51
|
Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009; 1:82-92. [PMID: 19783543 DOI: 10.1093/jmcb/mjp025] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translocated in liposarcoma, Ewing's sarcoma and TATA-binding protein-associated factor 15 constitute an interesting and important family of proteins known as the TET proteins. The proteins function in several aspects of cell growth control, including multiple different steps in gene expression, and they are also found mutated in a number of specific diseases. For example, all contain domains for binding nucleic acids and have been shown to function in both RNA polymerase II-mediated transcription and pre-mRNA splicing, possibly connecting these two processes. Chromosomal translocations in human sarcomas result in a fusion of the amino terminus of these proteins, which contains a transcription activation domain, to the DNA-binding domain of a transcription factor. Although the fusion proteins have been characterized in a clinical environment, the function of the cognate full-length protein in normal cells is a more recent topic of study. The first part of this review will describe the TET proteins, followed by detailed descriptions of their multiple roles in cells. The final sections will examine changes that occur in gene regulation in cells expressing the fusion proteins. The clinical implications and treatment of sarcomas will not be addressed but have recently been reviewed.
Collapse
Affiliation(s)
- Adelene Y Tan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
52
|
Proctor A, Brownhill SC, Burchill SA. The promise of telomere length, telomerase activity and its regulation in the translocation-dependent cancer ESFT; clinical challenges and utility. Biochim Biophys Acta Mol Basis Dis 2009; 1792:260-74. [PMID: 19264125 DOI: 10.1016/j.bbadis.2009.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/12/2023]
Abstract
The Ewing's sarcoma family of tumours (ESFT) are diagnosed by EWS-ETS gene translocations. The resulting fusion proteins play a role in both the initiation and maintenance of these solid aggressive malignant tumours, suppressing cellular senescence and increasing cell proliferation and survival. EWS-ETS fusion proteins have altered transcriptional activity, inducing expression of a number of different target genes including telomerase. Up-regulation of hTERT is most likely responsible for the high levels of telomerase activity in primary ESFT, although telomerase activity and expression of hTERT are not predictive of outcome. However levels of telomerase activity in peripheral blood may be useful to monitor response to some therapeutics. Despite high levels of telomerase activity, telomeres in ESFT are frequently shorter than those of matched normal cells. Uncertainty about the role that telomerase and regulators of its activity play in the maintenance of telomere length in normal and cancer cells, and lack of studies examining the relationship between telomerase activity, regulators of its activity and their clinical significance in patient samples have limited their introduction into clinical practice. Studies in clinical samples using standardised assays are critical to establish how telomerase and regulators of its activity might best be exploited for patient benefit.
Collapse
Affiliation(s)
- Andrew Proctor
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
53
|
Abstract
Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics.
Collapse
Affiliation(s)
- Susan Ann Burchill
- Candlelighter's Children's Cancer Research Group, Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
54
|
Simultaneous inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways augment the sensitivity to actinomycin D in Ewing sarcoma. J Cancer Res Clin Oncol 2009; 135:1125-36. [PMID: 19205734 DOI: 10.1007/s00432-009-0554-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/19/2009] [Indexed: 12/13/2022]
Abstract
PURPOSE Ewing sarcoma cells, of which over 85% retain chimeric fusion gene EWS/Fli-1, are by and large more resistant to chemotherapeutics compared to nonneoplastic cells. The purpose of this study is to determine the role of EWS/Fli-1 fusion and its downstream targets regarding the cells' resistance against actinomycin D (ActD), which is one of the most commonly used antitumor agents in combination chemotherapy of Ewing sarcomas. METHODS Cytotoxicity was measured by WST-8 assay. Caspase-dependent and -independent cell death was examined by fluorescence microscope. Protein expression was analyzed by western blotting. Caspase activity was determined by Caspase-Glo assay. RESULTS ActD-induced caspase-dependent apoptotic cell death to Ewing sarcoma TC-135 cells in a dose- and time- dependent manner. Knockdown of EWS/Fli-1 fusion by siRNA resulted in enhancement of ActD-induced apoptosis. ActD treatment activated both mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/Akt pathways although in a distinctive manner. Combined administration of U0126 (MEK inhibitor) and LY294002 (PI3K inhibitor) significantly enhanced ActD-induced apoptosis in vitro and suppressed xenograft tumor growth in vivo. CONCLUSIONS The present study demonstrated for the first time that combination of U0126 and LY294002 can augment the cytotoxicity of ActD against Ewing sarcoma cells in vitro and in vivo. Our results indicate that further study on combination of conventional chemotherapies with MEK and PI3K inhibitors may be considered for innovative treatments of Ewing sarcoma patients.
