51
|
The impact of sleep disorders on microvascular complications in patients with type 2 diabetes (SLEEP T2D): the protocol of a cohort study and feasibility randomised control trial. Pilot Feasibility Stud 2021; 7:80. [PMID: 33752759 PMCID: PMC7982768 DOI: 10.1186/s40814-021-00817-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is very common in patients with type 2 diabetes (T2D). We and others have shown that OSA was associated with diabetes-related microvascular complications in patients with T2D in cross-sectional and longitudinal studies and that compliance with continuous positive airway pressure (CPAP) reduced the progression of microvascular complications. Hence, we hypothesised that adequate CPAP reduces the development of microvascular complication in patients with T2D. METHODS SLEEP T2D is a cohort study with embedded feasibility, open-label, parallel-arm, randomised control trial (RCT) over 2 years. The primary aim is the feasibility of conducting a definitive RCT assessing the impact of CPAP on chronic kidney disease and other microvascular complications in patients with T2D. The main parameters are to assess willingness of participants to be randomised, follow-up rates, CPAP adherence/compliance, to optimise the choice of outcome measures for a substantive trial, and to identify the parameters for sample size calculations. The secondary aims of the study are related to the impact of CPAP, sleep-related disorders, and sleep chronotype on a variety of diabetes-related end points. The study participants were recruited from the T2D services in multiple NHS trusts across England. The main exclusion criteria for the cohort study are as follows: T1D, eGFR < 15 mL/min/1.73 m2, known OSA, active malignancy or chronic kidney disease from reasons other than diabetes, pregnancy, professional drivers, and a history of falling asleep whilst driving within last 2 years. The main exclusion criteria from the RCT were as follows: Apnoea-Hypopnoea Index < 10 and Epworth Sleepiness Score ≥ 11. Study participants were extensively phenotyped clinically and biochemically. The OSA diagnosis was based on multichannel portable device (ApneaLink AirTM, Resmed). DISCUSSION The feasibility RCT will help us design the future RCT to assess the impact of CPAP on diabetes-related microvascular complications. The cohort study will generate preliminary data regarding the impact of sleep quality, duration, and chronotype on diabetes-related outcomes which could lead to further mechanistic and interventional studies. TRIAL REGISTRATION ISRCTN, ISRCTN12361838 . Registered 04 April 2018, Protocol version: v5.0 02.12.19.
Collapse
|
52
|
Chen J, Gu H, Wurster RD, Cheng ZJ. The protective role of SOD1 overexpression in central mediation of bradycardia following chronic intermittent hypoxia in mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R317-R330. [PMID: 33296277 PMCID: PMC7988771 DOI: 10.1152/ajpregu.00147.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 01/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder that is associated with many cardiovascular complications. Similar to OSA, chronic intermittent hypoxia (CIH) (a model for OSA) leads to oxidative stress and impairs baroreflex control of the heart rate (HR) in rodents. The baroreflex arc includes the aortic depressor nerve (ADN), vagal efferent, and central neurons. In this study, we used mice as a model to examine the effects of CIH on baroreflex sensitivity, aortic baroreceptor afferents, and central and vagal efferent components of the baroreflex circuitry. Furthermore, we tested whether human Cu/Zn Superoxide Dismutase (SOD1) overexpression in transgenic mice offers protection against CIH-induced deficit of the baroreflex arc. Wild-type C57BL/6J and SOD1 mice were exposed to room air (RA) or CIH and were then anesthetized, ventilated, and catheterized for measurement of mean arterial pressure (MAP) and HR. Compared with wild-type RA control, CIH impaired baroreflex sensitivity but increased maximum baroreceptor gain and bradycardic response to vagal efferent stimulation. Additionally, CIH reduced the bradycardic response to ADN stimulation, indicating a diminished central regulation of bradycardia. Interestingly, SOD1 overexpression prevented CIH-induced attenuation of HR responses to ADN stimulation and preserved HR responses to vagal efferent stimulation in transgenic mice. We suggest that CIH decreased central mediation of the baroreflex and SOD1 overexpression may prevent the CIH-induced central deficit.
Collapse
Affiliation(s)
- Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - He Gu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood, Illinois
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
53
|
Mei L, Li X, Wang S, Si R, Ji T, Xu Z, Peng Y, Liu Y, Li H, Zhang J, Guo Y, Tian J, Zhou G, Huang H, Tai J, Liu J, Ni X. The Impacts of Obstructive Sleep Apnea Severity on Brain White Matter Integrity and Cognitive Functions in Children: A Diffusion Tensor Imaging Study. Nat Sci Sleep 2021; 13:2125-2135. [PMID: 34880696 PMCID: PMC8648265 DOI: 10.2147/nss.s329408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate the impacts of obstructive sleep apnea (OSA) on white matter (WM) integrity and cognitive functions of pediatric patients with different levels of OSA severity. METHODS Fifty-eight children with OSA and thirty-four healthy controls (HC) were recruited. All participants underwent diffusion tensor imaging (DTI) examination, polysomnography (PSG), and neurocognitive assessments. Patients were divided into mild OSA (MG) and moderate-severe OSA (SG) groups. WM integrity, PSG data, and neurocognitive assessment scores were compared among those groups. RESULTS For apnea hypopnea index (AHI), obstructive apnea hypopnea index (OAHI), arousal index, SpO2 nadir, and attention, SG was worse than both MG and HC with MG worse than HC. For baseline SpO2 and intelligence, SG was worse than both MG and HC with no significant difference between MG and HC. Impaired WM integrity was observed in bilateral anterior thalamic radiation, bilateral inferior fronto-occipital fasciculus, bilateral inferior longitudinal fasciculus, right superior longitudinal fasciculus, right hippocampus, left cingulate gyrus, right uncinate fasciculus, callosum forceps major, and callosum forceps minor only for SG than for HC. WM integrity was significantly correlated with OSA severity and neurocognitive assessment scores only for SG, but not for MG. CONCLUSION Decreased baseline SpO2, WM impairment, and intelligence decline were all observed only for SG, but not for MG, implying an associated relationship among decreased SpO2, WM impairment and WM impairment. Thus, for SG, additional assessments of brain damage and cognitive function decline are needed for prognostic evaluation of OSA.
Collapse
Affiliation(s)
- Lin Mei
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Run Si
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Tingting Ji
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Zhifei Xu
- Department of Respiration, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yue Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Hongbin Li
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jie Zhang
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, People's Republic of China
| | - Jinghong Tian
- Department of Neurorehabilitation, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Guifei Zhou
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Huifang Huang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Jun Tai
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China.,Department of Otorhinolaryngology, Children's Hospital, Capital Institute of Pediatrics, Beijing, People's Republic of China
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, People's Republic of China.,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Xin Ni
- Department of Otolaryngology, Head and Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
54
|
Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 2020; 24:1263-1282. [PMID: 33180654 PMCID: PMC9394230 DOI: 10.1080/14728222.2020.1841749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Gut dysbiosis is assumed to play a role in obstructive sleep apnea (OSA)-associated morbidities. Pre- and probiotics, short chain fatty acids (SCFA) and fecal matter transplantation (FMT) may offer potential as novel therapeutic strategies that target this gut dysbiosis. As more mechanisms of OSA-induced dysbiosis are being elucidated, these novel approaches are being tested in preclinical and clinical development. Areas covered: We examined the evidence linking OSA to gut dysbiosis and discuss the effects of pre- and probiotics on associated cardiometabolic, neurobehavioral and gastrointestinal disorders. The therapeutic potential of SCFA and FMT are also discussed. We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central between 2000 - 2020. Expert opinion: To date, there are no clinical trials and only limited evidence from animal studies describing the beneficial effects of pre- and probiotic supplementation on OSA-mediated dysbiosis. Thus, more work is necessary to assess whether prebiotics, probiotics and SCFA are promising future novel strategies for targeting OSA-mediated dysbiosis.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| | - Saif Mashaqi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Arizona School of Medicine , Tucson, AZ, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| |
Collapse
|
55
|
Polsek D, Cash D, Veronese M, Ilic K, Wood TC, Milosevic M, Kalanj-Bognar S, Morrell MJ, Williams SCR, Gajovic S, Leschziner GD, Mitrecic D, Rosenzweig I. The innate immune toll-like-receptor-2 modulates the depressogenic and anorexiolytic neuroinflammatory response in obstructive sleep apnoea. Sci Rep 2020; 10:11475. [PMID: 32651433 PMCID: PMC7351955 DOI: 10.1038/s41598-020-68299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The increased awareness of obstructive sleep apnoea’s (OSA) links to Alzheimer’s disease and major psychiatric disorders has recently directed an intensified search for their potential shared mechanisms. We hypothesised that neuroinflammation and the microglial TLR2-system may act as a core process at the intersection of their pathophysiology. Moreover, we postulated that inflammatory-response might underlie development of key behavioural and neurostructural changes in OSA. Henceforth, we set out to investigate effects of 3 weeks’ exposure to chronic intermittent hypoxia in mice with or without functional TRL2 (TLR2+/+, C57BL/6-Tyrc-Brd-Tg(Tlr2-luc/gfp)Kri/Gaj;TLR2−/−,C57BL/6-Tlr2tm1Kir). By utilising multimodal imaging in this established model of OSA, a discernible neuroinflammatory response was demonstrated for the first time. The septal nuclei and forebrain were shown as the initial key seed-sites of the inflammatory cascade that led to wider structural changes in the associated neurocircuitry. Finally, the modulatory role for the functional TLR2-system was suggested in aetiology of depressive, anxious and anorexiolytic symptoms in OSA.
