51
|
Argyelan M, Oltedal L, Deng ZD, Wade B, Bikson M, Joanlanne A, Sanghani S, Bartsch H, Cano M, Dale AM, Dannlowski U, Dols A, Enneking V, Espinoza R, Kessler U, Narr KL, Oedegaard KJ, Oudega ML, Redlich R, Stek ML, Takamiya A, Emsell L, Bouckaert F, Sienaert P, Pujol J, Tendolkar I, van Eijndhoven P, Petrides G, Malhotra AK, Abbott C. Electric field causes volumetric changes in the human brain. eLife 2019; 8:49115. [PMID: 31644424 PMCID: PMC6874416 DOI: 10.7554/elife.49115] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Recent longitudinal neuroimaging studies in patients with electroconvulsive therapy (ECT) suggest local effects of electric stimulation (lateralized) occur in tandem with global seizure activity (generalized). We used electric field (EF) modeling in 151 ECT treated patients with depression to determine the regional relationships between EF, unbiased longitudinal volume change, and antidepressant response across 85 brain regions. The majority of regional volumes increased significantly, and volumetric changes correlated with regional electric field (t = 3.77, df = 83, r = 0.38, p=0.0003). After controlling for nuisance variables (age, treatment number, and study site), we identified two regions (left amygdala and left hippocampus) with a strong relationship between EF and volume change (FDR corrected p<0.01). However, neither structural volume changes nor electric field was associated with antidepressant response. In summary, we showed that high electrical fields are strongly associated with robust volume changes in a dose-dependent fashion. Electroconvulsive therapy, or ECT for short, can be an effective treatment for severe depression. Many patients who do not respond to medication find that their symptoms improve after ECT. During an ECT session, the patient is placed under general anesthesia and two electrodes are attached to the scalp to produce an electric field that generates currents within the brain. These currents activate neurons and make them fire, causing a seizure, but it remains unclear how this reduces symptoms of depression. For many years, researchers thought that the induced seizure must be key to the beneficial effects of ECT, but recent studies have cast doubt on this idea. They show that increasing the strength of the electric field alters the clinical effects of ECT, without affecting the seizure. This suggests that the benefits of ECT depend on the electric field itself. Argyelan et al. now show that electric fields affect the brain by making a part of the brain known as the gray matter expand. In a large multinational study, 151 patients with severe depression underwent brain scans before and after a course of ECT. The scans revealed that the gray matter of the patients’ brains expanded during the treatment. The patients who experienced the strongest electric fields showed the largest increase in brain volume, and individual brain areas expanded if the electric field within them exceeded a certain threshold. This effect was particularly striking in two areas, the hippocampus and the amygdala. Both of these areas are critical for mood and memory. Further studies are needed to determine why the brain expands after ECT, and how long the effect lasts. Another puzzle is why the improvements in depression that the patients reported after their treatment did not correlate with changes in brain volume. Disentangling the relationships between ECT, brain volume and depression will ultimately help develop more robust treatments for this disabling condition.
Collapse
Affiliation(s)
- Miklos Argyelan
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States.,Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, United States.,Department of Psychiatry, Zucker School of Medicine, Hempstead, United States
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Zhi-De Deng
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, United States
| | - Benjamin Wade
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, United States
| | - Andrea Joanlanne
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States
| | - Sohag Sanghani
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States
| | - Hauke Bartsch
- Department of Radiology, Haukeland University Hospital, Mohn Medical Imaging and Visualization Centre, Bergen, Norway.,Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, United States
| | - Marta Cano
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,CIBERSAM, Carlos III Health Institute, Barcelona, Spain
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, United States.,Department of Radiology, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego, San Diego, United States
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Annemiek Dols
- Department of Psychiatry, Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Verena Enneking
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Randall Espinoza
- Department of Neurology, University of California, Los Angeles, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Katherine L Narr
- Department of Neurology, University of California, Los Angeles, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
| | - Ketil J Oedegaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Mardien L Oudega
- Department of Psychiatry, Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Max L Stek
- Department of Psychiatry, Amsterdam UMC, location VUmc, GGZinGeest, Old Age Psychiatry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Center for Psychiatry and Behavioral Science, Komagino Hospital, Tokyo, Japan
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center, KU Leuven, Leuven, Belgium
| | - Filip Bouckaert
- Department of Geriatric Psychiatry, University Psychiatric Center, KU Leuven, Leuven, Belgium.,Academic center for ECT and Neurostimulation (AcCENT), University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Pascal Sienaert
- Academic center for ECT and Neurostimulation (AcCENT), University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Jesus Pujol
- CIBERSAM, Carlos III Health Institute, Barcelona, Spain.,MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, Netherlands.,Faculty of Medicine and LVR Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, Netherlands
| | - Georgios Petrides
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States.,Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, United States.,Department of Psychiatry, Zucker School of Medicine, Hempstead, United States
| | - Anil K Malhotra
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, United States.,Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, United States.,Department of Psychiatry, Zucker School of Medicine, Hempstead, United States
