51
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
52
|
Shi Z, Wang Q, Jiang D. Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J Transl Med 2019; 17:211. [PMID: 31238964 PMCID: PMC6593555 DOI: 10.1186/s12967-019-1960-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells (BMSC-EVs) can play important roles in the repair of injured tissues. However, no reports have investigated the role and underlying mechanisms of BMSCs-EVs in the tendon repair process. We hypothesized that BMSC-EVs may play a role in modulating inflammation during tendon healing and improving tendon repair in a rat model of patellar tendon injury. Methods First, we created window defects in the patellar tendons of Sprague–Dawley rats. Rats (n = 16) were then randomly assigned to three groups: BMSC-EVs group, Fibrin group, and control group. Rats in the BMSC-EVs group were treated with BMSC-EVs and fibrin glue (25 µg in 10 µL). Rats in the fibrin group were treated with fibrin only, and those in the control group received no treatment. Histopathology, immunohistochemistry, and gene expression analyses were performed at 2 and 4 weeks after surgery. Results At 4 weeks, tendons treated with BMSC-EVs showed regularly aligned and compact collagen fibers as compared with the disrupted scar-like healing in rats in the fibrin and control groups. The expression of genes related to tendon matrix formation and tenogenic differentiation: collagen (COL)-1a1, scleraxis (SCX), and tenomodulin (TNMD) was significantly higher in the BMSC-EVs group than in the other two groups. With histopathology, we observed significantly higher numbers of CD146+ tendon stem cells and fewer numbers of apoptotic cells and C–C chemokine receptor type 7 (CCR7)-positive proinflammatory macrophages in the BMSC-EVs group. BMSC-EVs treatment also led to an increase in the expression of anti-inflammatory mediators (IL-10 and IL-4) at 2 weeks after surgery. Conclusions Overall, our findings show that the local administration of BMSC-EVs promotes tendon healing by suppressing inflammation and apoptotic cell accumulation and increasing the proportion of tendon-resident stem/progenitor cells. These findings provide a basis for the potential clinical use of BMSC-EVs in tendon repair.
Collapse
Affiliation(s)
- Zhengzhou Shi
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Wang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Dapeng Jiang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
53
|
Tao B, Chen M, Lin C, Lu L, Yuan Z, Liu J, Liao Q, Xia Z, Peng Z, Cai K. Zn-incorporation with graphene oxide on Ti substrates surface to improve osteogenic activity and inhibit bacterial adhesion. J Biomed Mater Res A 2019; 107:2310-2326. [PMID: 31161676 DOI: 10.1002/jbm.a.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023]
Abstract
The poor osseointegration and postoperative bacterial infection are prominently responsible for the failure of titanium (Ti)-based implant in clinic. To address above issues, methacryloyl modified graphene oxide (GOMA) as zinc ions (Zn2+ ) reservoir and release platform was fabricated on the Ti substrates with cathode electrophoresis deposition (EPD). Afterward, phenylboronic acid (PBA) functionalization methacryloyl-gelatin (GelMA-PBA) was reacting with GOMA through in situ free-radical polymerization to prepare GO-Zn/GelMA-PBA coating. The obtained coating was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, and Zn ions release property, respectively. in vitro cellular experiments including cell activity, alkaline phosphatase, collagen secretion, extracellular matrix (ECM) mineralization, osteogenic genes and proteins, revealed that GO-Zn/GelMA-PBA coating was beneficial for enhancing the adhesion, proliferation, and differentiation of osteoblasts. The positive results were related to the existence of gelatin, formation of boronic ester between PBA groups, and carbohydrates of osteoblasts surface. Meanwhile, antibacterial assay against Staphylococcus aureus and Pseudomonas aeruginosa confirmed that GO-Zn/GelMA-PBA coating on Ti substrates had superior antibacterial capacity, availably inhibited the bacterial adhesion, and prevented formation of biofilm. Hence, the study provides a promising strategy for designing pro-osteogenesis and antibacterial coating on Ti substrates for orthopedic applications.
Collapse
Affiliation(s)
- Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhang Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Ju Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
54
|
Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther 2019; 10:181. [PMID: 31215490 PMCID: PMC6582602 DOI: 10.1186/s13287-019-1291-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries, as one of the most common orthopedic disorders, are the major cause of early retirement or wastage among sport horses which mainly affect the superficial digital flexor tendon (SDFT). Tendon repair is a slow process, and tendon tissue is often replaced by scar tissue. The current treatment options are often followed by an incomplete recovery that increases the susceptibility to re-injury. Recently, cell therapy has been used in veterinary medicine to treat tendon injuries, although the risk of ectopic bone formation after cell injection is possible in some cases. In vitro tenogenic induction may overcome the mentioned risk in clinical application. Moreover, a better understanding of treatment strategies for musculoskeletal injuries in horse may have future applications for human and vice versa. This comprehensive review outlines the current strategies of stem cell therapy in equine tendon injury and in vitro tenogenic induction of equine stem cell.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
55
|
Rothrauff BB, Smith CA, Ferrer GA, Novaretti JV, Pauyo T, Chao T, Hirsch D, Beaudry MF, Herbst E, Tuan RS, Debski RE, Musahl V. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J Shoulder Elbow Surg 2019; 28:654-664. [PMID: 30527883 DOI: 10.1016/j.jse.2018.08.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic massive rotator cuff tears heal poorly and often retear. This study investigated the effect of adipose-derived stem cells (ADSCs) and transforming growth factor-β3 (TGF-β3) delivered in 1 of 2 hydrogels (fibrin or gelatin methacrylate [GelMA]) on enthesis healing after repair of acute or chronic massive rotator cuff tears in rats. METHODS Adult male Lewis rats underwent bilateral transection of the supraspinatus and infraspinatus tendons with intramuscular injection of botulinum toxin A (n = 48 rats). After 8 weeks, animals received 1 of 8 interventions (n = 12 shoulders/group): (1) no repair, (2) repair only, or repair augmented with (3) fibrin, (4) GelMA, (5) fibrin + ADSCs, (6) GelMA + ADSCs, (7) fibrin + ADSCs + TGF-β3, or (8) GelMA + ADSCs + TGF-β3. An equal number of animals underwent acute tendon transection and immediate application of 1 of 8 interventions. Enthesis healing was evaluated 4 weeks after the repair by microcomputed tomography, histology, and mechanical testing. RESULTS Increased bone loss and reduced structural properties were seen in chronic compared with acute tears. Bone mineral density of the proximal humerus was higher in repairs of chronic tears augmented with fibrin + ADSCs and GelMA + ADSCs than in unrepaired chronic tears. Similar improvement was not seen in acute tears. No intervention enhanced histologic appearance or structural properties in acute or chronic tears. CONCLUSIONS Surgical repair augmented with ADSCs may provide more benefit in chronic tears compared with acute tears, although there was no added benefit to supplementing ADSCs with TGF-β3.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine A Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald A Ferrer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - João V Novaretti
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierry Pauyo
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tom Chao
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Hirsch
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mason F Beaudry
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elmar Herbst
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard E Debski
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Volker Musahl
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
56
|
