51
|
Chipika RH, Christidi F, Finegan E, Li Hi Shing S, McKenna MC, Chang KM, Karavasilis E, Doherty MA, Hengeveld JC, Vajda A, Pender N, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O, Bede P. Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. J Neurol Sci 2020; 417:117039. [PMID: 32713609 DOI: 10.1016/j.jns.2020.117039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Temporal lobe studies in motor neuron disease overwhelmingly focus on white matter alterations and cortical grey matter atrophy. Reports on amygdala involvement are conflicting and the amygdala is typically evaluated as single structure despite consisting of several functionally and cytologically distinct nuclei. A prospective, single-centre, neuroimaging study was undertaken to comprehensively characterise amygdala pathology in 100 genetically-stratified ALS patients, 33 patients with PLS and 117 healthy controls. The amygdala was segmented into groups of nuclei using a Bayesian parcellation algorithm based on a probabilistic atlas and shape deformations were additionally assessed by vertex analyses. The accessory basal nucleus (p = .021) and the cortical nucleus (p = .022) showed significant volume reductions in C9orf72 negative ALS patients compared to controls. The lateral nucleus (p = .043) and the cortico-amygdaloid transition (p = .024) were preferentially affected in C9orf72 hexanucleotide carriers. A trend of total volume reduction was identified in C9orf72 positive ALS patients (p = .055) which was also captured in inferior-medial shape deformations on vertex analyses. Our findings highlight that the amygdala is affected in ALS and our study demonstrates the selective involvement of specific nuclei as opposed to global atrophy. The genotype-specific patterns of amygdala involvement identified by this study are consistent with the growing literature of extra-motor clinical features. Mesial temporal lobe pathology in ALS is not limited to hippocampal pathology but, as a key hub of the limbic system, the amygdala is also affected in ALS.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Department of Neurology, Aeginition Hospital, University of Athens, Greece
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Efstratios Karavasilis
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; 2nd Department of Radiology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Niall Pender
- Department of psychology, Beaumont Hospital Dublin, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Belfast, Western Health & Social Care Trust, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
52
|
"Switchboard" malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102300. [PMID: 32554322 PMCID: PMC7303672 DOI: 10.1016/j.nicl.2020.102300] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
The thalamus is a key cerebral hub relaying a multitude of corticoefferent and corticoafferent connections and mediating distinct extrapyramidal, sensory, cognitive and behavioural functions. While the thalamus consists of dozens of anatomically well-defined nuclei with distinctive physiological roles, existing imaging studies in motor neuron diseases typically evaluate the thalamus as a single structure. Based on the unique cortical signatures observed in ALS and PLS, we hypothesised that similarly focal thalamic involvement may be observed if the nuclei are individually evaluated. A prospective imaging study was undertaken with 100 patients with ALS, 33 patients with PLS and 117 healthy controls to characterise the integrity of thalamic nuclei. ALS patients were further stratified for the presence of GGGGCC hexanucleotide repeat expansions in C9orf72. The thalamus was segmented into individual nuclei to examine their volumetric profile. Additionally, thalamic shape deformations were evaluated by vertex analyses and focal density alterations were examined by region-of-interest morphometry. Our data indicate that C9orf72 negative ALS patients and PLS patients exhibit ventral lateral and ventral anterior involvement, consistent with the ‘motor’ thalamus. Degeneration of the sensory nuclei was also detected in C9orf72 negative ALS and PLS. Both ALS groups and the PLS cohort showed focal changes in the mediodorsal-paratenial-reuniens nuclei, which mediate memory and executive functions. PLS patients exhibited distinctive thalamic changes with marked pulvinar and lateral geniculate atrophy compared to both controls and C9orf72 negative ALS. The considerable ventral lateral and ventral anterior pathology detected in both ALS and PLS support the emerging literature of extrapyramidal dysfunction in MND. The involvement of sensory nuclei is consistent with sporadic reports of sensory impairment in MND. The unique thalamic signature of PLS is in line with the distinctive clinical features of the phenotype. Our data confirm phenotype-specific patterns of thalamus involvement in motor neuron diseases with the preferential involvement of nuclei mediating motor and cognitive functions. Given the selective involvement of thalamic nuclei in ALS and PLS, future biomarker and natural history studies in MND should evaluate individual thalamic regions instead overall thalamic changes.
