51
|
Genetic variation in the KIAA0319 5' region as a possible contributor to dyslexia. Behav Genet 2011; 41:77-89. [PMID: 21207242 DOI: 10.1007/s10519-010-9434-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
Reading disabilities (RD) have been linked and associated with markers on chromosome 6p with results from multiple independent samples pointing to KIAA0319 as a risk gene and specifically, the 5' region of this gene. Here we focus genetic studies on a 2.3 kb region spanning the predicted promoter, the first untranslated exon, and part of the first intron, a region we identified as a region of open chromatin. Using DNA from probands with RD, we screened for genetic variants and tested select variants for association. We identified 17 DNA variants in this sample of probands, 16 of which were previously reported in public databases and one previously identified in a screen of this region. Based on the allele frequencies in the probands compared to public databases, and on possible functional consequences of the variation, we selected seven variants to test for association in a sample of families with RD, in addition to four variants which had been tested previously. We also tested two markers 5' of this region that were previously reported as associated. The strongest evidence for association was observed with alleles of the microsatellite marker located in the first untranslated exon and haplotypes of that marker. These results support previous studies indicating the 5' region of the KIAA0319 gene as the location of risk alleles contributing to RD.
Collapse
|
52
|
Czamara D, Bruder J, Becker J, Bartling J, Hoffmann P, Ludwig KU, Müller-Myhsok B, Schulte-Körne G. Association of a Rare Variant with Mismatch Negativity in a Region Between KIAA0319 and DCDC2 in Dyslexia. Behav Genet 2010; 41:110-9. [PMID: 21104116 DOI: 10.1007/s10519-010-9413-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 10/21/2010] [Indexed: 01/27/2023]
|
53
|
The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience 2010; 172:535-46. [PMID: 21070838 DOI: 10.1016/j.neuroscience.2010.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 01/30/2023]
Abstract
Developmental dyslexia is a language-based learning disability, and a number of candidate dyslexia susceptibility genes have been identified, including DYX1C1, KIAA0319, and DCDC2. Knockdown of function by embryonic transfection of small hairpin RNA (shRNA) of rat homologues of these genes dramatically disrupts neuronal migration to the cerebral cortex by both cell autonomous and non-cell autonomous effects. Here we sought to investigate the extent of non-cell autonomous effects following in utero disruption of the candidate dyslexia susceptibility gene homolog Dyx1c1 by assessing the effects of this disruption on GABAergic neurons. We transfected the ventricular zone of embryonic day (E) 15.5 rat pups with either Dyx1c1 shRNA, DYX1C1 expression construct, both Dyx1c1 shRNA and DYX1C1 expression construct, or a scrambled version of Dyx1c1 shRNA, and sacrificed them at postnatal day 21. The mothers of these rats were injected with BrdU at either E13.5, E15.5, or E17.5. Neurons transfected with Dyx1c1 shRNA were bi-modally distributed in the cerebral cortex with one population in heterotopic locations at the white matter border and another migrating beyond their expected location in the cerebral cortex. In contrast, there was no disruption of migration following transfection with the DYX1C1 expression construct. We found untransfected GABAergic neurons (parvalbumin, calretinin, and neuropeptide Y) in the heterotopic collections of neurons in Dyx1c1 shRNA treated animals, supporting the hypothesis of non-cell autonomous effects. In contrast, we found no evidence that the position of the GABAergic neurons that made it to the cerebral cortex was disrupted by the embryonic transfection with any of the constructs. Taken together, these results support the notion that neurons within heterotopias caused by transfection with Dyx1c1 shRNA result from both cell autonomous and non-cell autonomous effects, but there is no evidence to support non-cell autonomous disruption of neuronal position in the cerebral cortex itself.