Lin W, Xu L, Lin S, Shi L, Wang B, Pan Q, Lee WYW, Li G. Characterisation of multipotent stem cells from human peripheral blood using an improved protocol. J Orthop Translat 2019; 19:18-28. [PMID: 31844610 PMCID: PMC6896479 DOI: 10.1016/j.jot.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background A promising approach of bone repair is to use stem cells, such as mesenchymal stem cells (MSCs). Seeking available source of MSCs still remains a great challenge in tissue engineering and cell therapy. Peripheral blood (PB) emerges as an alternative source of MSCs which can be easily acquired with minimal invasiveness. This study was undertaken to evaluate the multipotency of PB-MSCs and effects of human PB-MSCs transplantation on ectopic bone regeneration in nude mice. Methods Human venous blood collected was mixed with heparin and then red blood cells were removed using red blood cell lysis buffer. Cell suspension was cultured in normoxia-culture and hypoxia-culture conditions, respectively. The non-adherent cells were removed by half changing culture media every three days. Cells were selected due to plastic adherence. The adherent cells were then passaged and subjected to multi-differentiation induction assays in vitro and in vivo ectopic bone formation assay. Results Characterization assays indicated that cells cultured under hypoxia possessed potent multi-lineage differentiation capacity and expressed Nanog and Lgr5, as well as a series of MSC surface antigens (including CD29, CD90, CD105, and CD73). Additionally, regenerated bone tissues by transplantation of human PB-MSCs in vivo were confirmed by histological examinations of ectopic osteogenesis assay. A purified population of MSCs can be obtained within a short period of time using this protocol with a successful rate of 60%. Conclusion We reported an effective and reliable method to harvest highly purified MSCs with potent multi-differentiation potential from human peripheral blood. Lgr5 may be a potential biomarker for identification of a subpopulation of PB-MSCs. The translational potential of this article PB-MSCs is an alternative cell source for cell therapy, which may be harvested, culture expanded and PB-MSCs loaded with β-tricalcium phosphate (β-TCP) may be used to promote bone repair.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Liu Shi
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Wayne Y W Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|
57
|
Abstract
In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425 Poland
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| |
Collapse
|
58
|
Perucca Orfei C, Viganò M, Pearson JR, Colombini A, De Luca P, Ragni E, Santos-Ruiz L, de Girolamo L. In Vitro Induction of Tendon-Specific Markers in Tendon Cells, Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFβ3, BMP-12 and Ascorbic Acid Stimulation. Int J Mol Sci 2019; 20:ijms20010149. [PMID: 30609804 PMCID: PMC6337430 DOI: 10.3390/ijms20010149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) and tissue-specific progenitors have been proposed as useful tools for regenerative medicine approaches in bone, cartilage and tendon-related pathologies. The differentiation of cells towards the desired, target tissue-specific lineage has demonstrated advantages in the application of cell therapies and tissue engineering. Unlike osteogenic and chondrogenic differentiation, there is no consensus on the best tenogenic induction protocol. Many growth factors have been proposed for this purpose, including BMP-12, b-FGF, TGF-β3, CTGF, IGF-1 and ascorbic acid (AA). In this study, different combinations of these growth factors have been tested in the context of a two-step differentiation protocol, in order to define their contribution to the induction and maintenance of tendon marker expression in adipose tissue and bone marrow derived MSCs and tendon cells (TCs), respectively. Our results demonstrate that TGF-β3 is the main inducer of scleraxis, an early expressed tendon marker, while at the same time inhibiting tendon markers normally expressed later, such as decorin. In contrast, we find that decorin is induced by BMP-12, b-FGF and AA. Our results provide new insights into the effect of different factors on the tenogenic induction of MSCs and TCs, highlighting the importance of differential timing in TGF-β3 stimulation.
Collapse
Affiliation(s)
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - John R Pearson
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, 29590 Málaga, Spain.
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Leonor Santos-Ruiz
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, 29590 Málaga, Spain.
- Network Centre for Biomedical Research ⁻ Biotechnology, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain.
- Department of Cell Biology, Genetics and Physiology, Instituto de Investigación University of Málaga, 29016 Malaga, Spain.
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| |
Collapse
|
59
|
Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X. Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:443-453. [PMID: 29724151 DOI: 10.1089/ten.teb.2018.0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tendon injuries are common musculoskeletal system disorders, but the tendons have poor regeneration ability. To address this issue, tendon tissue engineering provides potential strategies for future therapeutic treatment. Elements of the physical microenvironment, such as the mechanical force and surface topography, play a vital role in regulating stem cell fate, enhancing the differentiation efficiency of seed cells in tendon tissue engineering. Various inducible scaffolds have been widely explored for tendon regeneration, and scaffold-enhancing modifications have been extensively studied. In this review, we systematically summarize the effects of the physical microenvironment on stem cell differentiation and tendon regeneration; we also provide an overview of the inducible scaffolds for stem cell tenogenic differentiation. Finally, we suggest some potential scaffold-based therapies for tendon injuries, presenting an interesting perspective on tendon regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhang
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Meng-Fei Liu
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Ri-Chun Liu
- 4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China
| | - Wei-Liang Shen
- 2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China .,7 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Zi Yin
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| | - Xiao Chen
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| |
Collapse
|
60
|
Shaw B, Darrow M, Derian A. Short-Term Outcomes in Treatment of Knee Osteoarthritis With 4 Bone Marrow Concentrate Injections. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2018; 11:1179544118781080. [PMID: 29977117 PMCID: PMC6024328 DOI: 10.1177/1179544118781080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/06/2018] [Indexed: 12/27/2022]
Abstract
Background Preliminary research suggests that bone marrow concentrate (BMC), which contains mesenchymal stem cells and platelets, is a promising treatment for knee osteoarthritis. The aim of this study was to build on this preliminary research by reporting the short-term progress of 15 patients (20 knees) with knee osteoarthritis through 4 BMC treatments. Methods Patients underwent four sequential BMC treatments with mean injection times of 13.80 days after the first treatment, 21.40 days after the second treatment, and 33.50 days after the third treatment. The last follow-up was conducted a mean 86 days after the first treatment. Baseline and posttreatment outcomes of resting pain, active pain, lower functionality scale, and overall improvement percentage were compared after each treatment. Results Patients experienced statistically significant improvements in active pain and functionality score after the first treatment. Additionally, patients experienced a mean decrease in resting pain after the first treatment, yet outcomes were not statistically significant until after the second treatment. On average, patients experienced an 84.31% decrease in resting pain, a 61.95% decrease in active pain, and a 55.68% increase in functionality score at the final follow-up. Patients also reported a mean 67% total overall improvement at study conclusion. Outcomes at the final follow-up after the fourth treatment were statistically significant compared to outcomes at baseline, after first treatment, after second treatment, and after third treatment. Conclusions These results are promising, and additional research with a larger sample size and longer follow-up is needed to further examine the treatment effectiveness of multiple BMC injections for knee osteoarthritis.