Collapse
|
55
|
Beauchamp E, Bulut G, Abaan O, Chen K, Merchant A, Matsui W, Endo Y, Rubin JS, Toretsky J, Uren A. GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem 2009; 284:9074-82. [PMID: 19189974 DOI: 10.1074/jbc.m806233200] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ewing sarcoma family of tumors (ESFT) is an undifferentiated neoplasm of the bone and soft tissue. ESFT is characterized by a specific chromosomal translocation occurring between chromosome 22 and (in most cases) chromosome 11, which generates an aberrant transcription factor, EWS-FLI1. The function of EWS-FLI1 is essential for the maintenance of ESFT cell survival and tumorigenesis. The Hedgehog pathway is activated in several cancers. Oncogenic potential of the Hedgehog pathway is mediated by increasing the activity of the GLI family of transcription factors. Recent evidence suggests that EWS-FLI1 increases expression of GLI1 by an unknown mechanism. Our data from chromatin immunoprecipitation and promoter reporter studies indicated GLI1 as a direct transcriptional target of EWS-FLI1. Expression of EWS-FLI1 in non-ESFT cells increased GLI1 expression and GLI-dependent transcription. We also detected high levels of GLI1 protein in ESFT cell lines. Pharmacological inhibition of GLI1 protein function decreased proliferation and soft agar colony formation of ESFT cells. Our results establish GLI1 as a direct transcriptional target of EWS-FLI1 and suggest a potential role for GLI1 in ESFT tumorigenesis.
Collapse
Affiliation(s)
- Elspeth Beauchamp
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D C 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Evans CH, Ghivizzani SC, Robbins PD. Orthopedic gene therapy in 2008. Mol Ther 2009; 17:231-44. [PMID: 19066598 PMCID: PMC2835052 DOI: 10.1038/mt.2008.265] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/26/2008] [Indexed: 02/07/2023] Open
Abstract
Orthopedic disorders, although rarely fatal, are the leading cause of morbidity and impose a huge socioeconomic burden. Their prevalence will increase dramatically as populations age and gain weight. Many orthopedic conditions are difficult to treat by conventional means; however, they are good candidates for gene therapy. Clinical trials have already been initiated for arthritis and the aseptic loosening of prosthetic joints, and the development of bone-healing applications is at an advanced, preclinical stage. Other potential uses include the treatment of Mendelian diseases and orthopedic tumors, as well as the repair and regeneration of cartilage, ligaments, and tendons. Many of these goals should be achievable with existing technologies. The main barriers to clinical application are funding and regulatory issues, which in turn reflect major safety concerns and the opinion, in some quarters, that gene therapy should not be applied to nonlethal, nongenetic diseases. For some indications, advances in nongenetic treatments have also diminished enthusiasm. Nevertheless, the preclinical and early clinical data are impressive and provide considerable optimism that gene therapy will provide straightforward, effective solutions to the clinical management of several common debilitating disorders that are otherwise difficult and expensive to treat.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
57
|
Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G, Schwentner R, Smrzka O, Muehlbacher K, Aryee DNT, Kovar H. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res 2008; 68:7100-9. [PMID: 18757425 DOI: 10.1158/0008-5472.can-07-6145] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although p53 is the most frequently mutated gene in cancer, half of human tumors retain wild-type p53, whereby it is unknown whether normal p53 function is compromised by other cancer-associated alterations. One example is Ewing's sarcoma family tumors (ESFT), where 90% express wild-type p53. ESFT are characterized by EWS-FLI1 oncogene fusions. Studying 6 ESFT cell lines, silencing of EWS-FLI1 in a wild-type p53 context resulted in increased p53 and p21(WAF1/CIP1) levels, causing cell cycle arrest. Using a candidate gene approach, HEY1 was linked to p53 induction. HEY1 was rarely expressed in 59 primary tumors, but consistently induced upon EWS-FLI1 knockdown in ESFT cell lines. The NOTCH signaling pathway targets HEY1, and we show NOTCH2 and NOTCH3 to be expressed in ESFT primary tumors and cell lines. Upon EWS-FLI1 silencing, NOTCH3 processing accompanied by nuclear translocation of the activated intracellular domain was observed in all but one p53-mutant cell line. In cell lines with the highest HEY1 induction, NOTCH3 activation was the consequence of JAG1 transcriptional induction. JAG1 modulation by specific siRNA, NOTCH-processing inhibition by either GSI or ectopic NUMB1, and siRNA-mediated HEY1 knockdown all inhibited p53 and p21(WAF1/CIP1) induction. Conversely, forced expression of JAG1, activated NOTCH3, or HEY1 induced p53 and p21(WAF1/CIP1). These results indicate that suppression of EWS-FLI1 reactivates NOTCH signaling in ESFT cells, resulting in p53-dependent cell cycle arrest. Our data link EWS-FLI1 to the NOTCH and p53 pathways and provide a plausible basis both for NOTCH tumor suppressor effects and oncogenesis of cancers that retain wild-type p53.
