-allyl cysteine (SAC) is a sulfur compound naturally occurring in garlic (Allium sativum), which is responsible for its high antioxidant properties. In this study, we demonstrated the capacity of SAC (0.1, 0.5 and 1.0 mM) to reduce levels of ROS in maturing oocytes significantly after 24 (reduced by 90.33, 82.87 and 91.62%, respectively) and 48 h (reduced by 86.35, 94.42 and 99.05%, respectively) cultivation, without leading to a disturbance of the standard course of meiotic maturation. Oocytes matured in the presence of SAC furthermore maintained reduced levels of ROS even 22 h after parthenogenic activation (reduced by 66.33, 61.64 and 57.80%, respectively). In these oocytes we also demonstrated a growth of early embryo cleavage rate (increased by 33.34, 35.00 and 35.00%, respectively). SAC may be a valuable supplement to cultivation media.
Collapse
Affiliation(s)
- Markéta Dvořáková
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Ivona Heroutová
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - David Němeček
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Kateřina Adámková
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Tereza Krejčová
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Jan Nevoral
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic; Biomedical center, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic
| | | | - Jaroslav Petr
- Institute of Animal Science , Prague , Czech Republic
| | - Markéta Sedmíková
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| |
Collapse
|
54
|
Abdi SAH, Najmi AK, Raisuddin S. Cyclophosphamide-induced Down-Regulation of Uroplakin II in the Mouse Urinary Bladder Epithelium is Prevented by S-Allyl Cysteine. Basic Clin Pharmacol Toxicol 2016; 119:598-603. [PMID: 27234646 DOI: 10.1111/bcpt.12627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
The alkylating anticancer drug, cyclophosphamide (CP), induces a number of toxic effects including haemorrhagic cystitis (HC) in the urinary bladder. Uroplakins are unique urinary transmembrane proteins of urothelium, which may become potential targets of CP metabolites and reactive free radicals. Natural compounds, especially those rich in thiols, have shown protective effects against CP-induced HC. In this study, we studied the modulatory effect of the thiol-rich compound S-allyl cysteine (SAC) on the mRNA level of uroplakin II by real-time polymerase chain reaction and expression of uroplakin II protein by immunoblotting. SAC (150 mg/kg) showed significant (p < 0.001) protective effects against CP (200 mg/kg)-induced alteration in mRNA level and protein expression of uroplakin II. SAC also protected animals from CP-induced HC as assessed by gross morphological examination of urinary bladder. When compared with mercaptoethane sulphonic acid (mesna) (40 mg/kg), a known thiol-rich drug used in clinical application, SAC was found to be more efficacious in affording protection in urinary bladder tissues. Role of uroplakins in CP-induced urinary bladder toxicity has not been well investigated. This study demonstrated that uroplakins may be the potential target of toxic metabolites of CP and natural compounds such as SAC have the capacity to modulate their expression leading to reduced toxicity burden on the urinary bladder epithelium.
Collapse
Affiliation(s)
- Sayed Aliul Hasan Abdi
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India.,Department of Pharmacology, Jamia Hamdard (Hamdard University), New Delhi, India.,Faculty of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
55
|
Takeda E, Kunimoto K, Kawai Y, Kataoka M, Ishikawa K, Nakamura T. Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1. Extremophiles 2016; 20:733-45. [DOI: 10.1007/s00792-016-0862-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
|
56
|
DeLeon ER, Gao Y, Huang E, Olson KR. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1212-25. [PMID: 27101293 PMCID: PMC4935497 DOI: 10.1152/ajpregu.00061.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo.
Collapse
Affiliation(s)
- Eric R DeLeon
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Yan Gao
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Evelyn Huang
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| |
Collapse
|
57
|
Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 2016; 55-56:91-100. [DOI: 10.1016/j.niox.2016.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/03/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
|