Collapse
Affiliation(s)
- Brent Shaw
- Darrow Stem Cell Institute, Los Angeles, CA, USA
| | - Marc Darrow
- Darrow Stem Cell Institute, Los Angeles, CA, USA
| | | |
Collapse
|
61
|
Viganò M, Perucca Orfei C, de Girolamo L, Pearson JR, Ragni E, De Luca P, Colombini A. Housekeeping Gene Stability in Human Mesenchymal Stem and Tendon Cells Exposed to Tenogenic Factors. Tissue Eng Part C Methods 2018; 24:360-367. [PMID: 29676207 DOI: 10.1089/ten.tec.2017.0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The use of biochemical inducers of mesenchymal stem cell (MSC) differentiation into tenogenic lineage represents an investigated aspect of tendon disorder treatment. Bone morphogenetic protein 12 (BMP-12) is a widely studied factor, representing along with ascorbic acid (AA) and basic fibroblast growth factor (bFGF) one of the most promising stimulus in this context so far. Quantitative gene expression of specific tenogenic marker is commonly used to assess the efficacy of these supplements. Nevertheless, the reliability of these data is strongly associated with the choice of stable housekeeping genes. To date, no published studies have evaluated the stability of housekeeping genes in MSCs during tenogenic induction. Three candidate housekeeping genes (YWHAZ, RPL13A, and GAPDH) in human MSCs from bone marrow (BMSCs), adipose tissue (ASCs), and tendon cells (TCs) supplemented with BMP-12 or AA and bFGF in comparison with control untreated cells for 3 and 10 days were evaluated. GeNorm, NormFinder, and BestKeeper tools and the comparative ΔCt method were used to evaluate housekeeping gene stability and the overall ranking was determined by using by the RefFinder algorithm. In all culture conditions, YWHAZ was the most stable gene and RPL13A was the second choice. YWHAZ and RPL13A were the two most stable genes also for ASCs and BMSCs, regardless of the time point analyzed, and for TCs at 10 days of tenogenic induction. Only for TCs at 3 days of tenogenic induction were GAPDH and YWHAZ the best performers. In conclusion, our findings will be useful for the proper selection of housekeeping genes in studies involving MSCs cultured in the presence of tenogenic factors, to obtain accurate and high-quality data from quantitative gene expression analysis.
Collapse
Affiliation(s)
- Marco Viganò
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | | | - Laura de Girolamo
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | - John R Pearson
- 2 Nano-imaging Unit, Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , Málaga, Spain
| | - Enrico Ragni
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | - Paola De Luca
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | - Alessandra Colombini
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| |
Collapse
|
62
|
Sun J, Mou C, Shi Q, Chen B, Hou X, Zhang W, Li X, Zhuang Y, Shi J, Chen Y, Dai J. Controlled release of collagen-binding SDF-1α from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials 2018; 162:22-33. [DOI: 10.1016/j.biomaterials.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/21/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
63
|
Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, Jin Y, Ma H, Zhang J. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Int J Nanomedicine 2018; 13:1707-1721. [PMID: 29599615 PMCID: PMC5866725 DOI: 10.2147/ijn.s154605] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction poly(l-lactic acid) (PLLA) has been approved for clinical use by the US Food and Drug Administration (FDA); however, their stronger hydrophobicity and relatively fast degradation rate restricted their widespread application. In consideration of the composition of bone, the inorganic–organic composite has a great application prospect in bone tissue engineering. Many inorganic–organic composite scaffolds were prepared by directly mixing the active ingredient, but this method is uncontrolled and will lead to lack of homogeneity in the polymer matrix. Strontium (Sr) is an admirable addition to improve the bioactivity and bone induction of hydroxyapatite (HA). To our knowledge, the application of biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) (Sr-HA/PLLA) scaffolds for bone defect repair has never been reported till date. Biomimetic mineralized Sr-HA/PLLA porous scaffold was developed in this study. The results indicated that the Sr-HA/PLLA porous scaffold could improve the surface hydrophobicity, reduce the acidic environment of the degradation, and enhance the osteoinductivity; moreover, the ability of protein adsorption and the modulus of compression were increased. The results also clearly showed the effectiveness of the Sr-HA/PLLA porous scaffold in promoting cell adhesion, proliferation, and alkaline phosphatase (ALP) activity. The micro computed tomography (micro-CT) results showed that more new bones were formed by Sr-HA/PLLA porous scaffold treatment. The histological results confirmed the osteoinductivity of the Sr-HA/PLLA porous scaffold. The results suggested that the Sr-HA/PLLA porous scaffold has a good application prospect in bone tissue engineering in the future. Purpose The purpose of this study was to promote the bone repair. Materials and methods Surgical operation of rabbits was carried out in this study. Results The results showed that formation of a large number of new bones by the Sr-HA/PLLA porous scaffold treatment is possible. Conclusion Biomimetic mineralized Sr-HA/PLLA porous scaffold could effectively promote the restoration of bone defects in vivo.
Collapse
Affiliation(s)
- Min Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Kun Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Department of Science and Technology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Weixiao Yan
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Li Xue
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Yi Jin
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Haiyun Ma
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Jinchao Zhang
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
64
|
Liao JCY, He M, Gan AWT, Wen F, Tan LP, Chong AKS. The effects of bi-functional anti-adhesion scaffolds on flexor tendon healing in a rabbit model. J Biomed Mater Res B Appl Biomater 2018; 106:2605-2614. [PMID: 29424966 DOI: 10.1002/jbm.b.34077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/11/2017] [Accepted: 12/24/2017] [Indexed: 12/17/2022]
Abstract
Progressive tendon adhesion is a major challenge in flexor tendon repair. The authors developed a bifunctional anti-adhesion scaffold and hypothesized that its application would reduce adhesion formation and deliver mesenchymal stem cells (MSCs) to enhance tendon healing. The scaffold was fabricated by an electrospinning machine before surface modification. The flexor tendons of 29 New Zealand rabbits underwent surgical repair and randomized to control, scaffold and scaffold loaded with MSC group. At 3 and 8 weeks post-surgery, range of motion (ROM), biomechanical properties, and histology were examined. There was no significant increase in ROM and biomechanical properties between the three groups. The histology showed successful delivery of MSCs but no significant difference in nuclear morphometry. This barrier delivers and retains MSCs within the tendon repair site. However, its sheet form and wrapping around the repair site may not be optimal for tendon healing. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2605-2614, 2018.
Collapse
Affiliation(s)
- Janice C Y Liao
- Department of Hand and Reconstructive Microsurgery, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore
| | - Min He
- Department of Hand and Reconstructive Microsurgery, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore
| | - Aaron W T Gan
- Department of Hand and Reconstructive Microsurgery, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore
| | - Feng Wen
- School of Materials Science and Engineering, Nanyang Technological University, Block No. 4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Block No. 4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Alphonsus K S Chong
- Department of Hand and Reconstructive Microsurgery, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
65
|
Lovati AB, Corradetti B, Cremonesi F, Bizzaro D, Consiglio AL. Tenogenic Differentiation of Equine Mesenchymal Progenitor Cells under Indirect Co-Culture. Int J Artif Organs 2018. [DOI: 10.1177/039139881203501105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Arianna B. Lovati
- University of Milan, Department of Veterinary Clinical Science, Reproduction Unit, Lodi - Italy
- IRCCS Galeazzi Orthopedic Institute, Cell and Tissue Engineering Laboratory, Milan - Italy
| | - Bruna Corradetti
- Polytechnic University of the Marche, Environmental and Life Sciences Department, Ancona - Italy
| | - Fausto Cremonesi
- University of Milan, Department of Veterinary Clinical Science, Reproduction Unit, Lodi - Italy
| | - Davide Bizzaro
- Polytechnic University of the Marche, Environmental and Life Sciences Department, Ancona - Italy
| | - Anna Lange Consiglio
- University of Milan, Department of Veterinary Clinical Science, Reproduction Unit, Lodi - Italy
| |
Collapse
|
66
|
Bogdanowicz DR, Lu HH. Designing the stem cell microenvironment for guided connective tissue regeneration. Ann N Y Acad Sci 2018; 1410:3-25. [PMID: 29265419 DOI: 10.1111/nyas.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration.
