51
|
Ross AE, Bengani LC, Tulsan R, Maidana DE, Salvador-Culla B, Kobashi H, Kolovou PE, Zhai H, Taghizadeh K, Kuang L, Mehta M, Vavvas DG, Kohane DS, Ciolino JB. Topical sustained drug delivery to the retina with a drug-eluting contact lens. Biomaterials 2019; 217:119285. [DOI: 10.1016/j.biomaterials.2019.119285] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023]
|
52
|
Horne RR, Rich JT, Bradley MW, Pitt WG. Latanoprost uptake and release from commercial contact lenses. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:1-19. [DOI: 10.1080/09205063.2019.1669126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ryan R. Horne
- Chemical Engineering Department, Brigham Young University, Provo, UT, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joseph T. Rich
- Chemical Engineering Department, Brigham Young University, Provo, UT, USA
| | - Matthew W. Bradley
- Chemical Engineering Department, Brigham Young University, Provo, UT, USA
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT, USA
| |
Collapse
|
53
|
|
54
|
Suárez-Barrio C, Etxebarria J, Hernáez-Moya R, Del Val-Alonso M, Rodriguez-Astigarraga M, Urkaregi A, Freire V, Morales MC, Durán JA, Vicario M, Molina I, Herrero-Vanrell R, Andollo N. Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects. Int J Mol Sci 2019; 20:ijms20071655. [PMID: 30987108 PMCID: PMC6480555 DOI: 10.3390/ijms20071655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of this study is to assess if an adhesive biopolymer, sodium hyaluronate (NaHA), has synergistic effects with s-PRGF (a serum derived from plasma rich in growth factors and a blood derivative that has already shown efficacy in corneal epithelial wound healing), to reduce time of healing or posology. In vitro proliferation and migration studies, both in human corneal epithelial (HCE) cells and in rabbit primary corneal epithelial (RPCE) cultures, were carried out. In addition, we performed studies of corneal wound healing in vivo in rabbits treated with s-PRGF, NaHA, or the combination of both. We performed immunohistochemistry techniques (CK3, CK15, Ki67, ß4 integrin, ZO-1, α-SMA) in rabbit corneas 7 and 30 days after a surgically induced epithelial defect. In vitro results show that the combination of NaHA and s-PRGF offers the worst proliferation rates in both HCE and RPCE cells. Addition of NaHA to s-PRGF diminishes the re-epithelializing capability of s-PRGF. In vivo, all treatments, given twice a day, showed equivalent efficacy in corneal epithelial healing. We conclude that the combined use of s-PRGF and HaNA as an adhesive biopolymer does not improve the efficacy of s-PRGF alone in the wound healing of corneal epithelial defects.
Collapse
Affiliation(s)
- Carlota Suárez-Barrio
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Jaime Etxebarria
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
- Department of Ophthalmology, University Hospital of Cruces, BioCruces Health Research Institute, Begiker, 48903 Barakaldo, Spain.
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Marina Del Val-Alonso
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Maddalen Rodriguez-Astigarraga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Arantza Urkaregi
- Department of Applied Mathematics and Statistics and Operational Research, BioCruces Health Research Institute, 48940 Leioa, Spain.
| | - Vanesa Freire
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
- R & D Department, Instituto Clínico-Quirúrgico de Oftalmología, 48006 Bilbao, Spain.
| | - María-Celia Morales
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Juan Antonio Durán
- R & D Department, Instituto Clínico-Quirúrgico de Oftalmología, 48006 Bilbao, Spain.