Collapse
Affiliation(s)
- Dora Polsek
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,BRAIN, Department of Neuroimaging, KCL, London, UK
| | | | - Katarina Ilic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Milan Milosevic
- School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Mary J Morrell
- The National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Srecko Gajovic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,Department of Neurology, Guy's and St Thomas' Hospital (GSTT) and Clinical Neurosciences, KCL, London, UK.,Sleep Disorders Centre, GSTT, London, UK
| | - Dinko Mitrecic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK. .,Sleep Disorders Centre, GSTT, London, UK.
| |
Collapse
|
56
|
Lee MH, Yun CH, Min A, Hwang YH, Lee SK, Kim DY, Thomas RJ, Han BS, Shin C. Altered structural brain network resulting from white matter injury in obstructive sleep apnea. Sleep 2020; 42:5526734. [PMID: 31260533 DOI: 10.1093/sleep/zsz120] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
STUDY OBJECTIVES To assess, using fractional anisotropy (FA) analysis, alterations of brain network connectivity in adults with obstructive sleep apnea (OSA). Abnormal networks could mediate clinical functional deficits and reflect brain tissue injury. METHODS Structural brain networks were constructed using diffusion tensor imaging (DTI) from 165 healthy (age 57.99 ± 6.02 years, male 27.9%) and 135 OSA participants (age 59.01 ± 5.91 years, male 28.9%) and global network properties (strength, global efficiency, and local efficiency) and regional efficiency were compared between groups. We examined MRI biomarkers of brain tissue injury using FA analysis and its effect on the network properties. RESULTS Differences between groups of interest were noted in global network properties (p-value < 0.05, corrected), and regional efficiency (p-value < 0.05, corrected) in the left middle cingulate and paracingulate gyri, right posterior cingulate gyrus, and amygdala. In FA analysis, OSA participants showed lower FA values in white matter (WM) of the right transverse temporal, anterior cingulate and paracingulate gyri, and left postcentral, middle frontal and medial frontal gyri, and the putamen. After culling fiber tracts through WM which showed significant differences in FA, we observed no group difference in network properties. CONCLUSIONS Changes in WM integrity and structural connectivity are present in OSA participants. We found that the integrity of WM affected brain network properties. Brain network analysis may improve understanding of neurocognitive deficits in OSA, enable longitudinal tracking, and provides explanations for specific symptoms and recovery kinetics.
Collapse
Affiliation(s)
- Min-Hee Lee
- Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI.,Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Areum Min
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Yoon Ho Hwang
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Dong Youn Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Robert J Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Bong Soo Han
- Department of Radiological Science, Yonsei University, Wonju, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.,Department of Pulmonary Sleep and Critical Care Medicine Disorder Center, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
57
|
Evaluation of symptoms of preopoperative and postoperative psychosomatic screening in children with adenoidectomy and adenotonsillectomy. Int J Pediatr Otorhinolaryngol 2020; 134:110072. [PMID: 32387709 DOI: 10.1016/j.ijporl.2020.110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Adenoidectomy and adenotonsillectomy are very common operations in childhood. It is important to clarify their effects on this age group; in this study, we aimed to investigate the effects of the causative agent on children's mental health by using scales that help to screen for indications of mental disorders in children, who have had adenoidectomy or adenotonsillectomy, both before and after surgery. In this way, we aimed to investigate the effects of this factor on children's mental health. MATERIALS AND METHODS The study included 82 children aged 6-12 years with signs of upper respiratory tract obstruction or recurrent adenotonsilitis. Adenotonsillectomy was performed in 41 patients included in the study and adenoidectomy was performed in 41 patients included in the study. 40 healthy children matched with the patient groups in terms of age and gender were included in the control group. Patients, were divided into three groups, those who underwent adenoidectomy, patients undergoing adenotonsillectomy and those in the control group Preoperative and postoperative questionnaires were used to investigate the effect of tonsillectomy or adenoidectomy on the mental health of children. The Parents' Form for the Strengths and Difficulties Questionnaire, the Parental Form for the Children's Anxiety Screening Scale, the Sleeping Scale for Children and the Quality of Life Scale for Children were used in the screening. RESULTS In children, who underwent adenoidectomy/adenotonsillectomy due to recurrent infection and adeno/adenotonsillar hypertrophy; it was seen that there was a significant decrease in the scores for the Strengths and Difficulties Questionnaire, the Anxiety Screening Scale in Children, and the Sleep Scale in Children, and a significant increase in Quality of Life Scale for Children scores. OUTCOME In conclusion, adenoidectomy/adenotonsillectomy in children with sleep apnea due to recurrent episodes of infection and adeno/adenotonsillar hypertrophy was thought to prevent further neurobehavioral problems, likely to become more complex in the future, and to improve quality of life.
Collapse
|
58
|
Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants (Basel) 2020; 9:antiox9060476. [PMID: 32498324 PMCID: PMC7346202 DOI: 10.3390/antiox9060476] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress (OS) drives cardiometabolic diseases. Intermittent hypoxia consistently increases oxidative stress markers. Obstructive sleep apnea (OSA) patients experience intermittent hypoxia and an increased rate of cardiovascular disease, however, the impact of OSA on OS markers is not clear. The objective was to assess relationships between OSA severity and biomarker levels. Patients with suspected OSA referred for a polysomnogram (PSG) provided fasting blood sample. Plasma levels of 8-isoprostane, 8-hydroxydeoxyguanosine (8-OHdG), and superoxide dismutase (SOD) were measured. The relationship between OSA and OS was assessed both before and after controlling for confounders (age, sex, smoking history, history of cardiovascular disease, ethnicity, diabetes, statin usage, body mass index (BMI)). 402 patients were studied (68% male, mean age ± SD = 50.8 ± 11.8 years, apnea-hypopnea index (AHI) = 22.2 ± 21.6 events/hour, BMI = 31.62 ± 6.49 kg/m2). In a multivariable regression, the AHI significantly predicted 8-isoprostane levels (p = 0.0008) together with age and statin usage; AHI was not a predictor of 8-OHdG or SOD. Female sex (p < 0.0001) and no previous history of cardiovascular disease (p = 0.002) were associated with increased antioxidant capacity. Circulating 8-isoprostane levels may be a promising biomarker of the severity of oxidative stress in OSA patients. Prospective studies are needed to determine whether this biomarker is associated with long-term cardiometabolic complications in OSA.
Collapse
|
59
|
Zhang CQ, Yi S, Chen BB, Cui PP, Wang Y, Li YZ. mTOR/NF-κB signaling pathway protects hippocampal neurons from injury induced by intermittent hypoxia in rats. Int J Neurosci 2020; 131:994-1003. [PMID: 32378972 DOI: 10.1080/00207454.2020.1766460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To expound the roles of mTOR and NF-kB signaling pathway in intermittent hypoxia (IH)-induced damage of hippocampal neurons. METHODS For rat experiments, mTOR inhibitor (Rapamycin, Rapa) and NF-κB signaling inhibitor (ammonium pyrrolidine dithiocarbamate, PDTC) were applied to inhibit mTOR and NF-κB signaling, respectively. For neuron experiments, hippocampal neurons from rat were successfully cultured. Different concentrations of Rapa and PDTC were added to the cultured hippocampal neurons. Rat or primary hippocampal neurons were exposed to normoxic or IH conditions after administration of Rapa and PDTC. The effects of Rapa and PDTC administration on learning and memory ability of rats and hippocampal injury after IH exposure were assayed by Morris water maze and H&E staining. Electron microscope was utilized to examine primary hippocampal neuron ultrastructure changes after IH exposure and Rapa or PDTC administration. The expressions of NF-κB-p65, IκBα, IKKβ, BDNF, TNF-α, IL-1β, PSD-95 and SYN in hippocampal neurons were examined. RESULTS Compared with normal control rats or neurons, IH-treated group had elevated expression levels of NF-kB, TNF-α and IL-1β and suppressed expression level of BDNF, PSD-95 and SYN. These results were reversed upon pre-treatment with Rapa and PDTC. Furthermore, IκBα and IKKβ expressions were down-regulated in IH group. No notable difference was manifested in PDTC pre-treatment group, while a prominent increase was shown after Rapa pre-administration. CONCLUSION The administration of PDTC and Rapa could prevent IH-induced hippocampal neuron impairment, indicating that inhibition of the mTOR and NF-κB pathway may likely act as a therapeutic target for obstructive sleep apnea.
Collapse
Affiliation(s)
- Chu-Qin Zhang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Song Yi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Bo-Bei Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Pan-Pan Cui
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yan Wang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yan-Zhong Li
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
60
|
Huynh W, Ahmed R, Mahoney CJ, Nguyen C, Tu S, Caga J, Loh P, Lin CSY, Kiernan MC. The impact of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Expert Rev Neurother 2020; 20:281-293. [DOI: 10.1080/14737175.2020.1727740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William Huynh
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Prince of Wales Clinical School, The University of New South Wales, Sydney, Australia
| | - Rebekah Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| | - Colin J. Mahoney
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Chilan Nguyen
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medicine, The University of Notre Dame, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jashelle Caga
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Patricia Loh
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Cindy S-Y Lin
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
61
|
Sun ZM, Guan P, Luo LF, Qin LY, Wang N, Zhao YS, Ji ES. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci 2020; 245:117362. [PMID: 31996295 DOI: 10.1016/j.lfs.2020.117362] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022]
Abstract
The prominent feature of obstructive sleep apnea (OSA) is chronic intermittent hypoxia (CIH). Given the strong antioxidant ability of resveratrol against oxidative stress, we evaluated the potential protective effects of resveratrol on myocardial injury induced by CIH. Twenty-four rats were divided into normal control group, CIH group, CIH plus resveratrol treated (CIH + Res) group, and resveratrol treated control (Res) group. We proved that CIH impaired cardiac structure and function with an increase in oxidative stress, endoplasmic reticulum (ER) stress and NOD-like receptors (NLRP3) inflammasome induction in heart, which was attenuated after resveratrol administration. NLRP3 inflammasome blockade by resveratrol appeared to be mediated by activating AMP-activated Protein Kinase (AMPK), which could restrain mTOR/TTP/NLRP3 mRNA signalling. Furthermore, resveratrol attenuated CIH-induced oxidative stress through elevation antioxidant molecules expression via NF-E2-related factor-2 (Nrf2). Moreover, AMPK may play a role in Nrf2/HO-1 signalling by resveratrol. These results expand our understanding of the myocardial protective mechanism of resveratrol during CIH and suggest that resveratrol treatment may be useful to counteract OSA-associated cardiac injury.