Collapse
Affiliation(s)
- Danielle R Bogdanowicz
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
67
|
Kim JO, Lee JH, Kim KS, Ji JH, Koh SJ, Lee JH. Rotator cuff bridging repair using acellular dermal matrix in large to massive rotator cuff tears: histologic and clinical analysis. J Shoulder Elbow Surg 2017; 26:1897-1907. [PMID: 28705694 DOI: 10.1016/j.jse.2017.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND This study investigated the efficacy of the bridging repair using an acellular dermal matrix (ADM) and an ADM with stem cells in rabbits. Also investigated were clinical outcomes of ADM bridging repair for large to massive rotator cuff tears. MATERIALS AND METHODS ADM, with and without stem cells, was used to cover a 5- × 5-mm-sized cuff defect in 17 rabbits, and biomechanical, histologic, and immunohistochemical analyses were conducted. Also evaluated were 24 patients with large to massive rotator cuff tears after ADM bridging repair. RESULTS In the biomechanical test, the normal rotator cuff, cuff with ADM plus stem cells, and cuff with ADM in the rabbit model showed a maximum load (N) of 287.3, 217.5, and 170.3 and ultimate tensile strength (N/mm2) of 11.1, 8.0, and 5.2, respectively. Histologically, the cuff tendons with the ADM or ADM plus stem cells showed characteristically mature tendons as time passed. In the clinical study, the mean American Shoulder and Elbow Surgeons score improved from preoperative 50 to postoperative 83, the University of California Los Angeles Shoulder Rating Scale from 17 to 30, and the Simple Shoulder Test from 4 to 8, respectively. No further fatty deteriorations or muscle atrophy were observed on follow-up magnetic resonance imaging. A retear was found in 5 of 24 patients (21%). CONCLUSIONS Bridging repair with ADM or stem cells in the rabbit model showed cellular infiltration into the graft and some evidence of neotendon formation. Clinically, ADM repair was a safe alternative that did not show any further fatty deterioration nor muscle atrophy in large to massive rotator cuff tears.
Collapse
Affiliation(s)
- Jong Ok Kim
- Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jong-Ho Lee
- Department of Thoracic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Kwang-Sup Kim
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jong-Hun Ji
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
| | - Sung-Jun Koh
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jae-Ho Lee
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| |
Collapse
|
68
|
Hou Y, Ni M, Lin S, Sun Y, Lin W, Liu Y, Wang H, He W, Li G, Xu L. Tenomodulin highly expressing MSCs as a better cell source for tendon injury healing. Oncotarget 2017; 8:77424-77435. [PMID: 29100398 PMCID: PMC5652790 DOI: 10.18632/oncotarget.20495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Tendon injuries are common orthopedic problems which may cause severe morbidity. MSCs (mesenchymal stem cells) have shown promising effect on tissue engineering and have been used for the treatment of tendon injury. But the low tenogenic differentiation capacity of MSCs have hindered their application. In the present study, we have constructed the Tenomodulin (Tnmd) promoter-driven GFP expression lentiviral plasmid. After transduced into BMSCs, the expression of GFP was used to select BMSCs highly expressing Tnmd by flow cytometry. We found that MSCs with higher level of Tnmd expression had stronger tenogenic differentiation ability. Furthermore, RNA sequencing was performed to identify the molecular difference between BMSCs expressing higher and lower levels of Tnmd. And finally we demonstrated that GDF7 was upregulated in BMSCs highly expressing Tnmd and played an vital role in promoting tenogenic differentiation of BMSCs. GDF7 was mainly accounted for the elevated tenogenic differentiation ability of BMSCs with higher Tnmd expression as silencing the endogenous GDF7 significantly inhibited tenogenesis in BMSCs. In addition, the effect of BMSCs with higher Tnmd level on tendon healing was evaluated by a rat patellar tendon injury model. Taken together, our study showed that Tnmd could be used as an ideal cell surface marker to select cells with higher tenogenic differentiation ability from BMSCs, and GDF7 was indispensable for tenogenesis of MSCs.
Collapse
Affiliation(s)
- Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, P.R. China
| | - Ming Ni
- Department of Orthopaedics, PLA General Hospital, Beijing, P.R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, P.R. China
| | - Yuxin Sun
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, P.R. China
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, P.R. China
| | - Yamei Liu
- Department of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, P.R. China
| | - Haibin Wang
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Wei He
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, P.R. China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, P.R. China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
69
|
Beerts C, Suls M, Broeckx SY, Seys B, Vandenberghe A, Declercq J, Duchateau L, Vidal MA, Spaas JH. Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Front Vet Sci 2017; 4:158. [PMID: 29018808 PMCID: PMC5622984 DOI: 10.3389/fvets.2017.00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Poor healing of tendon and ligament lesions often results in early retirement of sport horses. Therefore, regenerative therapies are being explored as potentially promising treatment for these injuries. In this study, an intralesional injection was performed with allogeneic tenogenically induced mesenchymal stem cells and platelet-rich plasma 5-6 days after diagnosis of suspensory ligament (SL) (n = 68) or superficial digital flexor tendon (SDFT) (n = 36) lesion. Clinical, lameness and ultrasonographic evaluation was performed at 6 and 12 weeks. Moreover, a survey was performed 12 and 24 months after treatment to determine how many horses were competing at original level and how many were re-injured. At 6 weeks, 88.2% of SL (n = 68) and 97.3% of SDFT lesions (n = 36) demonstrated moderate ultrasonographic improvement. At 12 weeks, 93.1% of SL (n = 29) and 95.5% of SDFT lesions (n = 22) improved convincingly. Moreover, lameness was abolished in 78.6% of SL (n = 28) and 85.7% (n = 7) of SDFT horses at 12 weeks. After 12 months (n = 92), 11.8% of SL and 12.5% of SDFT horses were re-injured, whereas 83.8 of SL and 79.2% of SDFT returned to previous performance level. At 24 months (n = 89) after treatment, 82.4 (SL) and 85.7% (SDFT) of the horses returned to previous level of performance. A meta-analysis was performed on relevant published evidence evaluating re-injury 24 months after stem cell-based [17.6% of the SL and 14.3% of the SDFT group (n = 89)] versus conventional therapies. Cell therapies resulted in a significantly lower re-injury rate of 18% [95% confidence interval (CI), 0.11-0.25] 2 years after treatment compared to the 44% re-injury rate with conventional treatments (95% CI, 0.37-0.51) based on literature data (P < 0.0001).