Collapse
Affiliation(s)
- Jozef Ban
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Reddy K, Zhou Z, Jia SF, Lee TH, Morales-Arias J, Cao Y, Kleinerman ES. Stromal cell-derived factor-1 stimulates vasculogenesis and enhances Ewing's sarcoma tumor growth in the absence of vascular endothelial growth factor. Int J Cancer 2008; 123:831-7. [PMID: 18537159 DOI: 10.1002/ijc.23582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stromal cell-derived Factor-1alpha (SDF-1alpha) stimulates the migration of bone marrow (BM) cells, similar to vascular endothelial growth factor (VEGF). We previously demonstrated that inhibition of VEGF(165) by small interfering RNA inhibited Ewing's sarcoma tumor growth, tumor vessel formation and recruitment of BM cells to the tumor. To determine the importance of BM cells in tumor vessel development, we investigated the effects of SDF-1alpha on VEGF-inhibited TC/siVEGF(7-1) Ewing's tumor neovasculature formation and growth. The effect of SDF-1alpha on CD34(+) progenitor cell chemotaxis was determined in vivo. Using a BM transplantation model with GFP(+) transgenic mice as BM donors and nude mice as recipients, we evaluated the effect of SDF-1alpha on the recruitment of BM-derived cells to VEGF(165)-inhibited TC/siVEGF(7-1) tumors, as well as its effect on neovasculature development, vessel morphology and tumor growth. SDF-1alpha stimulated the migration of CD34(+) progenitor cells to Matrigel plugs in vivo and promoted the retainment of BM-derived pericytes in close association with perfused, functional tumor vessels. Intratumor inoculation of Ad-SDF-1alpha into TC/siVEGF(7-1) tumors resulted in increased SDF-1 and PDGF-BB expression, augmented tumor growth, an increase in the number of large, lumen-bearing vascular structures, and enhanced vessel pericyte coverage, with no change in VEGF(165). SDF-1alpha stimulates BM cell chemotaxis and the association of these cells with functional tumor vessels. Furthermore, SDF-1alpha enhances tumor neovascularization and growth with no alteration in VEGF(165). Our work suggests that SDF-1-mediated vasculogenesis may represent an alternate pathway that could potentially be utilized by tumors to sustain growth and neovasculature expansion after anti-VEGF therapy.
Collapse
Affiliation(s)
- Krishna Reddy
- Division of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Hu HM, Zielinska-Kwiatkowska A, Munro K, Wilcox J, Wu DY, Yang L, Chansky HA. EWS/FLI1 suppresses retinoblastoma protein function and senescence in Ewing's sarcoma cells. J Orthop Res 2008; 26:886-93. [PMID: 18271016 DOI: 10.1002/jor.20597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ewing's Family Tumors (EFTs) most commonly harbor a specific t(11;22) translocation that generates the EWS/FLI1 fusion protein responsible for malignant transformation. Many potential downstream targets of EWS/FLI1 have been identified but a detailed mechanism by which the fusion protein brings about transformation remains unknown. In this report, we show that depletion of EWS/FLI1 in Ewing's cell lines results in a senescence phenotype, a marked increase in expression of the G1/S regulatory proteins p27(kip1) and p57(kip2), and a significant decrease in cyclin D1 and CDK2. We also demonstrate for the first time, to our knowledge, that knockdown of EWS/FLI1 leads to hypophosphorylation and functional activation of the retinoblastoma (pRb) family of proteins. Consistent with activation of the pRb proteins, E2F-responsive genes such as cyclin A are repressed in EWS/FLI1-depleted cells. Together, these results support the role of EWS/LI1 as an inhibitor of cellular senescence and implicate the retinoblastoma family of proteins as key mediators of this inhibition.