Collapse
Affiliation(s)
- Zhi-Min Sun
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei, People's Republic of China
| | - Li-Fei Luo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Lu-Yun Qin
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ya-Shuo Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
62
|
Flores KR, Viccaro F, Aquilini M, Scarpino S, Ronchetti F, Mancini R, Di Napoli A, Scozzi D, Ricci A. Protective role of brain derived neurotrophic factor (BDNF) in obstructive sleep apnea syndrome (OSAS) patients. PLoS One 2020; 15:e0227834. [PMID: 31951637 PMCID: PMC6968866 DOI: 10.1371/journal.pone.0227834] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common disorder characterized by repeated episodes of upper airways collapse during the sleep. The following intermittent hypoxia triggers a state of chronic inflammation, which also interests the nervous system leading to neuronal damage and increased risk of cognitive impairment. Brain derived neurotrophic factor (BDNF) is a growth factor often associated with neuroplasticity and neuroprotection whose levels increase in several condition associated with neuronal damage. However, whether patients affected by OSAS have altered BDNF levels and whether such alteration may be reflective of their cognitive impairment is still controversial. Here we show that, when compared to healthy control volunteers, OSAS patients have increased serum levels of BDNF. Moreover, OSAS patients with the higher levels of BDNF also have reduced neurocognitive impairment as measured by The Montreal Cognitive Assessment (MoCA) questionnaire. Treatment with standard non-invasive mechanical ventilation (CPAP) also was able to ameliorate the level of cognitive impairment. Altogether our results indicate that BDNF levels represent a neuroprotective response to intermittent hypoxia in OSAS patients.
Collapse
Affiliation(s)
- Krisstopher Richard Flores
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Fausta Viccaro
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Mauro Aquilini
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Stefania Scarpino
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Francesco Ronchetti
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
63
|
Huynh W, Sharplin LE, Caga J, Highton‐Williamson E, Kiernan MC. Respiratory function and cognitive profile in amyotrophic lateral sclerosis. Eur J Neurol 2019; 27:685-691. [DOI: 10.1111/ene.14130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- W. Huynh
- Brain and Mind Centre University of Sydney Camperdown NSW Australia
- Prince of Wales Clinical School University of New South Wales Sydney NSW Australia
| | - L. E. Sharplin
- School of Medicine University of Notre Dame Sydney NSW Australia
| | - J. Caga
- Brain and Mind Centre University of Sydney Camperdown NSW Australia
| | | | - M. C. Kiernan
- Brain and Mind Centre University of Sydney Camperdown NSW Australia
| |
Collapse
|
64
|
Olfactory Bulb Microstructural Changes in Patients With Nasal Septum Deviation. J Craniofac Surg 2019; 30:1471-1474. [PMID: 31299746 DOI: 10.1097/scs.0000000000005479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The aim of this study is to assess the microstructural changes to the olfactory bulb (OB) in patients with nasal septum deviation (NSD) using diffusion tensor imaging and to research the association between these changes and the degree of NSD. METHODS Ninety-six patients with NSD (46 males, 50 females) who received diffusion tensor imaging were assessed by 2 independent readers. The patients were separated into 3 groups according to the NSD angle. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the ipsilateral and contralateral OB were measured in all NSD patients by region of interest. RESULTS According to deviation side, there was significant difference between the right (R) and left (L) OB FA and ADC values across the 3 groups. In patients with left- and right- sided NSD, FA and ADC values for the left and right OB were significantly different between groups 1 and 3, and groups 2 and 3. There was negative correlation between L-FA (r = -0.481, P = 0.001; r = -0.496, P = 0.001) and R-FA (r = -0.705, P = 0.001; r = -0.286, P = 0.02) versus age and deviation angle. However, there was positive correlation between L-ADC versus age and deviation angle (r = 0.493, P = 0.001; r = 0.482, P = 0.001), as well as positive correlation between R-ADC versus age (r = 0.646, P = 0.001). CONCLUSION This is the first study showing ADC increase and FA decrease associated with axonal damage and microstructural integrity loss based on the side of deviation in NSD patients. It has also shown that this abnormality is directly proportional with NSD degree.
Collapse
|
65
|
Andrade AG, Bubu OM, Varga AW, Osorio RS. The Relationship between Obstructive Sleep Apnea and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S255-S270. [PMID: 29782319 DOI: 10.3233/jad-179936] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer's disease (AD) are highly prevalent conditions with growing impact on our aging society. While the causes of OSA are now better characterized, the mechanisms underlying AD are still largely unknown, challenging the development of effective treatments. Cognitive impairment, especially affecting attention and executive functions, is a recognized clinical consequence of OSA. A deeper contribution of OSA to AD pathogenesis is now gaining support from several lines of research. OSA is intrinsically associated with disruptions of sleep architecture, intermittent hypoxia and oxidative stress, intrathoracic and hemodynamic changes as well as cardiovascular comorbidities. All of these could increase the risk for AD, rendering OSA as a potential modifiable target for AD prevention. Evidence supporting the relevance of each of these mechanisms for AD risk, as well as a possible effect of AD in OSA expression, will be explored in this review.
Collapse
Affiliation(s)
- Andreia G Andrade
- Department of Neurology, Alzheimer's Disease Center, NYU Langone Medical Center, New York, NY, USA.,Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, NY, USA
| | - Omonigho M Bubu
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo S Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, NY, USA.,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, NY, USA
| |
Collapse
|
66
|
Laouafa S, Roussel D, Marcouiller F, Soliz J, Gozal D, Bairam A, Joseph V. Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiol (Oxf) 2019; 226:e13255. [PMID: 30635990 DOI: 10.1111/apha.13255] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
AIM Chronic intermittent hypoxia (CIH) induces systemic (hypertension) and central alterations (mitochondrial dysfunction underlying cognitive deficits). We hypothesized that agonists of oestradiol receptors (ER) α and β prevent CIH-induced hypertension and brain mitochondrial dysfunction. METHODS Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh), the ERα agonist propylpyraoletriol (PPT - 30 μg/kg/day) or the ERβ agonist diarylpropionitril (DPN - 100 μg/kg/day). Animals were exposed to CIH (21%-10% FI O2 - 10 cycles/hour - 8 hours/day - 7 days) or normoxia. Arterial blood pressure was measured after CIH or normoxia exposures. Mitochondrial respiration and H2 O2 production were measured in brain cortex with high-resolution respirometry, as well as activity of complex I and IV of the electron transport chain, citrate synthase, pyruvate, and lactate dehydrogenase (PDH and LDH). RESULTS Propylpyraoletriol but not DPN prevented the rise of arterial pressure induced by CIH. CIH exposures decreased O2 consumption, complex I activity, and increased H2 O2 production. CIH had no effect on citrate synthase activity, but decreased PDH activity and increased LDH activity indicating higher anaerobic glycolysis. Propylpyraoletriol and DPN treatments prevented all these alterations. CONCLUSIONS We conclude that in OVX female rats, the ERα agonist prevents from CIH-induced hypertension while both ERα and ERβ agonists prevent the brain mitochondrial dysfunction and metabolic switch induced by CIH. These findings may have implications for menopausal women suffering of sleep apnoea regarding hormonal therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Damien Roussel
- CNRS, UMR 5023 Université Claude Bernard Lyon 1 Villeurbanne France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - David Gozal
- Department of Child Health University of Missouri School of Medicine Columbia Missouri
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| |
Collapse
|
67
|
Kizuk SAD, Vuong W, MacLean JE, Dickson CT, Mathewson KE. Electrophysiological correlates of hyperoxia during resting‐state EEG in awake human subjects. Psychophysiology 2019; 56:e13401. [DOI: 10.1111/psyp.13401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sayeed A. D. Kizuk
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
| | - Wesley Vuong
- Department of Psychology University of Alberta Edmonton Alberta Canada
| | - Joanna E. MacLean
- Department of Pediatrics University of Alberta Edmonton Alberta Canada
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
- Department of Psychology University of Alberta Edmonton Alberta Canada
- Department of Physiology University of Alberta Edmonton Alberta Canada
| | - Kyle E. Mathewson
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
- Department of Psychology University of Alberta Edmonton Alberta Canada
| |
Collapse
|
68
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
69
|
Chandrakantan A, Adler A. Pediatric Obstructive Sleep Apnea: Neurocognitive Consequences. CURRENT ANESTHESIOLOGY REPORTS 2019. [DOI: 10.1007/s40140-019-00331-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
70
|
Li WY, Wang A, Jin H, Zou Y, Wang Z, Wang W, Kang J. Transient upregulation of TASK-1 expression in the hypoglossal nucleus during chronic intermittent hypoxia is reduced by serotonin 2A receptor antagonist. J Cell Physiol 2019; 234:17886-17895. [PMID: 30864194 DOI: 10.1002/jcp.28419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 11/11/2022]
Abstract
Hypoglossal motoneurons innervate genioglossus muscle, the contraction of which is critical in the maintenance of upper airway patency in patients with obstructive sleep apnea. As a potassium channel distributed in hypoglossal motoneurons, TWIK-related acid-sensitive K+ channel-1 (TASK-1) could be inhibited by 5-HT. This study aimed to investigate if TASK-1 expression in hypoglossal nucleus could be influenced by chronic intermittent hypoxia (CIH) and 5-HT2A receptors antagonist. Two hundred twenty-eight rats were exposed to CIH or normoxia (NO) in the presence and absence of 5-HT 2A receptor antagonist (MDL-100907) microinjected into the hypoglossal nucleus. The expression of 5-HT and TASK-1 in the hypoglossal nucleus were detected by immunohistochemistry and reverse transcription quantitative polymerase chain reaction on the 1st, 3rd, 7th, 14th and 21st day of CIH exposure. The mean optical density (MOD) of 5-HT in the XII nucleus was significantly increased in the CIH and CIH + MDL group than the NO group on the 7th and 21st day ( p < 0.05). Compared with the NO group, the MOD and gene expression of TASK-1 in the CIH group was significantly increased on the 7th and 14th day ( p < 0.05), then normalized on the 21st day. The TASK-1 expression in the CIH + MDL group was significantly lower than the CIH + PBS and CIH group on the 7th and 14th day ( p < 0.05). The CIH-induced transiently upregulation of the TASK-1 expression in the hypoglossal nucleus could be reversed by 5-HT 2A receptor antagonist, indicating that the modulation of the TASK-1 expression in response to CIH involves 5-HT and 5-HT 2A receptors, and this CIH effect might be 5-HT 2A receptor-dependent.