Collapse
Affiliation(s)
| | - Marc Suls
- Equine Veterinary Practice Dr. Suls, Nederweert, Netherlands
| | - Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium
| | - Bert Seys
- Equine Veterinary Practice Dr. Suls, Nederweert, Netherlands
| | | | | | - Luc Duchateau
- Faculty of Veterinary Medicine, Department of Comparative Physiology and Biometrics, Ghent University, Merelbeke, Belgium
| | - Martin A Vidal
- Cave Creek Equine Surgical & Imaging Center, Phoenix, AZ, United States
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium
| |
Collapse
|
70
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
71
|
Wang S, Wang Y, Song L, Chen J, Ma Y, Chen Y, Fan S, Su M, Lin X. Decellularized tendon as a prospective scaffold for tendon repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1290-1301. [DOI: 10.1016/j.msec.2017.03.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 01/12/2023]
|
72
|
Liu L, Hindieh J, Leong DJ, Sun HB. Advances of stem cell based-therapeutic approaches for tendon repair. J Orthop Translat 2017; 9:69-75. [PMID: 29662801 PMCID: PMC5822968 DOI: 10.1016/j.jot.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/24/2022] Open
Abstract
Tendon injuries are significant clinical problems. Current treatments often result in incomplete repair or healing, which may lead to reduced function and rupture. Stem cell-based therapy is a promising intervention for tendon repair. In this article, we attempt to provide a brief overview on the recent progress in the field, current understanding of the underlying mechanisms of the approach, and the potential of stem cell-based therapies beyond cell implantation. We conclude the review by sharing our viewpoints on the challenges, opportunities, and future directions of this approach. The translational potential of this article: This paper reviews recent progress on stem cell-based therapeutic approaches for tendon repair, which highlights its translational potential and challenges.
Collapse
Affiliation(s)
- Lidi Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer Hindieh
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
73
|
Han W, Chen L, Liu J, Guo A. Enhanced tenogenic differentiation and tendon-like tissue formation by CHIP overexpression in tendon-derived stem cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:311-317. [PMID: 28338815 DOI: 10.1093/abbs/gmx005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/23/2022] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP, also known as STUB1) plays critical roles in the proliferation and differentiation of many types of cells. The potential function of CHIP in tendon-derived stem cells (TDSCs) remains largely unknown at present. Here, we investigated the effects of CHIP on tenogenic differentiation of TDSCs via lentivirus-mediated overexpression. Forced expression of CHIP induced morphological changes and significantly enhanced cell proliferation, as well as tendon differentiation in vitro. Upon stimulation with differentiation induction medium, CHIP-overexpressing TDSCs displayed significant inhibition of differentiation into osteogenic and adipogenic lineages. Subsequent implantation of TDSCs overexpressing CHIP with collagen sponges into nude mice induced a marked increase in ectopic tendon formation in vivo, compared with the control group. Our findings collectively suggest that CHIP is an important contributory factor to tenogenic tissue formation.
Collapse
Affiliation(s)
- Weifeng Han
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lei Chen
- Institute of Orthopaedics, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Junpeng Liu
- Department of Orthopaedics, Air Force General Hospital, People's Liberation Army of China, Beijing 100142, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
74
|
Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthop Translat 2017; 9:19-27. [PMID: 29662796 PMCID: PMC5822957 DOI: 10.1016/j.jot.2017.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Cell therapy continues to attract growing interest as a promising approach to treat a variety of diseases. Mesenchymal stem cells (MSCs) have been one of the most intensely studied candidates for cell therapy. Since the homing capacity of MSCs is an important determinant of effective MSC-based therapy, the enhancement of homing efficiency is essential for optimizing the therapeutic outcome. Furthermore, trafficking of endogenous MSCs to damaged tissues, also referred to as endogenic stem cell homing, and the subsequent participation of MSCs in tissue regeneration are considered to be a natural self-healing response. Therefore, strategies to stimulate and reinforce the mobilisation and homing of MSCs have become a key point in regenerative medicine. The current review focuses on advances in the mechanisms and factors governing trafficking of MSCs, and the relationship between MSC mobilisation and skeletal diseases, providing insights into strategies for their potential translational implications.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Liangliang Xu
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Stefan Zwingenberger
- Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Emmanuel Gibon
- Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris 5, Paris, France
- Department of Orthopaedic Surgery, Stanford University Medical Center Outpatient Center, Redwood City, CA 94063, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University Medical Center Outpatient Center, Redwood City, CA 94063, USA
- Corresponding authors. Department of Orthopaedic Surgery, Stanford University Medical Center Outpatient Center, Redwood City, CA 94063, USA (S. Goodman); Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China (G. Li).
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Corresponding authors. Department of Orthopaedic Surgery, Stanford University Medical Center Outpatient Center, Redwood City, CA 94063, USA (S. Goodman); Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China (G. Li).
| |
Collapse
|
75
|
Liu Y, Suen CW, Zhang JF, Li G. Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat 2017; 9:28-42. [PMID: 29662797 PMCID: PMC5822963 DOI: 10.1016/j.jot.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Tendon is a tissue that transmits force from muscle to bone. Chronic or acute tendon injuries are very common, and are always accompanied by pain and a limited range of motion in patients. In clinical settings, management of tendon injuries still remains a big challenge. Cell therapies, such as the application of stem cells for tenogenic differentiation, were suggested to be an ideal strategy for clinical translation. However, there is still a lack of specific methods for tenogenic differentiation due to the limited understanding of tendon biology currently. This review focuses on the summary of current published strategies for tenogenic differentiation, such as the application of growth factors, mechanical stimulation, biomaterials, coculture, or induced pluripotent stem cells. Current clinical applications of stem cells for treatment of tendon injuries and their limitations have also been discussed in this review.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Wai Suen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jin-fang Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, China.Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong Kong30-32 Ngan Shing StreetShatinNew TerritoriesHong Kong, China
| |
Collapse
|
76
|
Voss A, McCarthy MB, Hoberman A, Cote MP, Imhoff AB, Mazzocca AD, Beitzel K. Extracellular Matrix of Current Biological Scaffolds Promotes the Differentiation Potential of Mesenchymal Stem Cells. Arthroscopy 2016; 32:2381-2392.e1. [PMID: 27353434 DOI: 10.1016/j.arthro.2016.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to quantitatively assess the ability of bone marrow-derived mesenchymal stem cells (bMSC) to differentiate toward bone, fat, cartilage, and tendon lineages when grown on commercially available scaffolds compared with control and native tendon tissue. METHODS BMSCs were cultured and analyzed by fluorescent automated cells sorting for surface markers CD73, -90, and -105. BMSCs were grown on rotator cuff tendon (RCT), decellularized human dermis patch (DDP), bilayer collagen matrix, and fibrin matrix (FM) to test their differentiation potential using quantitative polymerase chain reaction and establish markers for osteogenic, adipogenic, chondrogenic, and tenogenic lineages. Immunocytochemical testing was used to determine the specific proteins present on the scaffolds. RESULTS Alkaline phosphatase and osteocalcin gene expression was significantly higher on RCT (P < .001) and collagen scaffold (CS) (P < .001) compared with DDP and FM scaffolds (P < .001, P < .001). When differentiated toward a cartilage lineage, bMSCs grown on CS had significantly more type II collagen and aggrecan compared with DDP (P < .001, P < .001), FM (P < .001, P < .001), and RCT (P < .001, P < .001). Differentiated bMSCs grown on the CS had a significant increase in PPARγ and FABP4 gene expression compared with bMSCs grown on all other scaffolds (all P < .001). The differentiation of bMSCs into tendon on CSs had significantly more tenacin C, decorin, and type III collagen gene expression when compared with RCT, DDP, and FM (all P < .001). Decorin gene expression in the control undifferentiated CS was also significantly increased, suggesting that the matrix alone may promote a tenogenic lineage (P = .637). CONCLUSIONS Differences in the extracellular matrix composition of scaffolds significantly impact their potential to promote differentiation of bMSCs. Comparing the native RCT to the tested scaffolds showed that a high content of type I and III collagen significantly increased the potential of bMSCs to differentiate toward bone, tendon, fat, and cartilage lineages. CLINICAL RELEVANCE This in vitro study shows the differences between commercially available scaffolds for rotator cuff repairs. Therefore, these results support clinical use depending on the surgical intention and the potential of bMSCs to differentiate into bone, tendon, cartilage, and fat tissue.