Collapse
Affiliation(s)
- Hsien-Ming Hu
- Department of Orthopedics and Sports Medicine, School of Medicine, University of Washington, 1660 S. Columbian Way, ORT112, Seattle, Washington 98108, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Sarcomas of Bone. Oncology 2007. [DOI: 10.1007/0-387-31056-8_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
61
|
Myatt SS, Burchill SA. The sensitivity of the Ewing's sarcoma family of tumours to fenretinide-induced cell death is increased by EWS-Fli1-dependent modulation of p38MAPK activity. Oncogene 2007; 27:985-96. [PMID: 17700534 DOI: 10.1038/sj.onc.1210705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Ewing's sarcoma family of tumours (ESFT) are small round cell tumours characterized by the non-random EWS-ETS gene rearrangements. We have previously demonstrated that ESFT are highly sensitive to fenretinide-induced death, effected in part through a reactive oxygen species (ROS)-dependent pathway. Here, we demonstrate for the first time that the sensitivity of ESFT cells to fenretinide-induced cell death is decreased following downregulation of the oncogenic fusion protein EWS-Fli1; siRNA targeting EWS-Fli1 attenuated fenretinide-induced cell death in cell lines expressing EWS-Fli1, but not EWS-ERG. This decrease in cell death was independent of the level of ROS produced following exposure to fenretinide, but was effected through EWS-Fli1-dependent modulation of p38(MAPK) activity. Furthermore, inhibition of p38(MAPK) activity and knockdown of EWS-Fli1 reduced fenretinide-induced mitochondrial permeabilization, cytochrome c release, caspase and PARP cleavage, consistent with the hypothesis that p38(MAPK) is critical for activation of the death cascade by fenretinide in ESFT cells. These data demonstrate that expression of EWS-Fli1 enhances fenretinide-induced cell death in ESFT and that this is effected at least in part through modulation of p38(MAPK) activity.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cytochromes c/metabolism
- Down-Regulation
- Electroporation
- Fenretinide/pharmacology
- Flow Cytometry
- Gene Expression Regulation, Enzymologic
- Humans
- Membrane Potentials/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Poly(ADP-ribose) Polymerases/metabolism
- Proto-Oncogene Protein c-fli-1/antagonists & inhibitors
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA, Small Interfering/pharmacology
- RNA-Binding Protein EWS
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- S S Myatt
- Candlelighter's Children's Cancer Research Laboratory, Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, UK
| | | |
Collapse
|
62
|
Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11:421-9. [PMID: 17482132 DOI: 10.1016/j.ccr.2007.02.027] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 12/04/2006] [Accepted: 02/28/2007] [Indexed: 12/12/2022]
Abstract
The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.
Collapse
Affiliation(s)
- Franck Tirode
- Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Human sarcoma cells can be killed by radio- and chemotherapy, but tumor cells acquiring resistance frequently kill the patient. A keen understanding of the intracellular course of oncogenic cascades leads to the discovery of small molecular inhibitors of the involved phosphorylated kinases. Targeted therapy complements chemotherapy. Oncogene silencing is feasible by small interfering RNA. The restoration of some of the mutated or deleted tumor-suppressor genes (p53, Rb, PTEN, hSNF, INK/ARF and WT) by demethylation or reacetylation of their histones has been accomplished. Genetically engineered or naturally oncolytic viruses selectively lyse tumors and leave healthy tissues intact. Adeno- or retroviral vectors deliver genes of immunological costimulators, tumor antigens, chemo- or cytokines and/or tumor-suppressor proteins into tumor (sarcoma) cells. Suicide gene delivery results in apoptosis induction. Genes of enzymes that target prodrugs as their substrates render tumor cells highly susceptible to chemotherapy, with the prodrug to be targeted intracellularly. It will be combinations of sophisticated surgical removal of the nonencapsulated and locally invasive primary sarcomas, advanced forms of radiotherapy to the involved sites and immunotherapy with sarcoma vaccines that will cure primary sarcomas. Adoptive immunotherapy with immune lymphocytes will be operational in metastatic disease only when populations of regulatory T cells are controlled. Targeted therapy with small molecular inhibitors of oncogene cascades, the driving forces of sarcoma cells, alteration of the tumor stroma from a supportive to a tumor-hostile environment, reactivation or replacement of wild-type tumor-suppressor genes, and radio-chemotherapy (with much reduced toxicity) will eventually accomplish the cure of metastatic sarcomas.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- The University of South Florida, Cancer Institute of St Joseph's Hospital, HL Moffitt Cancer Center, The University of South Florida College of Medicine, FL, USA.