Collapse
Affiliation(s)
- Wen-Yang Li
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aidi Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongyu Jin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zou
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zanfeng Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
71
|
Sprick JD, Mallet RT, Przyklenk K, Rickards CA. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp Physiol 2019; 104:278-294. [PMID: 30597638 DOI: 10.1113/ep087122] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? Remote ischaemic preconditioning (RIPC) and hypoxic preconditioning as novel therapeutic approaches for cardiac and neuroprotection. What advances does it highlight? There is improved understanding of mechanisms and signalling pathways associated with ischaemic and hypoxic preconditioning, and potential pitfalls with application of these therapies to clinical trials have been identified. Novel adaptations of preconditioning paradigms have also been developed, including intermittent hypoxia training, RIPC training and RIPC-exercise, extending their utility to chronic settings. ABSTRACT Myocardial infarction and stroke remain leading causes of death worldwide, despite extensive resources directed towards developing effective treatments. In this Symposium Report we highlight the potential applications of intermittent ischaemic and hypoxic conditioning protocols to combat the deleterious consequences of heart and brain ischaemia. Insights into mechanisms underlying the protective effects of intermittent hypoxia training are discussed, including the activation of hypoxia-inducible factor-1 and Nrf2 transcription factors, synthesis of antioxidant and ATP-generating enzymes, and a shift in microglia from pro- to anti-inflammatory phenotypes. Although there is little argument regarding the efficacy of remote ischaemic preconditioning (RIPC) in pre-clinical models, this strategy has not consistently translated into the clinical arena. This lack of translation may be related to the patient populations targeted thus far, and the anaesthetic regimen used in two of the major RIPC clinical trials. Additionally, we do not fully understand the mechanism through which RIPC protects the vital organs, and co-morbidities (e.g. hypercholesterolemia, diabetes) may interfere with its efficacy. Finally, novel adaptations have been made to extend RIPC to more chronic settings. One adaptation is RIPC-exercise (RIPC-X), an innovative paradigm that applies cyclical RIPC to blood flow restriction exercise (BFRE). Recent findings suggest that this novel exercise modality attenuates the exaggerated haemodynamic responses that may limit the use of conventional BFRE in some clinical settings. Collectively, intermittent ischaemic and hypoxic conditioning paradigms remain an exciting frontier for the protection against ischaemic injuries.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA.,Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| |
Collapse
|
72
|
Liu P, Zhang HM, Hu K, Zhou XF, Tang S. Sensory plasticity of carotid body is correlated with oxidative stress in paraventricular nucleus during chronic intermittent hypoxia. J Cell Physiol 2019; 234:13534-13543. [PMID: 30609027 DOI: 10.1002/jcp.28031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/30/2018] [Indexed: 01/23/2023]
Abstract
Chronic intermittent hypoxia (CIH) is known to induce hypertension, but the mechanism is not well understood. We hypothesized that sensory plasticity of the carotid body (CB) and oxidative stress in the paraventricular nucleus (PVN) are involved in CIH-induced hypertension. In this study, rats were exposed to CIH for 28 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 hr/day) and then randomly grouped for intracerebroventricular injection of 5-HT2 receptor antagonist ritanserin, Rho-associated protein kinase (ROCK) inhibitor Y-27632, and NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI), respectively. We found that CIH increased blood pressure (BP), elevated carotid sinus nerve (CSN) and renal sympathetic nerve (RSN) activities, oxidative stress, and cell apoptosis in PVN. NOX-derived reactive oxygen species (ROS) production and cell apoptosis decreased when CIH-induced activation of 5-HT/5-HT2AR/PKC signaling was inhibited by ritanserin. In addition, RhoA expression was downregulated when oxidative stress was attenuated by DPI, while Y-27632 decreased the expression of endothelin-1, which is overexpressed in the vascular wall during hypertension. Moreover, treatment with ritanserin, DPI or Y-27632 attenuated the sensory plasticity and sympathetic hyperactivity as well as CIH-induced elevation of BP. In conclusion, CIH-induced activation of 5-HT/5-HT2AR/PKC signaling contributes to NOX-derived oxidative stress in PVN, which may cause sensory plasticity of CB, RSN hyperactivity, and elevated BP.
Collapse
Affiliation(s)
- Pei Liu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Mei Zhang
- Emergency Department, The Second Clinical College, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiu-Fang Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Tang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
73
|
Liang J, Wu Y, Yuan H, Yang Y, Xiong Q, Liang C, Li Z, Li C, Zhang G, Lai X, Hu Y, Hou S. Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions. Int J Biol Macromol 2018; 126:414-426. [PMID: 30593810 DOI: 10.1016/j.ijbiomac.2018.12.230] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to explore the therapeutic effect and underling mechanism of Dendrobium officinale polysaccharides (DOPS) on two well-established animal models of learning and memory disabilities. Model of estrogen deficiency caused learning and memory disability can be induced by ovariectomy in mice, and mice were injected subcutaneously with d-galactose, which can also cause cognitive decline. H&E staining and Nissl staining were employed to confirm the protective effect of DOPS on hippocampal neuron. Morris water maze test, biochemical analysis, immunohistochemistry and immunofluorescence assay were used to study the effect and underlying mechanism of DOPS on two different learning and memory impairment models. Administration of DOPS significantly improved learning and memory disability in both models. Further studies showed that DOPS could attenuate oxidative stress and reduce neuro-inflammation via up-regulating expressions of Nrf2/HO-1 pathway and inhibiting activation of astrocytes and microglia in ovariectomy- and d-galactose-induced cognitive decline. These findings suggest that DOPS have an appreciable therapeutic effect on learning and memory disabilities and its mechanism may be related to activate Nrf2/HO-1 pathway to reduce oxidative stress and neuro-inflammation.
Collapse
Affiliation(s)
- Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yanfang Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Han Yuan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yiqi Yang
- The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Qingping Xiong
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Chuyan Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong, China
| | - Zhimeng Li
- The Fifth People's Hospital of Tangshan, Tangshan 063004, Hebei, PR China
| | - Cantao Li
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Guifang Zhang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Youdong Hu
- Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, PR China.
| | - Shaozhen Hou
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
74
|
Macheda T, Roberts K, Lyons DN, Higgins E, Ritter KJ, Lin AL, Alilain WJ, Bachstetter AD. Chronic Intermittent Hypoxia Induces Robust Astrogliosis in an Alzheimer's Disease-Relevant Mouse Model. Neuroscience 2018; 398:55-63. [PMID: 30529693 DOI: 10.1016/j.neuroscience.2018.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Sleep disturbances are a common early symptom of neurodegenerative diseases, including Alzheimer's disease (AD) and other age-related dementias, and emerging evidence suggests that poor sleep may be an important contributor to development of amyloid pathology. Of the causes of sleep disturbances, it is estimated that 10-20% of adults in the United States have sleep-disordered breathing (SDB) disorder, with obstructive sleep apnea accounting for the majority of the SBD cases. The clinical and epidemiological data clearly support a link between sleep apnea and AD; yet, almost no experimental research is available exploring the mechanisms associated with this correlative link. Therefore, we exposed an AD-relevant mouse model (APP/PS1 KI) to chronic intermittent hypoxia (IH) (an experimental model of sleep apnea) to begin to describe one of the potential mechanisms by which SDB could increase the risk of dementia. Previous studies have found that astrogliosis is a contributor to neuropathology in models of chronic IH and AD; therefore, we hypothesized that a reactive astrocyte response might be a contributing mechanism in the neuroinflammation associated with sleep apnea. To test this hypothesis, 10-11-month-old wild-type (WT) and APP/PS1 KI mice were exposed to 10 hours of IH, daily for four weeks. At the end of four weeks brains were analyzed from amyloid burden and astrogliosis. No effect was found for chronic IH exposure on amyloid-beta levels or plaque load in the APP/PS1 KI mice. A significant increase in GFAP staining was found in the APP/PS1 KI mice following chronic IH exposure, but not in the WT mice. Profiling of genes associated with different phenotypes of astrocyte activation identified GFAP, CXCL10, and Ggta1 as significant responses activated in the APP/PS1 KI mice exposed to chronic IH.