- Department of Dermatology, Otorhinolaryngology and Ophthalmology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Marta Vicario
- Pharmaceutical Innovation in Ophthalmology (InnOftal) UCM Research Group 920415. Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Irene Molina
- Pharmaceutical Innovation in Ophthalmology (InnOftal) UCM Research Group 920415. Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Rocío Herrero-Vanrell
- Pharmaceutical Innovation in Ophthalmology (InnOftal) UCM Research Group 920415. Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| |
Collapse
|
55
|
A Systematic Review of Potential Therapeutic Use of Lycium Barbarum Polysaccharides in Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4615745. [PMID: 30891458 PMCID: PMC6390233 DOI: 10.1155/2019/4615745] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Abstract
Objective To evaluate the effect of Lycium barbarum polysaccharides in the treatment and/or prevention of diseases of different etiologies and systems. Methods We performed an Entrez PubMed literature search using keywords “lycium”, “barbarum”, “polysaccharides”, “anti-fibrotic”, “anti-apoptotic”, “anti-oxidizing”, “anti-aging”, “neuroprotection”, “metabolism”, “diabetes”, “hyperlipidemia”, “neuroprotection”, and “immunomodulation” on the 14th of August 2018, resulting in 207 papers, of which 20 were chosen after filtering for ‘English language' and ‘published within 10 years' as well as curation for relevance by the authors. Results The 20 selected papers included 2 randomized control trials (1 double-blinded RCT and 1 double-blinded placebo-controlled RCT), 11 in vivo studies, 5 in vitro studies, 1 study with both in vivo and in vitro results, and 1 chemical study. There is good evidence from existing studies on the antifibrotic, antioxidizing, neuroprotective, anticancer, and anti-inflammatory effects of Lycium barbarum polysaccharides. However, there is a need for further studies in the form of large-scale clinical trials to support its use in humans. There is also significant potential for LBP as a safe and effective topical treatment in ocular surface diseases, owing to promising in vitro results and a lack of demonstrated toxic effects to corneal epithelial cells. Conclusion Results from existing studies suggest that LBP is a promising therapeutic agent, particularly in the management of liver disease, hyperlipidemia, and diabetes. One major limitation of current research is a lack of standardization and quality control for the LBP used. The availability of research-grade LBP will inevitably promote future research in this field worldwide.
Collapse
|
56
|
Alvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-Lopez M, Concheiro A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater 2019; 84:49-62. [PMID: 30448434 DOI: 10.1016/j.actbio.2018.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Efficient ocular drug delivery that can overcome the challenges of topical application has been largely pursued. Contact lenses (CLs) may act as light-transparent cornea/sclera bandages for prolonged drug release towards the post-lens tear fluid, if their composition and inner architecture are fitted to the features of the drug molecules. In this review, first the foundations and advantages of using CLs as ocular drug depots are revisited. Then, pros and cons of common strategies to prepare drug-loaded CLs are analyzed on the basis of recent examples, and finally the main section focuses on bioinspired strategies that can overcome some limitations of current designs. Most bioinspired strategies resemble a reverse engineering process to create artificial receptors for the drug inside the CL network by mimicking the human natural binding site of the drug. Related bioinspired strategies are being also tested for designing CLs that elute comfort ingredients mimicking the blinking-associated renewal of eye mucins. Other bioinspired approaches exploit the natural eye variables as stimuli to trigger drug release or take benefit of bio-glues to specifically bind active components to the CL surface. Overall, biomimicking approaches are being revealed as valuable tools to fit the amounts loaded and the release profiles to the therapeutic demands of each pathology. STATEMENT OF SIGNIFICANCE: Biomimetic and bioinspired strategies are remarkable tools for the optimization of drug delivery systems. Translation of the knowledge about how drugs interact with the natural pharmacological receptor and about components and dynamics of anterior eye segment may shed light on the design criteria for obtaining efficient drug-eluting CLs. Current strategies for endowing CLs with controlled drug release performance still require optimization regarding amount loaded, drug retained in the CL structure during storage, regulation of drug release once applied onto the eye, and maintenance of CL physical properties. All these limitations may be addressed through a variety of recently growing bioinspired approaches, which are expected to pave the way of medicated CLs towards the clinics.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Soledad Anguiano-Igea
- HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Angela Varela-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - María Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
57
|
Wang BB, Lin MM, Nguyen T, Turalba AV. Patient attitudes toward novel glaucoma drug delivery approaches. Digit J Ophthalmol 2018; 24:16-23. [PMID: 30800009 DOI: 10.5693/djo.01.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose Understanding patients' attitudes toward novel therapeutic options can help guide providers in personalizing treatment regimens for glaucoma patients. This study aimed to determine factors associated with acceptance of new drug delivery options among glaucoma patients. Methods A total of 199 patient volunteers participated in an interviewer-administered survey from June to August 2016 at the Glaucoma Service of Massachusetts Eye and Ear. The questionnaire was designed to determine acceptance of 6 drug delivery approaches: (1) triple combination eye drop, (2) microdose eye spray, (3) drug-eluting contact lens, (4) drug-eluting periocular ring insert, (5) injectable subconjunctival drug insert, and (6) injectable anterior chamber implant. Other factors analyzed included self-reported demographics, disease severity, and prior ocular history. Results The average respondent age was 63.2 ± 15.1 years; 48% were female. For approaches 1-6 listed above, overall acceptance rates were, respectively, 85%, 54%, 31%, 43%, 32%, and 30%. Patients with greater disease severity and prior incisional glaucoma surgery were more likely to pursue alternatives to traditional eye drops. Conclusions There is limited acceptance of alternatives to traditional eye drop medications among glaucoma patients. Understanding motivating factors and potential barriers to patient acceptance of novel drug delivery approaches is important in how providers will incorporate these glaucoma treatment options into practice.