| |
Collapse
|
64
|
Maksimenko A, Malvy C. Oncogene-targeted antisense oligonucleotides for the treatment of Ewing sarcoma. Expert Opin Ther Targets 2007; 9:825-30. [PMID: 16083345 DOI: 10.1517/14728222.9.4.825] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The genetic hallmark of the Ewing sarcoma family of tumours (ESFT) is the presence of the t(11;22)(q24;q12) translocation, present in up to 85% of cases of ESFT, which creates the EWS/FLI1 fusion gene and results in the expression of a chimeric protein regulating many other genes. The inhibition of this protein by antisense strategies has shown its predominant role in the transformed phenotype of Ewing cells. In addition, the junction point at the mRNA level offers a target for short therapeutic nucleic acids that is present only in the cancer cells and not in the normal tissues of a patient. Several teams have, therefore, investigated the activity of antisense oligonucleotides and siRNAs targeted against the junction point in mRNA; thus, inhibiting EWS/FLI1 synthesis. Generally speaking, the molecules induce a cell growth inhibition in culture. Apoptosis has also been reported. One laboratory has reported the in vivo tumour inhibitory effect of phosphorothioate antisense oligonucleotide directed against the EWS part of EWS/FlI1 when injected intratumourally. Independently, a tumour inhibitory effect of oligonucleotides targeting the junction point has been demonstrated provided they are delivered by polymeric nanoparticles through the intratumoural route. Alongside this target, other genes participating to the maintenance of the transformed phenotype of Ewing cells have been downregulated by antisense strategies.
Collapse
|
65
|
Abstract
The concepts of tailored therapy according to genetic profiling and response based on minimal residual disease evaluation during therapy are attracting increasing interest in modern clinical oncology. Children with acute lymphoblastic leukemia are being stratified to various treatment arms with different intensities according to the genetic characteristics of their leukemia and their response to therapy as measured by real-time polymerase chain reaction. Our ability to quickly identify patients with Ewing sarcoma who have a poor prognosis, and to offer them aggressive therapeutic modalities, such as stem cell transplantation, may result in an improved cure rate. Based on the knowledge gained by gene expression profiling and gene silencing techniques we can expect the emergence of new specific drugs that will target malignant cells without causing damage to normal tissue, resulting in improved cancer therapy.
Collapse
Affiliation(s)
- Smadar Avigad
- Molecular Oncology, Felsenstein Medical Research Center, Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Petah-Tikva, Israel.
| | | |
Collapse
|
66
|
Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene Ther 2006; 13:464-77. [PMID: 16341059 DOI: 10.1038/sj.gt.3302694] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a powerful gene-silencing process that holds great promise in the field of cancer therapy. The discovery of RNAi has generated enthusiasm within the scientific community, not only because it has been used to rapidly identify key molecules involved in many disease processes including cancer, but also because RNAi has the potential to be translated into a technology with major therapeutic applications. Our evolving understanding of the molecular pathways important for carcinogenesis has created opportunities for cancer therapy employing RNAi technology to target the key molecules within these pathways. Many gene products involved in carcinogenesis have already been explored as targets for RNAi intervention, and RNAi targeting of molecules crucial for tumor-host interactions and tumor resistance to chemo- or radiotherapy has also been investigated. In most of these studies, the silencing of critical gene products by RNAi technology has generated significant antiproliferative and/or proapoptotic effects in cell-culture systems or in preclinical animal models. Nevertheless, significant obstacles, such as in vivo delivery, incomplete suppression of target genes, nonspecific immune responses and the so-called off-target effects, need to be overcome before this technology can be successfully translated into the clinical arena. Significant progress has already been made in addressing some of these issues, and it is foreseen that early phase clinical trials will be initiated in the very near future.
Collapse
Affiliation(s)
- S I Pai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Ewing's sarcoma and related tumors (ESFT) are characterized by rearrangements of EWS with ets family genes. While detection of these gene fusions greatly facilitated diagnosis, it has not provided any clues about the tissue of origin. Immunological and gene expression profiling studies favour a neuroectodermal histogenesis. These investigations did not appreciate the impact of EWS-ets proteins on the tumor phenotype. Introduction of EWS-ets into different cellular models resulted in diverse outcomes ranging from the induction of cell cycle arrest or apoptosis to transformation and tumorigenicity, and from blocked differentiation to trans-differentiation. Thus, the molecular signature of EWS-ets proteins depends on the cell type. The hen or egg problem in ESFT, therefore, is whether ESFT reflect the phenotype of the tumor stem cell that is blocked in differentiation by the activity of the EWS-ets gene fusion or if the oncogene imposes an incomplete differentiation program on a pluripotent precursor cell. This article addresses the problem by considering the tissue distribution of FLI1 and ERG expression and by reviewing evidence for combinatorial control of EWS-ets activity.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria.
| |
Collapse
|
68
|
Kontny U. Regulation of apoptosis and proliferation in Ewing's sarcoma--opportunities for targeted therapy. Hematol Oncol 2006; 24:14-21. [PMID: 16400699 DOI: 10.1002/hon.766] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Ewing's sarcoma family of tumors are malignant tumors of bone and soft tissue which occur predominantely in children and adolescents. Whereas cure rates for patients with localized tumors are around 70%, survival rates for patients with metastases or relapse are poor in spite of intensive chemo- and radiation therapy, demonstrating a clear need for new, more effective therapies. Insights into the biology of the tumors of the Ewing's sarcoma family with identification of the EWS/ETS gene rearrangement as the key event in malignant transformation and its influence on the regulation of various pathways involved in proliferation, differentiation and apoptosis has led to the identification of potential targets for the development of new molecular therapeutics. This review will focus on the regulation of major pathways of proliferation and apoptosis in tumors of the Ewing's sarcoma family and point out how modulation of these pathways might be of potential use for future therapy.