Collapse
|
53
|
The French national protocol for Kennedy's disease (SBMA): consensus diagnostic and management recommendations. Orphanet J Rare Dis 2020; 15:90. [PMID: 32276665 PMCID: PMC7149864 DOI: 10.1186/s13023-020-01366-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Kennedy’s disease (KD), also known as spinal and bulbar muscular atrophy (SBMA), is a rare, adult-onset, X-linked recessive neuromuscular disease caused by CAG expansions in exon 1 of the androgen receptor gene (AR). The objective of the French national diagnostic and management protocol is to provide evidence-based best practice recommendations and outline an optimised care pathway for patients with KD, based on a systematic literature review and consensus multidisciplinary observations. Results The initial evaluation, confirmation of the diagnosis, and management should ideally take place in a tertiary referral centre for motor neuron diseases, and involve an experienced multidisciplinary team of neurologists, endocrinologists, cardiologists and allied healthcare professionals. The diagnosis should be suspected in an adult male presenting with slowly progressive lower motor neuron symptoms, typically affecting the lower limbs at onset. Bulbar involvement (dysarthria and dysphagia) is often a later manifestation of the disease. Gynecomastia is not a constant feature, but is suggestive of a suspected diagnosis, which is further supported by electromyography showing diffuse motor neuron involvement often with asymptomatic sensory changes. A suspected diagnosis is confirmed by genetic testing. The multidisciplinary assessment should ascertain extra-neurological involvement such as cardiac repolarisation abnormalities (Brugada syndrome), signs of androgen resistance, genitourinary abnormalities, endocrine and metabolic changes (glucose intolerance, hyperlipidemia). In the absence of effective disease modifying therapies, the mainstay of management is symptomatic support using rehabilitation strategies (physiotherapy and speech therapy). Nutritional evaluation by an expert dietician is essential, and enteral nutrition (gastrostomy) may be required. Respiratory management centres on the detection and treatment of bronchial obstructions, as well as screening for aspiration pneumonia (chest physiotherapy, drainage, positioning, breath stacking, mechanical insufflation-exsufflation, cough assist machnie, antibiotics). Non-invasive mechanical ventilation is seldom needed. Symptomatic pharmaceutical therapy includes pain management, endocrine and metabolic interventions. There is no evidence for androgen substitution therapy. Conclusion The French national Kennedy’s disease protocol provides management recommendations for patients with KD. In a low-incidence condition, sharing and integrating regional expertise, multidisciplinary experience and defining consensus best-practice recommendations is particularly important. Well-coordinated collaborative efforts will ultimately pave the way to the development of evidence-based international guidelines.
Collapse
|
54
|
Müller HP, Dreyhaupt J, Roselli F, Schlecht M, Ludolph AC, Huppertz HJ, Kassubek J. Focal alterations of the callosal area III in primary lateral sclerosis: An MRI planimetry and texture analysis. NEUROIMAGE-CLINICAL 2020; 26:102223. [PMID: 32114375 PMCID: PMC7049663 DOI: 10.1016/j.nicl.2020.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
The regional pattern of cerebral alterations in PLS includes the area III of the CC. Callosal alterations of the texture parameters entropy and homogeneity were shown in PLS. Texture and macrostructure of the callosal area III is targeted as a neuroimaging marker in PLS.
Background The regional distribution of cerebral morphological alterations in primary lateral sclerosis (PLS) is considered to include the area III of the corpus callosum (CC). Objective The study was designed to investigate regional white matter (WM) alterations in the callosal area III by T1 weighted magnetic resonance imaging (T1w-MRI) data in PLS patients compared with healthy controls, in order to identify atrophy and texture changes in vivo. Methods T1w-MRI-based white matter mapping was used to perform an operator-independent CC-segmentation for the different areas of the CC in 67 PLS patients vs 82 matched healthy controls and vs 85 ALS patients. The segmentation was followed by texture analysis of the separated CC areas for the PLS patients vs controls and vs ALS patients. Results PLS was associated with significant atrophy in the area III of the CC (but not in the other callosal segments), while the alterations in the ALS patients were much more variable and were not significant at the group level. Furthermore, significant regional alterations of the texture parameters entropy and homogeneity in this area were shown in PLS patients and in ALS patients. Conclusions This T1w-MRI study demonstrated focused regional CC atrophy and texture alterations limited to the callosal area III (which comprises fibers projecting into the primary motor cortices) in PLS, in comparison to a higher variability in CC size in ALS.