Collapse
Affiliation(s)
- Andreas Voss
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.; Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany.
| | - Mary Beth McCarthy
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Alexander Hoberman
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Mark P Cote
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Knut Beitzel
- Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany
| |
Collapse
|
77
|
Leong DJ, Sun HB. Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci 2016; 1383:88-96. [DOI: 10.1111/nyas.13262] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel J. Leong
- Departments of Orthopaedic Surgery and Radiation Oncology; Albert Einstein College of Medicine; Bronx New York
| | - Hui B. Sun
- Departments of Orthopaedic Surgery and Radiation Oncology; Albert Einstein College of Medicine; Bronx New York
| |
Collapse
|
78
|
Ge M, Xue L, Nie T, Ma H, Zhang J. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1685-1697. [PMID: 27569555 DOI: 10.1080/09205063.2016.1229901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A thermal-induced phase separation combined sugar template method was used to fabricate the Poly (L-lactide) acid (PLLA) scaffolds with precisely regulated porous structure. The effect of tuned porous structure of scaffolds on osteoblasts proliferation and differentiation was investigated. The results showed that the pore diameters (200-300, 300-400, 400-500 μm), porosity and interconnectivity of PLLA scaffolds can be accurately controlled indicated by scanning electron microscope. The results of cell experiments showed that the porous structure including the pore size and interconnectivity of scaffolds dramatically influence the cell proliferation and differentiation. The scaffold with pore diameter of 400-500 μm exhibited the highest cell viability and alkaline phosphatase activity among all the scaffolds for the MC3T3-E1 cells. The higher cell proliferation and biocompatibility observed in the 400-500 μm scaffold indicated the high selectivity for MC3T3-E1cells on the pore size of scaffold in tissue engineering. The precise control of the porous structure of scaffold may better guide the cell-matrix interaction in the future research.
Collapse
Affiliation(s)
- Min Ge
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China.,b Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding , China
| | - Li Xue
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China
| | - Taotao Nie
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China
| | - Haiyun Ma
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China
| | - Jinchao Zhang
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China.,b Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding , China
| |
Collapse
|
79
|
Liu W, Yin L, Yan X, Cui J, Liu W, Rao Y, Sun M, Wei Q, Chen F. Directing the Differentiation of Parthenogenetic Stem Cells into Tenocytes for Tissue-Engineered Tendon Regeneration. Stem Cells Transl Med 2016; 6:196-208. [PMID: 28170171 PMCID: PMC5442735 DOI: 10.5966/sctm.2015-0334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Uniparental parthenogenesis yields pluripotent stem cells without the political and ethical concerns surrounding the use of embryonic stem cells (ESCs) for biomedical applications. In the current study, we hypothesized that parthenogenetic stem cells (pSCs) could be directed to differentiate into tenocytes and applied for tissue‐engineered tendon. We showed that pSCs displayed fundamental properties similar to those of ESCs, including pluripotency, clonogenicity, and self‐renewal capacity. pSCs spontaneously differentiated into parthenogenetic mesenchymal stem cells (pMSCs), which were positive for mesenchymal stem cell surface markers and possessed osteogenic, chondrogenic, and adipogenic potential. Then, mechanical stretch was applied to improve the tenogenic differentiation of pMSCs, as indicated by the expression of tenogenic‐specific markers and an increasing COL1A1:3A1 ratio. The pSC‐derived tenocytes could proliferate and secrete extracellular matrix on the surface of poly(lactic‐co‐glycolic) acid scaffolds. Finally, engineered tendon‐like tissue was successfully generated after in vivo heterotopic implantation of a tenocyte‐scaffold composite. In conclusion, our experiment introduced an effective and practical strategy for applying pSCs for tendon regeneration. Stem Cells Translational Medicine2017;6:196–208
Collapse
Affiliation(s)
- Wei Liu
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xi'an‐Xianyang New Economic Zone, People's Republic of China
| | - Lu Yin
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Xingrong Yan
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Jihong Cui
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Wenguang Liu
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Yang Rao
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Mei Sun
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Qi Wei
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Fulin Chen
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
80
|
Hashimoto H, Tamaki T, Hirata M, Uchiyama Y, Sato M, Mochida J. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond". PeerJ 2016; 4:e2231. [PMID: 27547541 PMCID: PMC4957990 DOI: 10.7717/peerj.2231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
Background. Significant and/or complete rupture in the musculotendinous junction (MTJ) is a challenging lesion to treat because of the lack of reliable suture methods. Skeletal muscle-derived multipotent stem cell (Sk-MSC) sheet-pellets, which are able to reconstitute peripheral nerve and muscular/vascular tissues with robust connective tissue networks, have been applied as a “bio-bond”. Methods. Sk-MSC sheet-pellets, derived from GFP transgenic-mice after 7 days of expansion culture, were detached with EDTA to maintain cell–cell connections. A completely ruptured MTJ model was prepared in the right tibialis anterior (TA) of the recipient mice, and was covered with sheet-pellets. The left side was preserved as a contralateral control. The control group received the same amount of the cell-free medium. The sheet-pellet transplantation (SP) group was further divided into two groups; as the short term (4–8 weeks) and long term (14–18 weeks) recovery group. At each time point after transplantation, tetanic tension output was measured through the electrical stimulation of the sciatic nerve. The behavior of engrafted GFP+ tissues and cells was analyzed by fluorescence immunohistochemistry. Results. The SP short term recovery group showed average 64% recovery of muscle mass, and 36% recovery of tetanic tension output relative to the contralateral side. Then, the SP long term recovery group showed increased recovery of average muscle mass (77%) and tetanic tension output (49%). However, the control group showed no recovery of continuity between muscle and tendon, and demonstrated increased muscle atrophy, with coalescence to the tibia during 4–8 weeks after operation. Histological evidence also supported the above functional recovery of SP group. Engrafted Sk-MSCs primarily formed the connective tissues and muscle fibers, including nerve-vascular networks, and bridged the ruptured tendon–muscle fiber units, with differentiation into skeletal muscle cells, Schwann cells, vascular smooth muscle, and endothelial cells. Discussion. This bridging capacity between tendon and muscle fibers of the Sk-MSC sheet-pellet, as a “bio-bond,” represents a possible treatment for various MTJ ruptures following surgery.