Collapse
Affiliation(s)
- Udo Kontny
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Germany.
| |
Collapse
|
69
|
Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005; 65:8984-92. [PMID: 16204072 DOI: 10.1158/0008-5472.can-05-0565] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of effective, systemic therapies for metastatic cancer is highly desired. We show here that the systemic delivery of sequence-specific small interfering RNA (siRNA) against the EWS-FLI1 gene product by a targeted, nonviral delivery system dramatically inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. The nonviral delivery system uses a cyclodextrin-containing polycation to bind and protect siRNA and transferrin as a targeting ligand for delivery to transferrin receptor-expressing tumor cells. Removal of the targeting ligand or the use of a control siRNA sequence eliminates the antitumor effects. Additionally, no abnormalities in interleukin-12 and IFN-alpha, liver and kidney function tests, complete blood counts, or pathology of major organs are observed from long-term, low-pressure, low-volume tail-vein administrations. These data provide strong evidence for the safety and efficacy of this targeted, nonviral siRNA delivery system.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Disease Models, Animal
- Down-Regulation
- Female
- Gene Silencing
- Luciferases/biosynthesis
- Luciferases/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Metastasis
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/antagonists & inhibitors
- Proto-Oncogene Protein c-fli-1/biosynthesis
- Proto-Oncogene Protein c-fli-1/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/toxicity
- RNA-Binding Protein EWS
- Receptors, Transferrin/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/therapy
- Transduction, Genetic
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | |
Collapse
|
70
|
Xia SJ, Barr FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005; 41:2513-27. [PMID: 16213703 DOI: 10.1016/j.ejca.2005.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A subset of sarcomas is characterised by recurrent chromosome translocations that generate novel fusion oncoproteins. One or both of the genes involved in these translocations often encode transcription factors, and the resulting fusion proteins have aberrant transcriptional function compared to their wild-type counterparts. These fusion transcription factors disrupt multiple biological pathways by altering expression of target genes, and thereby result in a variety of altered cellular properties that contribute to the tumourigenic process. However, experimental data indicate that the fusion gene alone is not sufficient for transformation in primary cells (EWS-FLI1) or tumourigenesis in the mouse (PAX3-FKHR, FUS-CHOP), suggesting that additional collaborating genetic alterations are required. In addition to improving our understanding of the etiology of these tumours, this accumulating knowledge of the oncogenic properties of these fusion proteins, their downstream targets, and cooperating genetic alterations will permit the development of a variety of novel approaches to improve the therapy of these cancers.
Collapse
Affiliation(s)
- Shujuan J Xia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505C Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
71
|
Mendiola M, Carrillo J, García E, Lalli E, Hernández T, de Alava E, Tirode F, Delattre O, García-Miguel P, López-Barea F, Pestaña A, Alonso J. The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors. Int J Cancer 2005; 118:1381-9. [PMID: 16206264 DOI: 10.1002/ijc.21578] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Ewing family of tumors harbors chromosomal translocations that join the N-terminal region of the EWS gene with the C-terminal region of several transcription factors of the ETS family, mainly FLI1, resulting in chimeric transcription factors that play a pivotal role in the pathogenesis of Ewing tumors. To identify downstream targets of the EWS/FLI1 fusion protein, we established 293 cells expressing constitutively either the chimeric EWS/FLI1 or wild type FLI1 proteins and used cDNA arrays to identify genes differentially regulated by EWS/FLI1. DAX1 (NR0B1), an unusual orphan nuclear receptor involved in gonadal development, sex determination and steroidogenesis, showed a consistent up-regulation by EWS/FLI1 oncoprotein, but not by wild type FLI1. Specific induction of DAX1 by EWS/FLI1 was confirmed in two independent cell systems with inducible expression of EWS/FLI1. We also analyzed the expression of DAX1 in Ewing tumors and derived cell lines, as well as in other nonrelated small round cell tumors. DAX1 was expressed in all Ewing tumor specimens analyzed, and in seven out of eight Ewing tumor cell lines, but not in any neuroblastoma or embryonal rhabdomyosarcoma. Furthermore, silencing of EWS/FLI1 by RNA interference in a Ewing tumor cell line markedly reduced the levels of DAX1 mRNA and protein, confirming that DAX1 up-regulation is dependent upon EWS/FLI1 expression. The high levels of DAX1 found in Ewing tumors and its potent transcriptional repressor activity suggest that the oncogenic effect of EWS/FLI1 may be mediated, at least in part, by the up-regulation of DAX1 expression.