Collapse
Affiliation(s)
- Teresa Macheda
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kelly Roberts
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Danielle N Lyons
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Emma Higgins
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kyle J Ritter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States; Department of Nutrition and Pharmacology, University of Kentucky, Lexington, KY, United States
| | - Warren J Alilain
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
75
|
Moon C, Bendlin BB, Melah KE, Bratzke LC. The association of sleep-disordered breathing and white matter hyperintensities in heart failure patients. Metab Brain Dis 2018; 33:2019-2029. [PMID: 30218440 PMCID: PMC6408271 DOI: 10.1007/s11011-018-0309-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/26/2018] [Indexed: 01/19/2023]
Abstract
Heart failure patients often manifest white matter hyperintensites on brain magnetic resonance imaging (MRI). White matter hyperintnsities have also been linked with cognitive problems in patients with heart failure. Sleep disordered breathing may contribute to structural brain changes in heart failure. The purpose of this study was to test the extent to which the apnea hypopnea index is associated with global and regional white matter hyperintensities, and is a moderating factor in the relationship between age and white matter hyperintensites. A total of 28 HF patients [mean age (SD) = 67.89 (5.8)] underwent T1-weighted and T2FLAIR MRI and a home sleep monitoring study. The apnea hypopnea index cut off of 10 was used to compare between higher and lower risks of sleep disordered breathing. Regression analysis was used to test the association between apnea hypopnea index and both global and regional white matter hyperintensities. The interaction term was entered to identify the moderation effect. Apnea hypopnea index was associated with higher regional white matter hyperintensities but not global white matter hyperintensities. There was a significant interaction between the apnea hypopnea index and age, such that older participants with the apnea hypopnea index ≥10 showed greater regional white matter hyperintensities than those with the apnea hypopnea index <10. The results of this preliminary study indicate that a higher apnea hypopnea index is associated with more white matter hyperintensities. The age-related white matter hyperintensities appear to be exacerbated by apnea hypopnea index in our individuals with heart failure. Future studies are needed to further investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Chooza Moon
- College of Nursing, University of Iowa, 316 CNB, 50 Newton Rd, Iowa City, IA, 52246, USA.
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI, 53705, USA.
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, J5/1 Mezzanine CSC, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kelsey E Melah
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI, 53705, USA
| | - Lisa C Bratzke
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
76
|
Chen J, Gu H, Wurster RD, Cheng Z. Baroreflex Control of Heart Rate in Mice Overexpressing Human SOD1: Functional Changes in Central and Vagal Efferent Components. Neurosci Bull 2018; 35:91-97. [PMID: 30460537 PMCID: PMC6357281 DOI: 10.1007/s12264-018-0302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Excessive reactive oxygen species (ROS) (such as the superoxide radical) are commonly associated with cardiac autonomic dysfunctions. Though superoxide dismutase 1 (SOD1) overexpression may protect against ROS damage to the autonomic nervous system, superoxide radical reduction may change normal physiological functions. Previously, we demonstrated that human SOD1 (hSOD1) overexpression does not change baroreflex bradycardia and tachycardia but rather increases aortic depressor nerve activity in response to arterial pressure changes in C57B6SJL-Tg (SOD1)2 Gur/J mice. Since the baroreflex arc includes afferent, central, and efferent components, the objective of this study was to determine whether hSOD1 overexpression alters the central and vagal efferent mediation of heart rate (HR) responses. Our data indicate that SOD1 overexpression decreased the HR responses to vagal efferent nerve stimulation but did not change the HR responses to aortic depressor nerve (ADN) stimulation. Along with the previous study, we suggest that SOD1 overexpression preserves normal baroreflex function but may differentially alter the functions of the ADN, vagal efferents, and central components. While SOD1 overexpression likely enhanced ADN function and the central mediation of bradycardia, it decreased vagal efferent control of HR.
Collapse
Affiliation(s)
- Jin Chen
- Division of Neuroscience and Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - He Gu
- Division of Neuroscience and Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood, IL, 60153, USA
| | - Zixi Cheng
- Division of Neuroscience and Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
77
|
Snyder B, Duong P, Tenkorang M, Wilson EN, Cunningham RL. Rat Strain and Housing Conditions Alter Oxidative Stress and Hormone Responses to Chronic Intermittent Hypoxia. Front Physiol 2018; 9:1554. [PMID: 30459637 PMCID: PMC6232418 DOI: 10.3389/fphys.2018.01554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Sleep apnea has been associated with elevated risk for metabolic, cognitive, and cardiovascular disorders. Further, the role of hypothalamic–pituitary–adrenal (HPA) activation in sleep apnea has been controversial in human studies. Chronic intermittent hypoxia (CIH) is a rodent model, which mimics the hypoxemia experienced by patients with sleep apnea. Most studies of CIH in rats have been conducted in the Sprague Dawley rat strain. Previously published literature suggests different strains of rats exhibit various responses to disease models, and these effects can be further modulated by the housing conditions experienced by each strain. This variability in response is similar to what has been observed in clinical populations, especially with respect to the HPA system. To investigate if strain or housing (individual or pair-housed) can affect the results of CIH (AHI 8 or 10) treatment, we exposed individual and pair-housed Sprague Dawley and Long-Evans male rats to 7 days of CIH treatment. This was followed by biochemical analysis of circulating hormones, oxidative stress, and neurodegenerative markers. Both strain and housing conditions altered oxidative stress generation, hyperphosphorylated tau protein (tau tangles), circulating corticosterone and adrenocorticotropic hormone (ACTH), and weight metrics. Specifically, pair-housed Long-Evans rats were the most sensitive to CIH, which showed a significant association between oxidative stress generation and HPA activation under conditions of AHI of 8. These results suggest both strain and housing conditions can affect the outcomes of CIH.
Collapse
Affiliation(s)
- Brina Snyder
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Phong Duong
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Mavis Tenkorang
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - E Nicole Wilson
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
78
|
Andrade DC, Haine L, Toledo C, Diaz HS, Quintanilla RA, Marcus NJ, Iturriaga R, Richalet JP, Voituron N, Del Rio R. Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin? Front Physiol 2018; 9:1440. [PMID: 30374309 PMCID: PMC6196773 DOI: 10.3389/fphys.2018.01440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) is the most common form of sleep disordered breathing and is associated with wide array of cardiovascular morbidities. It has been proposed that during OSA, the respiratory control center (RCC) is affected by exaggerated afferent signals coming from peripheral/central chemoreceptors which leads to ventilatory instability and may perpetuate apnea generation. Treatments focused on decreasing hyperactivity of peripheral/central chemoreceptors may be useful to improving ventilatory instability in OSA patients. Previous studies indicate that oxidative stress and inflammation are key players in the increased peripheral/central chemoreflex drive associated with OSA. Recent data suggest that erythropoietin (Epo) could also be involved in modulating chemoreflex activity as functional Epo receptors are constitutively expressed in peripheral and central chemoreceptors cells. Additionally, there is some evidence that Epo has anti-oxidant/anti-inflammatory effects. Accordingly, we propose that Epo treatment during OSA may reduce enhanced peripheral/central chemoreflex drive and normalize the activity of the RCC which in turn may help to abrogate ventilatory instability. In this perspective article we discuss the potential beneficial effects of Epo administration on ventilatory regulation in the setting of OSA.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Liasmine Haine
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Diaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jean-Paul Richalet
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Nicolas Voituron
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
79
|
Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-20. [PMID: 30182580 PMCID: PMC8357196 DOI: 10.1117/1.jbo.23.9.091415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics.
Collapse
Affiliation(s)
- Lydia Sauer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Chantal Dysli
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Martin S. Zinkernagel
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Paul S. Bernstein
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Martin Hammer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Jena, Center for Biomedical Optics and Photonics, Jena, Germany
- Address all correspondence to: Martin Hammer, E-mail:
| |
Collapse
|
80
|
Carissimi A, Martinez D, Kim LJ, Fiori CZ, Vieira LR, Rosa DP, Pires GN. Intermittent hypoxia, brain glyoxalase-1 and glutathione reductase-1, and anxiety-like behavior in mice. ACTA ACUST UNITED AC 2018; 40:376-381. [PMID: 30110090 PMCID: PMC6899376 DOI: 10.1590/1516-4446-2017-2310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Sleep apnea has been associated with anxiety, but the mechanisms of the sleep apnea-anxiety relationship are unresolved. Sleep apnea causes oxidative stress, which might enhance anxiety-like behavior in rodents. To clarify the apnea-anxiety connection, we tested the effect of intermittent hypoxia, a model of sleep apnea, on the anxiety behavior of mice. METHODS The rodents were exposed daily to 480 one-minute cycles of intermittent hypoxia to a nadir of 7±1% inspiratory oxygen fraction or to a sham procedure with room air. After 7 days, the mice from both groups were placed in an elevated plus maze and were video recorded for 10 min to allow analysis of latency, frequency, and duration in open and closed arms. Glyoxalase-1 (Glo1) and glutathione reductase-1 (GR1) were measured in the cerebral cortex, hippocampus, and striatum by Western blotting. RESULTS Compared to controls, the intermittent hypoxia group displayed less anxiety-like behavior, perceived by a statistically significant increase in the number of entries and total time spent in open arms. A higher expression of GR1 in the cortex was also observed. CONCLUSION The lack of a clear anxiety response as an outcome of intermittent hypoxia exposure suggests the existence of additional layers in the anxiety mechanism in sleep apnea, possibly represented by sleepiness and irreversible neuronal damage.