Collapse
Affiliation(s)
- Hiroyuki Hashimoto
- Department of Orthopaedic, Tokai University School of Medicine, Isehara, Japan; Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan; Department of Human Structure and Function, Tokai University School of Medicine, Isehara, Japan
| | - Maki Hirata
- Department of Orthopaedic, Tokai University School of Medicine, Isehara, Japan; Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyasu Uchiyama
- Department of Orthopaedic, Tokai University School of Medicine, Isehara, Japan; Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan
| | - Masato Sato
- Department of Orthopaedic, Tokai University School of Medicine , Isehara , Japan
| | - Joji Mochida
- Department of Orthopaedic, Tokai University School of Medicine , Isehara , Japan
| |
Collapse
|
81
|
Hsieh CF, Alberton P, Loffredo-Verde E, Volkmer E, Pietschmann M, Müller P, Schieker M, Docheva D. Scaffold-free Scleraxis-programmed tendon progenitors aid in significantly enhanced repair of full-size Achilles tendon rupture. Nanomedicine (Lond) 2016; 11:1153-67. [DOI: 10.2217/nnm.16.34] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: Currently there is no effective approach to enhance tendon repair, hence we aimed to identify a suitable cell source for tendon engineering utilizing an established clinically relevant animal model for tendon injury. Materials & methods: We compared, by in-depth histomorphometric evaluation, the regenerative potential of uncommitted human mesenchymal stem cells (hMSC) and Scleraxis (Scx)-programmed tendon progenitors (hMSC-Scx) in the healing of a full-size of rat Achilles tendon defect. Results: Our analyses clearly demonstrated that implantation of hMSC-Scx, in contrast to hMSC and empty defect, results in smaller diameters, negligible ectopic calcification and advanced cellular organization and matrix maturation in the injured tendons. Conclusion: Scaffold-free delivery of hMSC-Scx aids in enhanced repair in a clinically translatable Achilles tendon injury model.
Collapse
Affiliation(s)
- Chi-Fen Hsieh
- Experimental Surgery & Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336 Munich, Germany
| | - Paolo Alberton
- Experimental Surgery & Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336 Munich, Germany
| | - Eva Loffredo-Verde
- Experimental Surgery & Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336 Munich, Germany
| | - Elias Volkmer
- Experimental Surgery & Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336 Munich, Germany
| | - Matthias Pietschmann
- Department of Orthopaedic Surgery, Physical Medicine & Rehabilitation, University Hospital Grosshadern, LMU, Marchioninistr. 15, 81377 Munich, Germany
| | - Peter Müller
- Department of Orthopaedic Surgery, Physical Medicine & Rehabilitation, University Hospital Grosshadern, LMU, Marchioninistr. 15, 81377 Munich, Germany
| | - Matthias Schieker
- Experimental Surgery & Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336 Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery & Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336 Munich, Germany
| |
Collapse
|
82
|
Yang J, Zhao Q, Wang K, Liu H, Ma C, Huang H, Liu Y. Isolation and biological characterization of tendon-derived stem cells from fetal bovine. In Vitro Cell Dev Biol Anim 2016; 52:846-56. [PMID: 27130678 PMCID: PMC5023758 DOI: 10.1007/s11626-016-0043-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
The lack of appropriate candidates of cell sources for cell transplantation has hampered efforts to develop therapies for tendon injuries, such as tendon rupture, tendonitis, and tendinopathy. Tendon-derived stem cells (TDSCs) are a type of stem cells which may be used in the treatment of tendon injuries. In this study, TDSCs were isolated from 5-mo-old Luxi Yellow fetal bovine and cultured in vitro and further analyzed for their biological characteristics using immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) assays. It was found that primary TDSCs could be expanded for 42 passages in vitro maintaining proliferation. The expressions of stem cell marker nucleostemin and tenocyte-related markers, such as collagen I, collagen II, collagen III, and tenascin-C, were observed on different passage cells by immunofluorescence. The results from RT-PCR show that TDSCs were positive for collagen type I, CD44, tenascin-C, and collagen type III but negative for collagen type II. Meanwhile, TDSC passage 4 was successfully induced to differentiate into osteoblasts, adipocytes, and chondrocytes. Our results indicate that the fetal bovine TDSCs not only had strong self-renewal capacity but also possess the potential for multi-lineage differentiation. This study provides theoretical basis and experimental foundation for potential therapeutic application of the fetal bovine TDSCs in the treatment of tendon injuries.
Collapse
Affiliation(s)
- Jinjuan Yang
- Institute of Physical Education, University of Jimei, No. 185, Yinjiang Road, Jimei District, 361021, Xiamen City, Fujian Province, People's Republic of China.,Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China
| | - Qianjun Zhao
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China
| | - Kunfu Wang
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China
| | - Hao Liu
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China
| | - Caiyun Ma
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China
| | - Hongmei Huang
- Institute of Physical Education, University of Jimei, No. 185, Yinjiang Road, Jimei District, 361021, Xiamen City, Fujian Province, People's Republic of China.
| | - Yingjie Liu
- Institute of Physical Education, University of Jimei, No. 185, Yinjiang Road, Jimei District, 361021, Xiamen City, Fujian Province, People's Republic of China.
| |
Collapse
|
83
|
Therapeutic Roles of Tendon Stem/Progenitor Cells in Tendinopathy. Stem Cells Int 2016; 2016:4076578. [PMID: 27195010 PMCID: PMC4853952 DOI: 10.1155/2016/4076578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/10/2016] [Indexed: 02/07/2023] Open
Abstract
Tendinopathy is a tendon disorder characterized by activity-related pain, local edema, focal tenderness to palpation, and decreased strength in the affected area. Tendinopathy is prevalent in both athletes and the general population, highlighting the need to elucidate the pathogenesis of this disorder. Current treatments of tendinopathy are both conservative and symptomatic. The discovery of tendon stem/progenitor cells (TSPCs) and erroneous differentiation of TSPCs have provided new insights into the pathogenesis of tendinopathy. In this review, we firstly present the histopathological characteristics of tendinopathy and explore the cellular and molecular cues in the pathogenesis of tendinopathy. Current evidence of the depletion of the stem cell pool and altered TSPCs fate in the pathogenesis of tendinopathy has been presented. The potential regulatory factors for either tenogenic or nontenogenic differentiation of TSPCs are also summarized. The regulation of endogenous TSPCs or supplementation with exogenous TSPCs as therapeutic targets for the treatment of tendinopathy is proposed. Therefore, inhibiting the erroneous differentiation of TSPCs and regulating the differentiation of TSPCs into tendon cells might be important areas of future research and could provide new clinical treatments for tendinopathy. The current evidence suggests that TSPCs are promising therapeutic targets for the management of tendinopathy.