Collapse
|
54
|
Benítez-Burraco A. Neurobiología y neurogenética de la dislexia. Neurologia 2010; 25:563-81. [DOI: 10.1016/j.nrl.2009.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 12/22/2009] [Indexed: 01/12/2023] Open
|
55
|
Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. Eur J Hum Genet 2010; 18:668-73. [PMID: 20068590 DOI: 10.1038/ejhg.2009.237] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The 6p21-p22 chromosomal region has been identified as a developmental dyslexia locus both in linkage and association studies, the latter generating evidence for the doublecortin domain containing 2 (DCDC2) as a candidate gene at this locus (and also for KIAA0319). Here, we report an association between DCDC2 and reading and spelling ability in 522 families of adolescent twins unselected for reading impairment. Family-based association was conducted on 21 single nucleotide polymorphisms (SNPs) in DCDC2 using quantitative measures of lexical processing (irregular-word reading), phonological decoding (non-word reading) and spelling-based measures of dyslexia derived from the Components of Reading Examination test. Significant support for association was found for rs1419228 with regular-word reading and spelling (P=0.002) as well as irregular-word reading (P=0.004), whereas rs1091047 was significantly associated (P=0.003) with irregular-word reading (a measure of lexical storage). Four additional SNPs (rs9467075, rs9467076, rs7765678 and rs6922023) were nominally associated with reading and spelling. This study provides support for DCDC2 as a risk gene for reading disorder, and suggests that this risk factor acts on normally varying reading skill in the general population.
Collapse
|
56
|
Benítez-Burraco A. Neurobiology and neurogenetics of dyslexia. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(20)70105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
57
|
Peschansky VJ, Burbridge TJ, Volz AJ, Fiondella C, Wissner-Gross Z, Galaburda AM, Lo Turco JJ, Rosen GD. The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. ACTA ACUST UNITED AC 2009; 20:884-97. [PMID: 19679544 DOI: 10.1093/cercor/bhp154] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the postnatal effects of embryonic knockdown and overexpression of the candidate dyslexia gene homolog Kiaa0319. We used in utero electroporation to transfect cells in E15/16 rat neocortical ventricular zone with either 1) small hairpin RNA (shRNA) vectors targeting Kiaa0319, 2) a KIAA0319 expression construct, 3) Kiaa0319 shRNA along with KIAA0319 expression construct ("rescue"), or 4) a scrambled version of Kiaa0319 shRNA. Knockdown, but not overexpression, of Kiaa0319 resulted in periventricular heterotopias that contained large numbers of both transfected and non-transfected neurons. This suggested that Kiaa0319 shRNA disrupts neuronal migration by cell autonomous as well as non-cell autonomous mechanisms. Of the Kiaa0319 shRNA-transfected neurons that migrated into the cortical plate, most migrated to their appropriate lamina. In contrast, neurons transfected with the KIAA0319 expression vector attained laminar positions subjacent to their expected positions. Neurons transfected with Kiaa0319 shRNA exhibited apical, but not basal, dendrite hypertrophy, which was rescued by overexpression of KIAA0319. The results provide additional supportive evidence linking candidate dyslexia susceptibility genes to migrational disturbances during brain development, and extends the role of Kiaa0319 to include growth and differentiation of dendrites.
Collapse
Affiliation(s)
- Veronica J Peschansky
- The Dyslexia Research Laboratory, Division of Behavioral Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Gabel LA, Gibson CJ, Gruen JR, LoTurco JJ. Progress towards a cellular neurobiology of reading disability. Neurobiol Dis 2009; 38:173-80. [PMID: 19616627 DOI: 10.1016/j.nbd.2009.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 06/25/2009] [Accepted: 06/28/2009] [Indexed: 01/18/2023] Open
Abstract
Reading Disability (RD) is a significant impairment in reading accuracy, speed and/or comprehension despite adequate intelligence and educational opportunity. RD affects 5-12% of readers, has a well-established genetic risk, and is of unknown neurobiological cause or causes. In this review we discuss recent findings that revealed neuroanatomic anomalies in RD, studies that identified 3 candidate genes (KIAA0319, DYX1C1, and DCDC2), and compelling evidence that potentially link the function of candidate genes to the neuroanatomic anomalies. A hypothesis has emerged in which impaired neuronal migration is a cellular neurobiological antecedent to RD. We critically evaluate the evidence for this hypothesis, highlight missing evidence, and outline future research efforts that will be required to develop a more complete cellular neurobiology of RD.