Collapse
Affiliation(s)
- Alicia Carissimi
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Denis Martinez
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares, UFRGS, Porto Alegre, RS, Brazil.,Divisão de Cardiologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Lenise J Kim
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Cintia Z Fiori
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares, UFRGS, Porto Alegre, RS, Brazil.,Divisão de Cardiologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil
| | - Luciana R Vieira
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Darlan P Rosa
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil.,Faculdade Cenecista de Bento Gonçalves (CNEC), Bento Gonçalves, RS, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
81
|
Pardo-Peña K, Lorea-Hernández JJ, Camacho-Hernández NP, Ordaz B, Villasana-Salazar B, Morales-Villagrán A, Peña-Ortega F. Hydrogen peroxide extracellular concentration in the ventrolateral medulla and its increase in response to hypoxia in vitro: Possible role of microglia. Brain Res 2018; 1692:87-99. [DOI: 10.1016/j.brainres.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/31/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
82
|
Elliot-Portal E, Laouafa S, Arias-Reyes C, Janes TA, Joseph V, Soliz J. Brain-derived erythropoietin protects from intermittent hypoxia-induced cardiorespiratory dysfunction and oxidative stress in mice. Sleep 2018; 41:4985474. [PMID: 29697839 PMCID: PMC6047438 DOI: 10.1093/sleep/zsy072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Study Objectives Based on the fact that erythropoietin (Epo) administration in rodents protects against spatial learning and cognitive deficits induced by chronic intermittent hypoxia (CIH)-mediated oxidative damage, here we tested the hypothesis that Epo in the brain protects against cardiorespiratory disorders and oxidative stress induced by CIH in adult mice. Methods Adult control and transgenic mice overexpressing Epo in the brain only (Tg21) were exposed to CIH (21%-10% O2-10 cycles/hour-8 hours/day-7 days) or room air. After CIH exposure, we used the tail cuff method to measure arterial pressure, and whole-body plethysmography to assess the frequency of apneic episodes at rest, minute ventilation, and ventilatory responses to hypoxia and hypercapnia. Finally, the activity of pro-oxidant (XO-xanthine oxidase, and NADPH) and antioxidant (super oxide dismutase) enzymes was evaluated in the cerebral cortex and brainstem. Results Exposure of control mice to CIH significantly increased the heart rate and arterial pressure, the number of apneic events, and the ventilatory response to hypoxia and hypercapnia. Furthermore, CIH increased the ratio of pro-oxidant to antioxidant enzymes in cortex and brainstem tissues. Both physiological and molecular changes induced by CIH were prevented in transgenic Tg21 mice. Conclusions We conclude that the neuroprotective effect of Epo prevents oxidative damage in the brain and cardiorespiratory disorders induced by CIH. Considering that Epo is used in clinics to treat chronic kidney disease and stroke, our data show convincing evidence suggesting that Epo may be a promising alternative drug to treat sleep-disorder breathing.
Collapse
Affiliation(s)
- Elizabeth Elliot-Portal
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Tara Adele Janes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
83
|
Nair D, Ramesh V, Gozal D. Cognitive Deficits Are Attenuated in Neuroglobin Overexpressing Mice Exposed to a Model of Obstructive Sleep Apnea. Front Neurol 2018; 9:426. [PMID: 29922222 PMCID: PMC5996123 DOI: 10.3389/fneur.2018.00426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is a highly prevalent disease manifesting as intermittent hypoxia during sleep (IH) and is increasingly recognized as being independently associated with neurobehavioral deficits. These deficits may be due to increased apoptosis in the hippocampus and cerebral cortex, as well as increased oxidative stress and inflammation. It has been reported that neuroglobin (Ngb) is upregulated in response to hypoxia-ischemia insults and exhibits a protective role in ischemia-reperfusion brain injury. We hypothesized that transgenic overexpression of Ngb would attenuate spatial learning deficits in a murine model of OSA. Methods:Wild-type mice and Ngb overexpressing male mice (Ngb-TG) were randomly assigned to either IH or room air (RA) exposures. The effects of IH during the light period on performance in a water maze spatial task were assessed, as well as anxiety and depressive-like behaviors using elevated plus maze (EPM) and forced swim tests. Cortical tissues from all the mice were extracted for biochemical studies for lipid peroxidation. Results:Ngb TG mice exhibited increased Ngb immunoreactivity in brain tissues and IH did not elicit significant changes in Ngb expression in either Ngb-TG mice or WT mice. On a standard place training task in the water maze, Ngb-TG mice displayed preserved spatial learning, and were protected from the reduced spatial learning performances observed in WT mice exposed to IH. Furthermore, anxiety and depression levels were enhanced in WT mice exposed to IH as compared to RA controls, while alterations emerged in Ngb-TG mice exposed to IH. Furthermore, WT mice, but not Ngb-TG mice had significantly elevated levels of malondialdehyde in cortical lysates following IH exposures. Conclusions:In a murine model of OSA, oxidative stress responses and neurocognitive and behavioral impairments induced by IH during sleep are attenuated by the neuroprotective effects of Ngb.
Collapse
Affiliation(s)
- Deepti Nair
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States.,Atlantic Health System, Morristown, NJ, United States.,Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, United States
| | - Vijay Ramesh
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - David Gozal
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
84
|
Yamada E, Himori N, Kunikata H, Omodaka K, Ogawa H, Ichinose M, Nakazawa T. The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome. Acta Ophthalmol 2018; 96:e479-e484. [PMID: 29498225 DOI: 10.1111/aos.13693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/09/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE Sleep apnoea syndrome (SAS) is often associated with glaucoma, and intermittent hypoxia, present in SAS, can contribute to glaucoma pathogenesis. However, the relationships between SAS, high systemic oxidative stress and the speed of glaucoma progression are unclear. Thus, we investigated these relationships in glaucoma patients with and without SAS. METHODS Peripheral blood samples were collected from 166 eyes of 166 Japanese patients: 42 controls, 109 open-angle glaucoma (OAG) patients without SAS and 15 OAG patients with SAS. Prognostic factors for visual field defect progression were determined with logistic regression. Diacron reactive oxygen metabolites (dROM) and biological antioxidant potential (BAP) were measured with a free radical analyser. Clinical parameters were also recorded. Intergroup comparisons used the Mann-Whitney U test. RESULTS Multiple regression analysis showed that SAS was a statistically significant contributing factor to fast visual field defect progression, defined as mean deviation (MD) slope ≤-2.0 dB/Y (SAS: odds ratio (OR) = 14.48; p = 0.002). The non-SAS and SAS groups had similar age, sex, intraocular pressure (IOP), axial length and antiglaucoma drug use. The SAS group had a significantly higher dROM level (p = 0.001), BAP level (p = 0.038) and steeper MD slope (p = 0.001) than the non-SAS group. CONCLUSION Glaucoma patients with SAS have higher dROM, as well as steeper MD slope, than patients without SAS, suggesting that SAS may induce systemic oxidative stress and promote glaucomatous visual field defect progression.
Collapse
Affiliation(s)
- Erika Yamada
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Noriko Himori
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Japan
- Department of Retinal Disease Control; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Kazuko Omodaka
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Japan
- Department of Ophthalmic Imaging and Information Analytics; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hiromasa Ogawa
- Department of Respiratory Medicine; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Toru Nakazawa
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Japan
- Department of Retinal Disease Control; Tohoku University Graduate School of Medicine; Sendai Japan
- Department of Ophthalmic Imaging and Information Analytics; Tohoku University Graduate School of Medicine; Sendai Japan
- Department of Advanced Ophthalmic Medicine; Tohoku University Graduate School of Medicine; Sendai Japan
| |
Collapse
|
85
|
Wszedybyl-Winklewska M, Wolf J, Szarmach A, Winklewski PJ, Szurowska E, Narkiewicz K. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev 2018; 39:143-154. [DOI: 10.1016/j.smrv.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/30/2023]
|
86
|
Snyder B, Cunningham RL. Sex differences in sleep apnea and comorbid neurodegenerative diseases. Steroids 2018; 133:28-33. [PMID: 29258810 PMCID: PMC5864541 DOI: 10.1016/j.steroids.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
Abstract
Sleep apnea is a disorder, which increasingly affects people worldwide. Whether the associated hypoxic events during sleep are central or obstructive in origin, the end result is excessive daytime sleepiness and an increased risk for several comorbidities, such as cardiovascular and neurodegenerative disorders. Sleep apnea is diagnosed more frequently in men than women, suggesting a role of sex hormones in the pathology of the disease. Furthermore, there are sex differences in the development and progression of comorbid diseases associated with sleep apnea. Therefore, treatment of sleep apnea may be clinically relevant for prevention of subsequent sex-specific comorbid disorders. While the impact sleep apnea has on cardiovascular events has been the subject of many research studies, the role of sleep apnea in neurodegeneration is less established. Here we review known risk factors for sleep apnea and the implications of the observed sex differences in this disease. We also summarize the evidence and mechanisms for how sleep apnea may contribute to the onset of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Brina Snyder
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States.
| |
Collapse
|
87
|
Intermittent Hypoxia Increases the Severity of Bleomycin-Induced Lung Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1240192. [PMID: 29725493 PMCID: PMC5872634 DOI: 10.1155/2018/1240192] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 01/02/2023]
Abstract
Background Severe obstructive sleep apnea (OSA) with chronic intermittent hypoxia (IH) is common in idiopathic pulmonary fibrosis (IPF). Here, we evaluated the impact of IH on bleomycin- (BLM-) induced pulmonary fibrosis in mice. Methods C57BL/6J mice received intratracheal BLM or saline and were exposed to IH (40 cycles/hour; FiO2 nadir: 6%; 8 hours/day) or intermittent air (IA). In the four experimental groups, we evaluated (i) survival; (ii) alveolar inflammation, pulmonary edema, lung oxidative stress, and antioxidant enzymes; (iii) lung cell apoptosis; and (iv) pulmonary fibrosis. Results Survival at day 21 was lower in the BLM-IH group (p < 0.05). Pulmonary fibrosis was more severe at day 21 in BLM-IH mice, as assessed by lung collagen content (p = 0.02) and histology. At day 4, BLM-IH mice developed a more severe neutrophilic alveolitis, (p < 0.001). Lung oxidative stress was observed, and superoxide dismutase and glutathione peroxidase expression was decreased in BLM-IH mice (p < 0.05 versus BLM-IA group). At day 8, pulmonary edema was observed and lung cell apoptosis was increased in the BLM-IH group. Conclusion These results show that exposure to chronic IH increases mortality, lung inflammation, and lung fibrosis in BLM-treated mice. This study raises the question of the worsening impact of severe OSA in IPF patients.