Collapse
MESH Headings
- Cell Line
- Cell Line, Tumor
- Cluster Analysis
- DAX-1 Orphan Nuclear Receptor
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Immunohistochemistry
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA-Binding Protein EWS
- Receptors, Retinoic Acid/analysis
- Receptors, Retinoic Acid/genetics
- Repressor Proteins/analysis
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Marta Mendiola
- Departamento de Biología Molecular y Celular del Cáncer, Instituto de Investigaciones Biomédicas A. Sols CSIC-UAM, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Zou J, Ichikawa H, Blackburn ML, Hu HM, Zielinska-Kwiatkowska A, Mei Q, Roth GJ, Chansky HA, Yang L. The oncogenic TLS-ERG fusion protein exerts different effects in hematopoietic cells and fibroblasts. Mol Cell Biol 2005; 25:6235-46. [PMID: 15988032 PMCID: PMC1168819 DOI: 10.1128/mcb.25.14.6235-6246.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic TLS-ERG fusion protein is found in human myeloid leukemia and Ewing's sarcoma as a result of specific chromosomal translocation. To unveil the potential mechanism(s) underlying cellular transformation, we have investigated the effects of TLS-ERG on both gene transcription and RNA splicing. Here we show that the TLS protein forms complexes with RNA polymerase II (Pol II) and the serine-arginine family of splicing factors in vivo. Deletion analysis of TLS-ERG in both mouse L-G myeloid progenitor cells and NIH 3T3 fibroblasts revealed that the RNA Pol II-interacting domain of TLS-ERG resides within the first 173 amino acids. While TLS-ERG repressed expression of the luciferase reporter gene driven by glycoprotein IX promoter in L-G cells but not in NIH 3T3 cells, the fusion protein was able to affect splicing of the E1A reporter in NIH 3T3 cells but not in L-G cells. To identify potential target genes of TLS-ERG, the fusion protein and its mutants were stably expressed in both L-G and NIH 3T3 cells through retroviral transduction. Microarray analysis of RNA samples from these cells showed that TLS-ERG activates two different sets of genes sharing little similarity in the two cell lines. Taken together, these results suggest that the oncogenic TLS-ERG fusion protein transforms hematopoietic cells and fibroblasts via different pathways.
Collapse
Affiliation(s)
- Junhui Zou
- Department of Orthopedics, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Affiliation(s)
- María Jesús Antuña García
- Unidad de Oncología Pediátrica, Departamento de Pediatría, Hospital Central de Asturias, Oviedo, Asturias, Spain.
| |
Collapse
|
74
|
Abstract
Sarcomas comprise a heterogeneous group of malignancies that are derived from mesenchymal cells, which under normal circumstances lead to the development of connective tissues such as bone, muscle, fat, and cartilage. During the past decade, insight has been gained regarding the aberrancies that occur during normal development that result in mesenchymal cells transforming into sarcomas. More recently, these insights have led to the development of successful therapies that target the specific mechanisms inherent to individual sarcomas. This overview discusses some of the aberrant molecular mechanisms shared in sarcomas and reviews several sarcoma subtypes in which the most advances have been made. Finally, the ways in which these advances in basic science are translating into and redefining clinical practice are highlighted.
Collapse
Affiliation(s)
- Igor Matushansky
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
75
|
Laverdiere C, Hoang BH, Yang R, Sowers R, Qin J, Meyers PA, Huvos AG, Healey JH, Gorlick R. Messenger RNA Expression Levels of CXCR4 Correlate with Metastatic Behavior and Outcome in Patients with Osteosarcoma. Clin Cancer Res 2005; 11:2561-7. [PMID: 15814634 DOI: 10.1158/1078-0432.ccr-04-1089] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine if osteosarcoma cells express chemokine receptors and if their presence or absence relates to clinical features. EXPERIMENTAL DESIGN Using fluorescent quantitative real-time PCR, the pattern of 17 chemokine receptors in 3 osteosarcoma cell lines and 68 osteosarcoma patient samples was analyzed. RESULTS The expression of the chemokine receptors was generally low among the cell lines. In the high-grade osteosarcoma patient samples (n = 47), CXCR4 was the most commonly expressed (63%) and its expression level was inversely correlated to overall survival (P < 0.0001), event-free survival (P < 0.001), and metastasis-free survival (MFS; P = 0.002). There was also a correlation between the expression level of CXCR4 and the presence of metastasis at diagnosis (P = 0.002). CCR7 was expressed in 43% of the samples and its expression level was inversely correlated with overall survival (P = 0.03) and MFS (P = 0.007). CCR10 mRNA expression level was inversely correlated with MFS (P = 0.009). There was no association between the expression of CXCR4, CCR7, and CCR10. Of the 26 samples studied for stromal cell-derived factor-1 expression, 77% expressed it, but there was no correlation with the clinical variables or CXCR4 expression. Multivariate analysis revealed that mRNA expression level of CXCR4 was the only significant variable for overall survival (P = 0.0006), event-free survival (P = 0.004), and MFS (P = 0.025). CONCLUSIONS These data suggest that CXCR4 could be useful as a prognostic factor and as a predictor of potential metastatic development in osteosarcoma. If further studies confirm that it is relevant to metastases in this disease, it could represent a new therapeutic target.