Collapse
Affiliation(s)
| | | | - Thuan Nguyen
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | |
Collapse
|
58
|
Bertens CJ, Gijs M, van den Biggelaar FJ, Nuijts RM. Topical drug delivery devices: A review. Exp Eye Res 2018; 168:149-160. [DOI: 10.1016/j.exer.2018.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
|
59
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
60
|
Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. Eur J Pharm Biopharm 2018; 122:126-136. [DOI: 10.1016/j.ejpb.2017.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/17/2023]
|
61
|
Schehlein EM, Novack G, Robin AL. New pharmacotherapy for the treatment of glaucoma. Expert Opin Pharmacother 2017; 18:1939-1946. [PMID: 29172818 DOI: 10.1080/14656566.2017.1408791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Glaucoma is the second leading cause of blindness in the world and current pharmacotherapies for glaucoma have remained relatively unchanged (with the exception of fixed combinations of previously available medications) since the mid-1990s with the development of prostaglandin analogues. Now, with both new formulations and new classes of medications with novel mechanisms of action, the medical therapy of glaucoma may be heralding a new dawn in medical management. Areas covered: This review outlines new topical therapies for intraocular pressure (IOP) lowering treatment, in addition to new formulations, preservative-free options, and advances in glaucoma medical therapy delivery. We performed a comprehensive search for published studies for glaucoma medical therapy using the electronic database PubMed. A manual search for each therapy or delivery system was also performed. Expert commentary: These advances in glaucoma therapy have the potential to overcome many barriers to glaucoma's medical care, particularly in terms of adherence. However, both time and research are needed to prove the relative efficacy and safety of these new pharmacotherapies and products, helping us decide their role in the treatment of elevated intraocular pressure. We are hopeful that these new developments in therapy may bring more options for glaucoma medical therapy.
Collapse
Affiliation(s)
- Emily M Schehlein
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| | - Gary Novack
- b PharmaLogic Development Inc ., San Rafael , CA , USA.,c Departments of Pharmacology and Ophthalmology , University of California, Davis, School of Medicine , Sacramento , CA , USA
| | - Alan L Robin
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA.,d Department of Ophthalmology and School of Public Health , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW Sustained drug delivery has been recognized as a need for patients with ocular hypertension or glaucomatous optic neuropathy. Several sustained drug delivery systems and devices are currently on the horizon. This review aims to summarize initial results with these platforms, as reported in the literature, and also provide insight into their possible role in the glaucoma treatment paradigm. RECENT FINDINGS Sustained drug delivery systems currently on the horizon include the topical bimatoprost ocular insert, travoprost and latanoprost punctal plugs, latanoprost-eluting contact lenses, bimatoprost and travoprost intraocular implants, as well as several other therapies in earlier stages of development. Delivery strategies differ with respect to ocular site of implantation, ocular hypotensive agent, and duration of efficacy. Efficacy and safety outcomes with these devices are favorable thus far. SUMMARY The glaucoma treatment paradigm is currently in a state of flux as sustained drug delivery systems bring promise to individuals suffering from ocular hypertension or glaucoma. Several options will likely become available in the near future to ease the burden of daily administration of chronic therapy with intraocular pressure-lowering agents.
Collapse
|
63
|
|