Collapse
|
88
|
Snyder B, Shell B, Cunningham JT, Cunningham RL. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol Rep 2018; 5:5/9/e13258. [PMID: 28473320 PMCID: PMC5430123 DOI: 10.14814/phy2.13258] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/18/2023] Open
Abstract
Sleep apnea is a common comorbidity of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Previous studies have shown an association between elevated oxidative stress and inflammation with severe sleep apnea. Elevated oxidative stress and inflammation are also hallmarks of neurodegenerative diseases. We show increased oxidative stress and inflammation in a manner consistent with early stages of neurodegenerative disease in an animal model of mild sleep apnea. Male rats were exposed to 7 days chronic intermittent hypoxia (CIH) for 8 h/day during the light period. Following CIH, plasma was collected and tested for circulating oxidative stress and inflammatory markers associated with proinflammatory M1 or anti-inflammatory M2 profiles. Tissue punches from brain regions associated with different stages of neurodegenerative diseases (early stage: substantia nigra and entorhinal cortex; intermediate: hippocampus; late stage: rostral ventrolateral medulla and solitary tract nucleus) were also assayed for inflammatory markers. A subset of the samples was examined for 8-hydroxydeoxyguanosine (8-OHdG) expression, a marker of oxidative stress-induced DNA damage. Our results showed increased circulating oxidative stress and inflammation. Furthermore, brain regions associated with early-stage (but not late-stage) AD and PD expressed oxidative stress and inflammatory profiles consistent with reported observations in preclinical neurodegenerative disease populations. These results suggest mild CIH induces key features that are characteristic of early-stage neurodegenerative diseases and may be an effective model to investigate mechanisms contributing to oxidative stress and inflammation in those brain regions.
Collapse
Affiliation(s)
- Brina Snyder
- Institute for Health Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brent Shell
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Institute for Health Aging, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
89
|
Li L, Ren F, Qi C, Xu L, Fang Y, Liang M, Feng J, Chen B, Ning W, Cao J. Intermittent hypoxia promotes melanoma lung metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea. Respir Res 2018; 19:28. [PMID: 29433520 PMCID: PMC5809953 DOI: 10.1186/s12931-018-0727-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022] Open
Abstract
Background Recently, increased tumor incidence and cancer-related mortality have been reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), the hallmark feature of OSA, contributes to the metastasis of tumors. However, the molecular mechanisms by which tumor metastasis is accelerated by OSA-like IH remain to be elucidated. Methods C57BL/6 J male mice were subjected to intravenous injection of B16F10 melanoma cells before receiving IH treatment. Then, the animals were randomly distributed into three groups (n = 8 each): normoxia (N) group, IH group, and antioxidant tempol group (IHT, exposed to IH after treatment with tempol). After the mice were sacrificed, the number and weight of lung metastatic colonies were assessed. The lung tissues with tumor metastasis were analyzed for markers of oxidative stress and inflammation and for HIF-1α using western blotting and real-time PCR (qRT-PCR). The level of reactive oxygen species (ROS) in B16F10 cell was also assessed after N, IH and IH with tempol treatments. Results Compared with normoxia, IH significantly increased the number and weight of mouse lung metastatic colonies. Treatment of B16F10 cells with IH significantly enhanced ROS generation. Lung tissues with tumor metastasis provided evidence of increased oxidative stress, as assessed by p22phox and SOD mRNA levels and the NRF2 protein level, as well as increased inflammation, as assessed by TNF-α and IL-6 mRNA levels and the NF-κB P65 protein level. HIF-1α protein levels were increased in response to IH treatment. Tempol, an important antioxidant, ameliorated IH-induced melanoma lung metastasis in mice and reduced oxidative stress and inflammation responses. Conclusions These results support the hypothesis that oxidative stress and inflammation responses play an important role in the pathogenesis of OSA-like IH-induced melanoma lung metastasis in mice. Antioxidant intervention provides a novel strategy for the prevention and treatment of cancer in OSA populations.
Collapse
Affiliation(s)
- Lian Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangyuan Ren
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Leiqian Xu
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinshan Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Maoli Liang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoyuan Chen
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Jie Cao
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
90
|
Koo DL, Nam H, Thomas RJ, Yun CH. Sleep Disturbances as a Risk Factor for Stroke. J Stroke 2018; 20:12-32. [PMID: 29402071 PMCID: PMC5836576 DOI: 10.5853/jos.2017.02887] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 12/30/2022] Open
Abstract
Sleep, a vital process of human being, is carefully orchestrated by the brain and consists of cyclic transitions between rapid eye movement (REM) and non-REM (NREM) sleep. Autonomic tranquility during NREM sleep is characterized by vagal dominance and stable breathing, providing an opportunity for the cardiovascular-neural axis to restore homeostasis, in response to use, distress or fatigue inflicted during wakefulness. Abrupt irregular swings in sympathovagal balance during REM sleep act as phasic loads on the resting cardiovascular system. Any causes of sleep curtailment or fragmentation such as sleep restriction, sleep apnea, insomnia, periodic limb movements during sleep, and shift work, not only impair cardiovascular restoration but also impose a stress on the cardiovascular system. Sleep disturbances have been reported to play a role in the development of stroke and other cardiovascular disorders. This review aims to provide updated information on the role of abnormal sleep in the development of stroke, to discuss the implications of recent research findings, and to help both stroke clinicians and researchers understand the importance of identification and management of sleep pathology for stroke prevention and care.
Collapse
Affiliation(s)
- Dae Lim Koo
- Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Robert J Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Chang-Ho Yun
- Department of Neurology, Bundang Clinical Neuroscience Institute, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
91
|
Menal MJ, Jorba I, Torres M, Montserrat JM, Gozal D, Colell A, Piñol-Ripoll G, Navajas D, Almendros I, Farré R. Alzheimer's Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea. Front Neurol 2018; 9:1. [PMID: 29403429 PMCID: PMC5780342 DOI: 10.3389/fneur.2018.00001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer's disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods Six-eight month old (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) AD mutant mice and wild-type (WT) littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day) or normoxia for 8 weeks. After euthanasia, the stiffness (E) of 200-μm brain cortex slices was measured by atomic force microscopy. Results Two-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT), but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice. Conclusion AD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.
Collapse
Affiliation(s)
- Maria José Menal
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Jorba
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Torres
- Sleep Laboratory, Hospital Clinic Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Josep M Montserrat
- Sleep Laboratory, Hospital Clinic Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - David Gozal
- Department of Pediatrics, Section of Pediatric Sleep Medicine, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| | - Anna Colell
- Department of Mort I Proliferació Cellular, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), IDIBAPS, CIBERNED, Madrid, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, IRBLleida-Hospital Universitari Santa Maria Lleida, Lleida, Spain
| | - Daniel Navajas
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Isaac Almendros
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
92
|
Liu KF, Li Y, Cheng KC, Hsu CC, Cheng JT, Peng WH. Changes in PPARδ expression in a rat model of stress-induced depression. Clin Exp Pharmacol Physiol 2018; 44:664-670. [PMID: 28267873 DOI: 10.1111/1440-1681.12746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Depression is a common mental disorder that has been linked to a decrease in the expression of serotonin and/or the serotonin transporter in the brain. Antidepressants that target the monoaminergic system are widely used in the clinical setting. Peroxisome proliferator-activated receptor δ (PPAR δ) overexpression or activation is thought to improve depression-like behaviours in rodents. The present study was designed to characterize the changes in PPARδ expression in the hippocampus in rats with stress-induced depression. We used an unpredictable chronic mild stress (CMS) model in rats to study the role of PPARδ in the hippocampus. Behaviour was evaluated via a forced swim test (FST), a tail suspension test (TST), and a sucrose preference test (SPT). Then, the changes in PPARδ expression and other signals were determined using Western blots. We found that PPARδ expression in the hippocampus was markedly reduced in rats with depression. Moreover, the expression of the serotonin transporter was also significantly decreased. Treatment with a PPARδ agonist enhanced the expression of PPARδ and the serotonin transporter in the hippocampus of rats with stress-induced depression. Additionally, treatment with a PPARδ agonist increased the expression of the serotonin transporter in cultured hippocampal (H19-7) cells, and this action was ablated in the absence of PPARδ, which was attenuated with shRNA. Taken together, we found that PPARδ plays an important role in the regulation of serotonin transporter expression and that chronic stress may lower PPARδ expression in the brain via apoptosis and may attenuate serotonin transporter expression, thus inducing depression in rats.