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, United States
| |
Collapse
|
52
|
Takamiya A, Kishimoto T, Liang KC, Terasawa Y, Nishikata S, Tarumi R, Sawada K, Kurokawa S, Hirano J, Yamagata B, Mimura M. Thalamic volume, resting-state activity, and their association with the efficacy of electroconvulsive therapy. J Psychiatr Res 2019; 117:135-141. [PMID: 31419618 DOI: 10.1016/j.jpsychires.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
Electroconvulsive therapy (ECT) is the most effective antidepressant treatment. Biological predictors of clinical outcome to ECT are valuable. We aimed to examine multimodal magnetic resonance imaging (MRI) data that correlates to the efficacy of ECT. Structural and resting-state functional MRI data were acquired from 46 individuals (25 depressed individuals who received ECT, and 21 healthy controls). Whole-brain grey matter volume (GMV) and fractional amplitude of low frequency fluctuations (fALFF) were investigated to identify brain regions associated with post-ECT Hamilton Depression Rating Scale (HAM-D) total scores. GMV and fALFF values were compared with those in healthy controls using analysis of covariance (ANCOVA). Remission was defined by HAM-D ≤7. A multiple regression analysis revealed that pretreatment smaller GMV in the left thalamus was associated with worse response to ECT (i.e. higher post-ECT HAM-D). Pretreatment higher fALFF in the right anterior insula, and lower fALFF in the left thalamus and the cerebellum were associated with worse outcomes. The left thalamus was identified in both GMV and fALFF analyses. Nonremitters showed significantly smaller thalamic GMV compared to remitters and controls. We found that pretreatment thalamic volume and resting-state activity were associated with the efficacy of ECT. Our results highlight the importance of the thalamus as a possible biological predictor and its role in the underlying mechanisms of ECT action.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Center for Psychiatry and Behavioral Science, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Kuo-Ching Liang
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuri Terasawa
- Center for Psychiatry and Behavioral Science, Tokyo, Japan
| | | | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Center for Psychiatry and Behavioral Science, Tokyo, Japan
| | - Kyosuke Sawada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
58
|
Cao B, Luo Q, Fu Y, Du L, Qiu T, Yang X, Chen X, Chen Q, Soares JC, Cho RY, Zhang XY, Qiu H. Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Sci Rep 2018; 8:5434. [PMID: 29615675 PMCID: PMC5882798 DOI: 10.1038/s41598-018-23685-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for major depression disorder (MDD). ECT can induce neurogenesis and synaptogenesis in hippocampus, which contains distinct subfields, e.g., the cornu ammonis (CA) subfields, a granule cell layer (GCL), a molecular layer (ML), and the subiculum. It is unclear which subfields are affected by ECT and whether we predict the future treatment response to ECT by using volumetric information of hippocampal subfields at baseline? In this study, 24 patients with severe MDD received the ECT and their structural brain images were acquired with magnetic resonance imaging before and after ECT. A state-of-the-art hippocampal segmentation algorithm from Freesurfer 6.0 was used. We found that ECT induced volume increases in CA subfields, GCL, ML and subiculum. We applied a machine learning algorithm to the hippocampal subfield volumes at baseline and were able to predict the change in depressive symptoms (r = 0.81; within remitters, r = 0.93). Receiver operating characteristic analysis also showed robust prediction of remission with an area under the curve of 0.90. Our findings provide evidence for particular hippocampal subfields having specific roles in the response to ECT. We also provide an analytic approach for generating predictions about clinical outcomes for ECT in MDD.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Qinghua Luo
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yixiao Fu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lian Du
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Tian Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiangying Yang
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaolu Chen
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Haitang Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China.
| |
Collapse
|
59
|
Takamiya A, Chung JK, Liang KC, Graff-Guerrero A, Mimura M, Kishimoto T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br J Psychiatry 2018; 212:19-26. [PMID: 29433612 DOI: 10.1192/bjp.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, although the underlying mechanisms remain unclear. Animal studies have shown that electroconvulsive shock induced neuroplastic changes in the hippocampus. Aims To summarise volumetric magnetic resonance imaging studies investigating the effects of ECT on limbic brain structures. METHOD A systematic review and meta-analysis was conducted to assess volumetric changes of each side of the hippocampus and amygdala before and after ECT. Standardised mean difference (SMD) was calculated. RESULTS A total of 8 studies (n = 193) were selected for our analyses. Both right and left hippocampal and amygdala volumes increased after ECT. Meta-regression analyses revealed that age, percentage of those responding and percentage of those in remission were negatively associated with volume increases in the left hippocampus. CONCLUSIONS ECT increased brain volume in the limbic structures. The clinical relevance of volume increase needs further investigation. Declaration of interest None.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry,Keio University School of Medicine and Komagino Hospital,Tokyo,Japan
| | - Jun Ku Chung
- Institute of Medical Science,Faculty of Medicine,University of Toronto, and Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Canada
| | - Kuo-Ching Liang
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Ariel Graff-Guerrero
- Institute of Medical Science,Faculty of Medicine,University of Toronto, Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Department of Psychiatry,University of Toronto,and Geriatric Mental Health Division,Centre for Addiction and Mental Health,Toronto,Canada
| | - Masaru Mimura
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo, Japan, andHofstra Northwell School of Medicine, Hempstead, New York,USA
| |
Collapse
|