Collapse
Affiliation(s)
- Lisa A Gabel
- Department of Psychology, Lafayette College, Easton, PA, USA
| | | | | | | |
Collapse
|
59
|
Developmental learning impairments in a rodent model of nodular heterotopia. J Neurodev Disord 2009; 1:237-50. [PMID: 21547717 PMCID: PMC3196316 DOI: 10.1007/s11689-009-9026-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/30/2009] [Indexed: 02/02/2023] Open
Abstract
Developmental malformations of neocortex—including microgyria, ectopias, and periventricular nodular heterotopia (PNH)—have been associated with language learning impairments in humans. Studies also show that developmental language impairments are frequently associated with deficits in processing rapid acoustic stimuli, and rodent models have linked cortical developmental disruption (microgyria, ectopia) with rapid auditory processing deficits. We sought to extend this neurodevelopmental model to evaluate the effects of embryonic (E) day 15 exposure to the anti-mitotic teratogen methylazoxymethanol acetate (MAM) on auditory processing and maze learning in rats. Extensive cortical anomalies were confirmed in MAM-treated rats post mortem. These included evidence of laminar disruption, PNH, and hippocampal dysplasia. Juvenile auditory testing (P21–42) revealed comparable silent gap detection performance for MAM-treated and control subjects, indicating normal hearing and basic auditory temporal processing in MAM subjects. Juvenile testing on a more complex two-tone oddball task, however, revealed a significant impairment in MAM-treated as compared to control subjects. Post hoc analysis also revealed a significant effect of PNH severity for MAM subjects, with more severe disruption associated with greater processing impairments. In adulthood (P60–100), only MAM subjects with the most severe PNH condition showed deficits in oddball two-tone processing as compared to controls. However, when presented with a more complex and novel FM sweep detection task, all MAM subjects showed significant processing deficits as compared to controls. Moreover, post hoc analysis revealed a significant effect of PNH severity on FM sweep processing. Water Maze testing results also showed a significant impairment for spatial but not non-spatial learning in MAM rats as compared to controls. Results lend further support to the notions that: (1) generalized cortical developmental disruption (stemming from injury, genetic or teratogenic insults) leads to auditory processing deficits, which in turn have been suggested to play a causal role in language impairment; (2) severity of cortical disruption is related to the severity of processing impairments; (3) juvenile auditory processing deficits appear to ameliorate with maturation, but can still be elicited in adulthood using increasingly complex acoustic stimuli; and (4) malformations induced with MAM are also associated with generalized spatial learning deficits. These cumulative findings contribute to our understanding of the behavioral consequences of cortical developmental pathology, which may in turn elucidate mechanisms contributing to developmental language learning impairment in humans.
Collapse
|
60
|
Abstract
Genetic factors contribute substantially to the development of reading disability (RD). Family linkage studies have implicated many chromosomal regions containing RD susceptibility genes, of which putative loci at 1p34-p36 (DYX8), 2p (DYX3), 6p21.3 (DYX2), and 15q21 (DYX1) have been frequently replicated, whereas those at 3p12-q12 (DYX5), 6q13-q16 (DYX4), 11p15 (DYX7), 18p11 (DYX6), and Xq27 (DYX9) have less evidence. Association studies of positional candidate genes have implicated DCDC2 and KIAA0319 in DYX2, as well as C2ORF3 and MRPL19 (DYX3), whereas DYX1C1/EKN1 (DYX1) and ROBO1 (DYX5) were found to be disrupted by rare translocation breakpoints in reading-disabled individuals. Four of the candidate genes (DYX1C1, KIAA0319, DCDC2, and ROBO1) appear to function in neuronal migration and guidance, suggesting the importance of early neurodevelopmental processes in RD. Future studies to help us understand the function of these and other RD candidate genes promise to yield enormous insight into the neurobiologic mechanisms underlying the pathophysiology of this disorder.
