51
|
Nwagu TN, Ugwuodo CJ, Onwosi CO, Inyima O, Uchendu OC, Akpuru C. Evaluation of the probiotic attributes of Bacillus strains isolated from traditional fermented African locust bean seeds (Parkia biglobosa), “daddawa”. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and maximum consumer health benefits. In this study, isolated Bacillus cultures used in the fermentation of African locust bean seeds “Parkia biglobosa” into the food condiment “daddawa” were evaluated for probiotic attributes. Bacillus cereus strains BC1 and BC2 were tested for tolerance to acid, common salt (NaCl), and bile salt. Auto-aggregation and adhesion to epithelial cells, antibiotic sensitivity profile, hemolytic pattern, and antibacterial activity were also evaluated. To demonstrate further health benefit, spores of strain BC1 were investigated for anti-inflammatory potential employing the rat paw edema technique.
Results
Both Bacillus cereus strains showed antagonistic activity against pathogenic Escherichia coli and Staphylococcus aureus. BC1 was more acid-stress tolerant than BC2, maintaining 107.6% viability after 3 h incubation in MRS broth of pH 2.5. However, at 97.74% viability after incubation for 3 h, BC2 was more tolerant to 0.4 % bile salt. The Bacillus cereus strains were susceptible to all antibiotics tested with the exception of norfloxacin and thrived under high saline stress. Both strains were protease producers and non-hemolytic on sheep blood agar. The edema inhibition study revealed that spores of Bacillus cereus strain BC1 had anti-inflammation potential and produced no physiological toxicity on the animals.
Conclusion
These results indicate that the Bacillus cultures for “daddawa” production are good candidates for probiotics and have the potential for application in both animal and human formulations for increased health benefit to consumers.
Collapse
|
52
|
Wang Y, Jiang Y, Deng Y, Yi C, Wang Y, Ding M, Liu J, Jin X, Shen L, He Y, Wu X, Chen X, Sun C, Zheng M, Zhang R, Ye H, An H, Wong A. Probiotic Supplements: Hope or Hype? Front Microbiol 2020; 11:160. [PMID: 32184760 PMCID: PMC7058552 DOI: 10.3389/fmicb.2020.00160] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Probiotic bacteria have been associated with various health benefits and included in overwhelming number of foods. Today, probiotic supplements are consumed with increasing regularity and record a rapidly growing economic value. With billions of heterogeneous populations of probiotics per serving, probiotic supplements contain the largest quantity of probiotics across all functional foods. They often carry antibiotic-resistant determinants that can be transferred to and accumulate in resident bacteria of the gastrointestinal tract and risk their acquisitions by opportunistic pathogens. While the health benefits of probiotics have been widely publicized, this health risk, however, is underrepresented in both scientific studies and public awareness. On the other hand, the human gut presents conditions that are unfavorable for bacteria, including probiotics. It remains uncertain if probiotics from supplements can tolerate acids and bile salts that may undermine their effectiveness in conferring health benefits. Here, we put into perspective the perceived health benefits and the long-term safety of consuming probiotic supplements, specifically bringing intolerance to acids and bile salts, and the long-standing issue of antibiotic-resistant gene transfer into sharp focus. We report that probiotics from supplements examined in this study have poor tolerance to acids and bile salts while also displaying resistance to multiple antibiotics. They could also adapt and gain resistance to streptomycin in vitro. In an environment where consuming supplements is considered a norm, our results and that of others will put in perspective the persisting concerns surrounding probiotic supplements so that the current hype does not overpower the hope.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Yinyin Jiang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Yuxin Deng
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Chen Yi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Yangcan Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Mengnan Ding
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Jie Liu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuanjing Jin
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Lishan Shen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Yue He
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xinyun Wu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuefei Chen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Changyi Sun
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Min Zheng
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Ruijia Zhang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Huiting An
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| |
Collapse
|