Collapse
Affiliation(s)
- Caroline Laverdiere
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Casas-Ganem J, Healey JH. Advances that are changing the diagnosis and treatment of malignant bone tumors. Curr Opin Rheumatol 2005; 17:79-85. [PMID: 15604909 DOI: 10.1097/01.bor.0000146608.03927.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Several neoplastic conditions may affect bone. These include primary bone tumors as well as metastatic disease from distant primary sites. Often, these entities produce symptoms that may be difficult to distinguish from those of various rheumatologic entities. The purpose of this review is to discuss recent developments in orthopedic oncology, with special attention given to advances that are changing the diagnosis and treatment of bone sarcomas and carcinomas metastatic to bone. RECENT FINDINGS Much effort in the field of musculoskeletal oncology has been dedicated to the elucidation of the molecular mechanisms underlying bone sarcomas, especially in the case of osteogenic sarcoma and Ewing family tumor. Telomere maintenance mechanisms are emerging as potential targets for anticancer therapy. The most exciting advances have been in the development of novel treatments for cancers affecting bone. The anticancer effects of bisphosphonates, cyclooxygenase-2 inhibitors, and statins may expand their indications to the treatment of primary bone tumors. Finally, new expandable implants have been developed for the treatment of bone tumors in growing children. These devices may help solve some of the problems encountered with reconstruction of the growing skeleton. SUMMARY Recent discoveries in the molecular mechanisms of bone sarcomas may help to elucidate the pathogenesis of these rare diseases. This, combined with the recent findings of the anticancer effects of bisphosphonates, cyclooxygenase-2 inhibitors, and statins, may lead to the development of novel treatments for sarcomas of bone and of carcinomas metastatic to bone.
Collapse
Affiliation(s)
- Jorge Casas-Ganem
- Orthopaedic Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, affiliated with Weill Medical College of Cornell University, 10021, USA
| | | |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Improving overall survival and reducing morbidity are major goals of childhood cancer research. This review explores an old idea that increased survival in childhood cancer can be achieved by inhibiting specific cancer targets. Specific therapeutic targeting would theoretically cause reduced morbidity as well as increased survival. Tumor-specific translocation-generated fusion proteins appear to be ideal tumor-specific therapeutic targets. This review will describe advances in aspects of target identification, potential for small molecule screening, and the evolution of clinical resistance to this new generation of pharmaceuticals. RECENT FINDINGS Advances in molecular biology have identified new protein targets along with increased understanding of the biologic role of these proteins. Ewing sarcoma family of tumors research has benefited from new target discovery and enhanced biologic understanding of the EWS-FLI1 fusion protein. Congenital (infantile) fibrosarcoma and cellular mesoblastic nephroma have been grouped based on the presence of a common translocation fusion protein, ETV6-NTRK3. Functional knowledge of ETV6-NTRK3 has advanced so that strategies for screening small molecule inhibitors can proceed. Patients with chronic myeloid leukemia have benefited from the discovery of the BCR-ABL kinase inhibitor imatinib mesylate (Gleevec), thus showing how a molecular therapeutic target can be inactivated for improved therapy. This review will describe challenges raised by clinical resistance to imatinib mesylate as a paradigm for how resistance might evolve in other disease models. This review also describes how patients with synovial sarcoma might benefit from future therapy directed towards the SYT-SSX family of fusion proteins. SUMMARY The increased utilization of small molecules to disrupt or inactivate tumor-specific molecular targets is rapidly evolving. The use of these small molecules to probe biology and treat disease is advancing towards a new generation of anticancer therapies.
Collapse
MESH Headings
- Child
- Fibrosarcoma/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Protein c-fli-1
- RNA-Binding Protein EWS
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/therapy
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/therapy
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Aykut Uren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | |
Collapse
|