Collapse
Affiliation(s)
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Germany
| | | | | | | | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| |
Collapse
|
55
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Chang KM, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief 2020; 29:105229. [PMID: 32083157 PMCID: PMC7016370 DOI: 10.1016/j.dib.2020.105229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
A standardised, single-centre, longitudinal imaging protocol was used to evaluate longitudinal brainstem alterations in 100 patients with amyotrophic lateral sclerosis (ALS) with reference to 33 patients with primary lateral sclerosis (PLS), 30 patients with frontotemporal dementia (FTD) and 100 healthy controls. “Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study” [1] ALS patients were scanned twice; 4 months apart. T1-weighted imaging data were acquired on a 3 T Philips Achieva MRI system, using a 3D Inversion Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR) sequence. Raw MRI data underwent meticulous quality control before pre-processing. A Bayesian segmentation algorithm was utilised to parcellate the brainstem into the medulla oblongata, pons and mesencephalon before estimating the volume of each segment. Vertex-based shape analyses were carried out to characterise anatomical patterns of atrophy. Brainstem volume loss in ALS was dominated by medulla oblongata atrophy, but significant pontine pathology was also detected. Brainstem volume reductions were more significant in PLS than in ALS after correcting for demographic variables and total intracranial volume. Shape analyses revealed bilateral ‘flattening’ of the medullary pyramids in ALS compared to healthy controls. Our data demonstrate that computational neuroimaging readily detects brainstem pathology in vivo in both amyotrophic lateral sclerosis and primary lateral sclerosis.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
- Corresponding author.
| | - Rangariroyashe H. Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
- Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Mark A. Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C. Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8, D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Belfast, Western Health & Social Care Trust, UK
| | - Russell L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
56
|
Bede P, Pradat PF. Editorial: Biomarkers and Clinical Indicators in Motor Neuron Disease. Front Neurol 2020; 10:1318. [PMID: 31920939 PMCID: PMC6920250 DOI: 10.3389/fneur.2019.01318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| |
Collapse
|
57
|
Christidi F, Karavasilis E, Rentzos M, Velonakis G, Zouvelou V, Xirou S, Argyropoulos G, Papatriantafyllou I, Pantolewn V, Ferentinos P, Kelekis N, Seimenis I, Evdokimidis I, Bede P. Neuroimaging data indicate divergent mesial temporal lobe profiles in amyotrophic lateral sclerosis, Alzheimer's disease and healthy aging. Data Brief 2019; 28:104991. [PMID: 31921944 PMCID: PMC6948121 DOI: 10.1016/j.dib.2019.104991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
A prospective, standardised neuroimaging protocol was implemented to characterise mesial temporal lobe pathology in amyotrophic lateral sclerosis, Alzheimer's disease and healthy controls focusing on the evaluation of interconnected white and grey matter structures. “Hippocampal pathology in Amyotrophic Lateral Sclerosis: selective vulnerability of subfields and their associated projections” [1]. High-resolution diffusion tensor and structural imaging data were acquired on a 3 T MRI platform using standardised sequence parameters. The integrity of the fornix and the perforant pathway was assessed by tractography, to provide fractional anisotropy, axial diffusivity and radial diffusivity measures. Quantitative structural imaging was used to estimate the total intracranial volume, total hippocampal volumes and hippocampal subfield volumes for each participant. Raw white- and grey-matter measures, demographic and clinical data are available online at ‘Mendeley Data’. Amyotrophic lateral sclerosis and Alzheimer's disease exhibit divergent hippocampal profiles.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Sofia Xirou
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Argyropoulos
- Second Department of Radiology, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece
| | | | - Varvara Pantolewn
- Second Department of Radiology, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece
| | - Ioannis Seimenis
- Department of Medical Physics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Peter Bede
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Biomedical Imaging Laboratory, Sorbonne University, INSERM, Paris, France.,Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
58
|
Finegan E, Li Hi Shing S, Chipika RH, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Pender N, McLaughlin RL, Hardiman O, Bede P. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NEUROIMAGE-CLINICAL 2019; 24:102089. [PMID: 31795059 PMCID: PMC6978214 DOI: 10.1016/j.nicl.2019.102089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/02/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. METHODS A prospective imaging study was undertaken with 33 PLS patients, 117 healthy controls and 100 ALS patients to specifically assess the integrity of subcortical grey matter structures and determine whether PLS and ALS have divergent thalamic, hippocampal and basal ganglia signatures. Volumetric, morphometric, segmentation and vertex-wise analyses were carried out in the three study groups to evaluate the integrity of thalamus, hippocampus, caudate, amygdala, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated to characterise the involvement of specific subfields. RESULTS Considerable thalamic, caudate, and hippocampal atrophy was detected in PLS based on both volumetric and vertex analyses. Significant volume reductions were also detected in the accumbens nuclei. Hippocampal atrophy in PLS was dominated by dentate gyrus, hippocampal tail and CA4 subfield volume reductions. The morphometric comparison of ALS and PLS cohorts revealed preferential medial bi-thalamic pathology in PLS compared to the predominant putaminal degeneration detected in ALS. Another distinguishing feature between ALS and PLS was the preferential atrophy of the amygdala in ALS. CONCLUSIONS PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | | | - Niall Pender
- Department of Psychology, Beaumont Hospital Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|