Collapse
Affiliation(s)
- Keng-Fan Liu
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung City, Taiwan
| | - Yingxiao Li
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan.,Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kai Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chao Chin Hsu
- Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan.,Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, Taiwan
| | - Wen-Huang Peng
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung City, Taiwan
| |
Collapse
|
93
|
Gozal D, Khalyfa A, Qiao Z, Almendros I, Farré R. Temporal trajectories of novel object recognition performance in mice exposed to intermittent hypoxia. Eur Respir J 2017; 50:50/6/1701456. [DOI: 10.1183/13993003.01456-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/10/2017] [Indexed: 01/01/2023]
Abstract
Intermittent hypoxia is one of the major perturbations of sleep-disordered breathing and has been causally implicated in neurocognitive deficits. However, the reversibility of such deficits is unclear.Male C57BL/6J mice were exposed to either intermittent hypoxia or room air for 3–240 days, and then half were randomly selected and allowed to recover in normoxic conditions for the same duration of the previous exposure. A novel object recognition (NOR) test was performed.NOR performance was stable over time in room air. Intermittent hypoxia induced significant reductions in recognition index that progressed over the first 45 days and stabilised thereafter. Normoxic recovery of recognition index was essentially complete and indistinguishable from room air in mice exposed to shorter intermittent hypoxia times (<90 days). However, significant residual deficits emerged after normoxic recovery following prolonged intermittent hypoxia exposures (p<0.01). In addition, gradual attenuation of the magnitude of recovery in recognition index occurred with increasingly longer intermittent hypoxia exposures (MANOVA p<0.0001).Intermittent hypoxia during the resting period reduces NOR performance in a time-dependent fashion. Reversal of NOR performance deficits is unlikely after prolonged intermittent hypoxia duration. These findings suggest that early recognition of sleep apnoea and effective treatment are critical for restoration of the adverse cognitive effects of the disease.
Collapse
|
94
|
Macey PM, Sarma MK, Prasad JP, Ogren JA, Aysola R, Harper RM, Thomas MA. Obstructive sleep apnea is associated with altered midbrain chemical concentrations. Neuroscience 2017; 363:76-86. [PMID: 28893651 PMCID: PMC5983363 DOI: 10.1016/j.neuroscience.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA) is accompanied by altered structure and function in cortical, limbic, brainstem, and cerebellar regions. The midbrain is relatively unexamined, but contains many integrative nuclei which mediate physiological functions that are disrupted in OSA. We therefore assessed the chemistry of the midbrain in OSA in this exploratory study. We used a recently developed accelerated 2D magnetic resonance spectroscopy (2D-MRS) technique, compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (4D-EP-JRESI), to measure metabolites in the midbrain of 14 OSA (mean age±SD:54.6±10.6years; AHI:35.0±19.4; SAO2 min:83±7%) and 26 healthy control (50.7±8.5years) subjects. High-resolution T1-weighted scans allowed voxel localization. MRS data were processed with custom MATLAB-based software, and metabolite ratios calculated with respect to the creatine peak using a prior knowledge fitting (ProFit) algorithm. The midbrain in OSA showed decreased N-acetylaspartate (NAA; OSA:1.24±0.43, Control:1.47±0.41; p=0.03; independent samples t-test), a marker of neuronal viability. Increased levels in OSA over control subjects appeared in glutamate (Glu; OSA:1.23±0.57, Control:0.98±0.33; p=0.03), ascorbate (Asc; OSA:0.56±0.28, Control:0.42±0.20; (50.7±8.5years; p=0.03), and myo-inositol (mI; OSA:0.96±0.48, Control:0.72±0.35; p=0.03). No differences between groups appeared in γ-aminobutyric acid (GABA) or taurine. The midbrain in OSA patients shows decreased NAA, indicating neuronal injury or dysfunction. Higher Glu levels may reflect excitotoxic processes and astrocyte activation, and higher mI is also consistent with glial activation. Higher Asc levels may result from oxidative stress induced by intermittent hypoxia in OSA. Additionally, Asc and Glu are involved with glutamatergic processes, which are likely upregulated in the midbrain nuclei of OSA patients. The altered metabolite levels help explain dysfunction and structural deficits in the midbrain of OSA patients.
Collapse
Key Words
- Asc, ascorbate
- Asp, aspartate
- Ch, choline
- GABA, gamma-aminobutyric acid
- GPC, glycerophosphorylcholine
- GSH, glutathione
- Gln, glutamine
- Glu, glutamate
- Gly, glycine
- NAA, N-acetylaspartate
- NAAG, N-acetylaspartate glutamate
- PCh, phosphocholine
- PE, phosphoethanolamine
- Scy, scyllo-inositol
- Tau, taurine
- Thr, threonine
- autonomic
- intermittent hypoxia
- mI, myo-inositol
- magnetic resonance spectroscopy
- periaqueductal gray
- respiration
- sleep-disordered breathing
Collapse
Affiliation(s)
- Paul M Macey
- School of Nursing, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States; Brain Research Institute, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Manoj K Sarma
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Janani P Prasad
- School of Nursing, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ravi Aysola
- Department of Medicine (Division of Pulmonary and Critical Care), David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ronald M Harper
- Brain Research Institute, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - M Albert Thomas
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
95
|
Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res 2017; 60:120-143. [PMID: 28673870 PMCID: PMC7396320 DOI: 10.1016/j.preteyeres.2017.06.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Lydia Sauer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
96
|
Nadjar A, Wigren HKM, Tremblay ME. Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders. Front Cell Neurosci 2017; 11:250. [PMID: 28912686 PMCID: PMC5582207 DOI: 10.3389/fncel.2017.00250] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Sleep serves crucial learning and memory functions in both nervous and immune systems. Microglia are brain immune cells that actively maintain health through their crucial physiological roles exerted across the lifespan, including phagocytosis of cellular debris and orchestration of neuroinflammation. The past decade has witnessed an explosive growth of microglial research. Considering the recent developments in the field of microglia and sleep, we examine their possible impact on various pathological conditions associated with a gain, disruption, or loss of sleep in this focused mini-review. While there are extensive studies of microglial implication in a variety of neuropsychiatric and neurodegenerative diseases, less is known regarding their roles in sleep disorders. It is timely to stimulate new research in this emergent and rapidly growing field of investigation.
Collapse
Affiliation(s)
- Agnes Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche AgronomiqueBordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux UniversityBordeaux, France.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada)Québec, QC, Canada
| | | | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Québec-Université LavalQuébec, QC, Canada.,Département de médecine moléculaire, Université LavalQuébec, QC, Canada
| |
Collapse
|
97
|
Bucks RS, Olaithe M, Rosenzweig I, Morrell MJ. Reviewing the relationship between OSA and cognition: Where do we go from here? Respirology 2017; 22:1253-1261. [PMID: 28779504 DOI: 10.1111/resp.13140] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/07/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnoea (OSA) is a disorder of breathing during sleep resulting in temporary reduction in cerebral oxygenation and sleep disruption. A growing body of research reveals a relatively consistent pattern of deficits in cognition, particularly in attention, episodic memory, and executive function, which are partially remediated by treatment. This is where the consensus ends. Despite a number of competing explanations regarding how OSA affects cognition, reliable evidence is hard to find, which may relate to the many, common conditions co-morbid with OSA or to the methodological challenges in this field. This paper reviews the evidence for cognitive impairment in OSA, the proposed models of cognitive harm, the impact of co-morbidities and the many methodological and theoretical challenges of exploring the effect of OSA on cognition. To overcome some of these challenges, we end by proposing a number of future directions for the field, including suggesting some core design elements for future studies.
Collapse
Affiliation(s)
- Romola S Bucks
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Michelle Olaithe
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King's College London, London, UK
| | - Mary J Morrell
- Academic Unit of Sleep and Ventilation, National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, Imperial College London, London, UK
| |
Collapse
|
98
|
Fu Y, Xu H, Xia Y, Qian Y, Li X, Zou J, Wang Y, Meng L, Tang X, Zhu H, Zhou H, Su K, Yu D, Yi H, Guan J, Yin S. Excessive daytime sleepiness and metabolic syndrome in men with obstructive sleep apnea: a large cross-sectional study. Oncotarget 2017; 8:79693-79702. [PMID: 29108349 PMCID: PMC5668082 DOI: 10.18632/oncotarget.19113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/18/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Excessive daytime sleepiness is a common symptom in obstructive sleep apnea (OSA). Previous studies have showed that excessive daytime sleepiness is associated with some individual components of metabolic syndrome. We performed a large cross-sectional study to explore the relationship between excessive daytime sleepiness and metabolic syndrome in male OSA patients. Methods A total of 2241 suspected male OSA patients were consecutively recruited from 2007 to 2013. Subjective daytime sleepiness was assessed using the Epworth sleepiness scale. Anthropometric, metabolic, and polysomnographic parameters were measured. Metabolic score was used to evaluate the severity of metabolic syndrome. Results Among the male OSA patients, most metabolic parameters varied by excessive daytime sleepiness. In the severe group, male OSA patients with excessive daytime sleepiness were more obese, with higher blood pressure, more severe insulin resistance and dyslipidemia than non-sleepy patients. Patients with metabolic syndrome also had a higher prevalence of excessive daytime sleepiness and scored higher on the Epworth sleepiness scale. Excessive daytime sleepiness was independently associated with an increased risk of metabolic syndrome (odds ratio =1.242, 95% confidence interval: 1.019-1.512). No substantial interaction was observed between excessive daytime sleepiness and OSA/ obesity. Conclusions Excessive daytime sleepiness was related to metabolic disorders and independently associated with an increased risk of metabolic syndrome in men with OSA. Excessive daytime sleepiness should be taken into consideration for OSA patients, as it may be a simple and useful clinical indicator for evaluating the risk of metabolic syndrome.
Collapse
Affiliation(s)
- Yiqun Fu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyan Xia
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Qian
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyu Wang
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Meng
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xulan Tang
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huiqun Zhou
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kaiming Su
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
99
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
100
|
Jorba I, Menal MJ, Torres M, Gozal D, Piñol-Ripoll G, Colell A, Montserrat JM, Navajas D, Farré R, Almendros I. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice. J Mech Behav Biomed Mater 2017; 71:106-113. [DOI: 10.1016/j.jmbbm.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
|