Collapse
|
61
|
Dennis MY, Paracchini S, Scerri TS, Prokunina-Olsson L, Knight JC, Wade-Martins R, Coggill P, Beck S, Green ED, Monaco AP. A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genet 2009; 5:e1000436. [PMID: 19325871 PMCID: PMC2653637 DOI: 10.1371/journal.pgen.1000436] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/24/2009] [Indexed: 11/19/2022] Open
Abstract
Numerous genetic association studies have implicated the KIAA0319 gene on human chromosome 6p22 in dyslexia susceptibility. The causative variant(s) remains unknown but may modulate gene expression, given that (1) a dyslexia-associated haplotype has been implicated in the reduced expression of KIAA0319, and (2) the strongest association has been found for the region spanning exon 1 of KIAA0319. Here, we test the hypothesis that variant(s) responsible for reduced KIAA0319 expression resides on the risk haplotype close to the gene's transcription start site. We identified seven single-nucleotide polymorphisms on the risk haplotype immediately upstream of KIAA0319 and determined that three of these are strongly associated with multiple reading-related traits. Using luciferase-expressing constructs containing the KIAA0319 upstream region, we characterized the minimal promoter and additional putative transcriptional regulator regions. This revealed that the minor allele of rs9461045, which shows the strongest association with dyslexia in our sample (max p-value = 0.0001), confers reduced luciferase expression in both neuronal and non-neuronal cell lines. Additionally, we found that the presence of this rs9461045 dyslexia-associated allele creates a nuclear protein-binding site, likely for the transcriptional silencer OCT-1. Knocking down OCT-1 expression in the neuronal cell line SHSY5Y using an siRNA restores KIAA0319 expression from the risk haplotype to nearly that seen from the non-risk haplotype. Our study thus pinpoints a common variant as altering the function of a dyslexia candidate gene and provides an illustrative example of the strategic approach needed to dissect the molecular basis of complex genetic traits. Dyslexia, or reading disability, is a common disorder caused by both genetic and environmental factors. Genetic studies have implicated a number of genes as candidates for playing a role in dyslexia. We functionally characterized one such gene (KIAA0319) to identify variant(s) that might affect gene expression and contribute to the disorder. We discovered a variant residing outside of the protein-coding region of KIAA0319 that reduces expression of the gene. This variant creates a binding site for the transcription factor OCT-1. Previous studies have shown that OCT-1 binding to a specific DNA sequence upstream of a gene can reduce the expression of that gene. In this case, reduced KIAA0319 expression could lead to improper development of regions of the brain involved in reading ability. This is the first study to identify a functional variant implicated in dyslexia. More broadly, our study illustrates the steps that can be utilized for identifying mutations causing other complex genetic disorders.
Collapse
Affiliation(s)
- Megan Y. Dennis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Silvia Paracchini
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas S. Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Gaithersburg, Maryland, United States of America
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Eric D. Green
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (EDG); (APM)
| | - Anthony P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (EDG); (APM)
| |
Collapse
|
62
|
Abstract
In this review we will evaluate evidence that altered gene dosage and structure impacts neurodevelopment and neural connectivity through deleterious effects on synaptic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrix SNP 6.0 microarray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Collectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chromosome. Precise analyses of Y located genes are often difficult because of the high degree of homology of X- and Y-related genes. However, continued efforts to analyze the latter are important, given the consistent evidence for a 4:1 ratio of males to females affected by autism. It is also important to consider whether environmental factors play a role in generating the nuclear and mitochondrial genomic instability we have observed. The study of autism will benefit from a move to analysis of pathways and multigene clusters for identification of subtypes that share a specific genetic etiology.
Collapse
Affiliation(s)
- Moyra Smith
- Department of Pediatrics, University of California-Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
63
|
Ben-Ari Y. Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends Neurosci 2008; 31:626-36. [DOI: 10.1016/j.tins.2008.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 01/16/2023]
|