51
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
52
|
Hu G, Shi Z, Shao W, Xu B. MicroRNA-214-5p involves in the protection effect of Dexmedetomidine against neurological injury in Alzheimer's disease via targeting the suppressor of zest 12. Brain Res Bull 2021; 178:164-172. [PMID: 34715270 DOI: 10.1016/j.brainresbull.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurological disease. Dexmedetomidine (Dex) has been evidenced to exert neuroprotective effects on multiple neurological diseases, while the function of microRNA(miR)- 214-5p on Dex-mediated AD progression via targeting the suppressor of zest 12 (SUZ12) remains unclear. This study obligates to investigate the regulatory functions of Dex, miR-214-5p and SUZ12 on AD. METHODS The expression of miR-214-5p and SUZ12 in APPswe/PS1dE9 mice (hereinafter referred to as AD mice) was examined. Thereafter, the AD mice were treated with Dex or increased miR-214-5p or reduced SUZ12 to determine the spatial memory ability, apoptosis of hippocampal neurons and the contents of serum inflammatory and oxidative stress factors of AD mice. Finally, the target relationship between miR-214-5p and SUZ12 was detected. RESULTS MiR-214-5p was reduced and SUZ12 was elevated in AD mice. Dex administration reduced the apoptosis of hippocampal neurons, the contents of serum inflammatory factor and oxidative stress, and attenuated the cognitive impairment of AD mice accompanied by up-regulated miR-214-5p and down-regulated SUZ12, and the overexpression of miR-214-5p or reduction of SUZ12 could effectively enhance the Dex-treated effects on AD mice. MiR-214-5p targeted SUZ12. CONCLUSION Dex may have a potential neuroprotective effect on AD via the miR-214-5p/SUZ12 axis. This study provides novel therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Guangjun Hu
- The first clinical college of Southern Medical University, Guangzhou 430060, Guangdong Province, China; Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China; Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China
| | - Zhen Shi
- Department of pain treatment, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, China; Hubei Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China
| | - Bo Xu
- The first clinical college of Southern Medical University, Guangzhou 430060, Guangdong Province, China; Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China.
| |
Collapse
|
53
|
Asadi MR, Hassani M, Kiani S, Sabaie H, Moslehian MS, Kazemi M, Ghafouri-Fard S, Taheri M, Rezazadeh M. The Perspective of Dysregulated LncRNAs in Alzheimer's Disease: A Systematic Scoping Review. Front Aging Neurosci 2021; 13:709568. [PMID: 34621163 PMCID: PMC8490871 DOI: 10.3389/fnagi.2021.709568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
LncRNAs act as part of non-coding RNAs at high levels of complex and stimulatory configurations in basic molecular mechanisms. Their extensive regulatory activity in the CNS continues on a small scale, from the functions of synapses to large-scale neurodevelopment and cognitive functions, aging, and can be seen in both health and disease situations. One of the vast consequences of the pathological role of dysregulated lncRNAs in the CNS due to their role in a network of regulatory pathways can be manifested in Alzheimer's as a neurodegenerative disease. The disease is characterized by two main hallmarks: amyloid plaques due to the accumulation of β-amyloid components and neurofibrillary tangles (NFT) resulting from the accumulation of phosphorylated tau. Numerous studies in humans, animal models, and various cell lines have revealed the role of lncRNAs in the pathogenesis of Alzheimer's disease. This scoping review was performed with a six-step strategy and based on the Prisma guideline by systematically searching the publications of seven databases. Out of 1,591 records, 69 articles were utterly aligned with the specified inclusion criteria and were summarized in the relevant table. Most of the studies were devoted to BACE1-AS, NEAT1, MALAT1, and SNHG1 lncRNAs, respectively, and about one-third of the studies investigated a unique lncRNA. About 56% of the studies reported up-regulation, and 7% reported down-regulation of lncRNAs expressions. Overall, this study was conducted to investigate the association between lncRNAs and Alzheimer's disease to make a reputable source for further studies and find more molecular therapeutic goals for this disease.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shiva Kiani
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Kazemi
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
54
|
Ghafouri-Fard S, Safari M, Taheri M, Samadian M. Expression of Linear and Circular lncRNAs in Alzheimer's Disease. J Mol Neurosci 2021; 72:187-200. [PMID: 34415549 DOI: 10.1007/s12031-021-01900-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder of the elderly described by progressive cognitive debility. Recent studies have displayed the significance of linear and circular long non-coding RNAs (lncRNAs) in the pathobiology of Alzheimer's disease. These studies have reported the downregulation of MALAT1, while the upregulation of NEAT1, RP11-543N12.1, SOX21-AS1, BDNF-AS, BACE1-AS, ANRIL, XIST, and some other linear lncRNAs in clinical samples are obtained from these patients or animal models of Alzheimer's disease. A number of circRNAs such as ciRS-7, ciRS-7, circNF1-419, circHDAC9, circ_0000950,and circAβ-a have been shown to partake in the pathogenesis of this disorder. In the present manuscript, we provide a review of the impact of linear and circular lncRNAs in the pathobiology of Alzheimer's disease and their potential application as markers for this neurodegenerative condition.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
55
|
Tung CW, Huang PY, Chan SC, Cheng PH, Yang SH. The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington's disease. J Biomed Sci 2021; 28:59. [PMID: 34412645 PMCID: PMC8375176 DOI: 10.1186/s12929-021-00755-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is one of neurodegenerative diseases, and is defined as a monogenetic disease due to the mutation of Huntingtin gene. This disease affects several cellular functions in neurons, and further influences motor and cognitive ability, leading to the suffering of devastating symptoms in HD patients. MicroRNA (miRNA) is a non-coding RNA, and is responsible for gene regulation at post-transcriptional levels in cells. Since one miRNA targets to several downstream genes, it may regulate different pathways simultaneously. As a result, it raises a potential therapy for different diseases using miRNAs, especially for inherited diseases. In this review, we will not only introduce the update information of HD and miRNA, but also discuss the development of potential miRNA-based therapy in HD. With the understanding toward the progression of miRNA studies in HD, we anticipate it may provide an insight to treat this devastating disease, even applying to other genetic diseases.
Collapse
Affiliation(s)
- Chih-Wei Tung
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pin-Yu Huang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Siew Chin Chan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
56
|
He Y, Qiang Y. Mechanism of Autonomic Exercise Improving Cognitive Function of Alzheimer's Disease by Regulating lncRNA SNHG14. Am J Alzheimers Dis Other Demen 2021; 36:15333175211027681. [PMID: 34338033 PMCID: PMC10581095 DOI: 10.1177/15333175211027681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper studied the influence of exercise on the cognitive ability of AD patients and elucidated potential mechanisms. The expression of SNHG14 was validated by qRT-PCR. The cognitive impairment of mice was examined by MWM Test. ELISA tests were applied to discover the influence of SNHG14 on inflammation. Overexpression of SNHG14 was found in AD patients and underexpression of SNHG14 was identified in these AD patients after exercise. In APP/PS1 double transgenic mice, SNHG14 reversed the protective impacts of exercise on escape latency and distance moved. The upregulation of SNHG14 also inhibited the effects of exercise on the percentage of time spent in the target quadrant and times of platform crossing. Besides, overexpression of SNHG14 reversed the repressed expression of IL-6, IL-1β, and TNF-α. In total, exercise could ameliorate cognitive disorder and inflammation activity by reducing the levels of SNHG14.
Collapse
Affiliation(s)
- Yuchen He
- Rehabilitation Department, Shuguang Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Yi Qiang
- Rehabilitation Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|