Collapse
|
84
|
Kraus TM, Imhoff FB, Reinert J, Wexel G, Wolf A, Hirsch D, Hofmann A, Stöckle U, Buchmann S, Tischer T, Imhoff AB, Milz S, Anton M, Vogt S. Stem cells and bFGF in tendon healing: Effects of lentiviral gene transfer and long-term follow-up in a rat Achilles tendon defect model. BMC Musculoskelet Disord 2016; 17:148. [PMID: 27048602 PMCID: PMC4822291 DOI: 10.1186/s12891-016-0999-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/25/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The influence of stem cells and lentiviral expression of basic fibroblastic growth factor (bFGF) on tendon healing and remodelling was investigated in an in-vivo long-term (12 weeks) rat Achilles tendon defect model. METHODS In sixty male Lewis rats, complete tendon defects (2.4 mm) were created and either left untreated (PBS) or treated by injection of stem cells lentivirally expressing the enhanced green fluorescence marker gene eGFP (MSC-LV-eGFP) or basic fibroblast growth factor bFGF (MSC-LV-bFGF). Tendons were harvested after 12 weeks and underwent biomechanical and (immuno)-histological analysis. RESULTS After 12 weeks the mean ultimate load to failure ratio (treated side to contralateral side) in biomechanical testing reached 97 % in the bFGF-group, 103 % in the eGFP-group and 112 % in the PBS-group. Also in the stiffness testing both MSC groups did not reach the results of the PBS group. Histologically, the MSC groups did not show better results than the control group. There were clusters of ossifications found in all groups. In immunohistology, only the staining collagen-type-I was strongly increased in both MSC groups in comparison to PBS control group. However, there were no significant differences in the (immuno)-histological results between both stem cell groups. CONCLUSION The biomechanical and (immuno)-histological results did not show positive effects of the MSC groups on tendon remodelling in a long-term follow-up. Interestingly, in later stages stem cells had hardly any effects on biomechanical results. This study inspires a critical and reflected use of stem cells in tendon healing.
Collapse
Affiliation(s)
- T M Kraus
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany. .,BG Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - F B Imhoff
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - J Reinert
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - G Wexel
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - A Wolf
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - D Hirsch
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - A Hofmann
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - U Stöckle
- BG Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - S Buchmann
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - T Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - A B Imhoff
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - S Milz
- Anatomische Anstalt, Ludwig Maximillians Universität, Munich, Germany
| | - M Anton
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - S Vogt
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Department of Sports Orthopaedics, Hessing Stiftung, Augsburg, Germany
| |
Collapse
|
85
|
Chen J, Zhang W, Liu Z, Zhu T, Shen W, Ran J, Tang Q, Gong X, Backman LJ, Chen X, Chen X, Wen F, Ouyang H. Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Sci Rep 2016; 6:22946. [PMID: 26972579 PMCID: PMC4789738 DOI: 10.1038/srep22946] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Tendon stem/progenitor cells (TSPCs) are a potential cell source for tendon tissue engineering. The striking morphological and structural changes of tendon tissue during development indicate the complexity of TSPCs at different stages. This study aims to characterize and compare post-natal rat Achilles tendon tissue and TSPCs at different stages of development. The tendon tissue showed distinct differences during development: the tissue structure became denser and more regular, the nuclei became spindle-shaped and the cell number decreased with time. TSPCs derived from 7 day Achilles tendon tissue showed the highest self-renewal ability, cell proliferation, and differentiation potential towards mesenchymal lineage, compared to TSPCs derived from 1 day and 56 day tissue. Microarray data showed up-regulation of several groups of genes in TSPCs derived from 7 day Achilles tendon tissue, which may account for the unique cell characteristics during this specific stage of development. Our results indicate that TSPCs derived from 7 day Achilles tendon tissue is a superior cell source as compared to TSPCs derived from 1 day and 56 day tissue, demonstrating the importance of choosing a suitable stem cell source for effective tendon tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jialin Chen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
| | - Wei Zhang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Zeyu Liu
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Ting Zhu
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Weiliang Shen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Jisheng Ran
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Qiaomei Tang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Xiaonan Gong
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
| | - Xiao Chen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiaowen Chen
- Division of haematology and oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Feiqiu Wen
- Division of haematology and oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Hongwei Ouyang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
86
|
Guo J, Chan KM, Zhang JF, Li G. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res 2016; 341:1-7. [PMID: 26794903 DOI: 10.1016/j.yexcr.2016.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/30/2022]
Abstract
Tendon-derived stem cell (TDSC) is a subpopulation of residing stem cells within the intact tendon tissues, with the capacities of self-renewal, clonogenicity, and three-lineage differentiation. Compared with bone marrow derived mesenchymal stem cells (BMSCs), TDSCs are superior for tendon injuries repair as they remain some tendon tissue-specific differentiation properties. In the present study, TDSC was found to undergo spontaneous tenogenic differentiation in which the expression of tenogenic markers were increased while the expression of stemness markers decreased with time in TDSCs culture (without tenogenic induction medium). The further collagen synthesis ability was correspondingly increased during this process. After a longer period of culture, the monolayer of TDSCs formed a "3D" layers with rich extracellular matrices of typical tendon tissues. In addition, the key tenogenic transcription factors, such as Scx, Mkx, Egr1 and Eya1 were all up-regulated in this process. Finally, we compared the spontaneous tenogenic differentiation with TGF-β1-induced tenogenic differentiation of TDSCs, and the results showed that the spontaneous tenogenic differentiation of TDSCs was general character of TDSCs, similar to but weaker than the effect of TDSCs under tenogenic induction. Taken together, the present study identified that TDSCs had the potential of spontaneous tenogenic differentiation, which may be a better cell source for the treatment of tendon injury.
Collapse
Affiliation(s)
- Jia Guo
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Kai-Ming Chan
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
87
|
Xu K, Shen X, Chen W, Mu C, Jiang C, Zhao Y, Cai K. Nanosheet-pore topographical titanium substrates: a biophysical regulator of the fate of mesenchymal stem cells. J Mater Chem B 2016; 4:1797-1810. [DOI: 10.1039/c5tb02391b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sub-micrometer nanosheet-pore topographic titanium substrates are fabricated with a distinct effect on the adhesion and osteogenic differentiation of MSCs in vitro.
Collapse
Affiliation(s)
- Kui Xu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Weizhen Chen
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Caiyun Mu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Chao Jiang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Yongchun Zhao
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| |
Collapse
|
88
|
Lui PPY. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:163-74. [PMID: 26715856 PMCID: PMC4685888 DOI: 10.2147/sccaa.s60832] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Headquarter, Hospital Authority, Hong Kong SAR, People's Republic of China
| |
Collapse
|
89
|
Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman M, Verweire I, Suls M, Spaas JH. Tenogenically Induced Allogeneic Mesenchymal Stem Cells for the Treatment of Proximal Suspensory Ligament Desmitis in a Horse. Front Vet Sci 2015; 2:49. [PMID: 26664976 PMCID: PMC4672201 DOI: 10.3389/fvets.2015.00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Suspensory ligament injuries are a common injury in sport horses, especially in competing dressage horses. Because of the poor healing of chronic recalcitrant tendon injuries, this represents a major problem in the rehabilitation of sport horses and often compromises the return to the initial performance level. Stem cells are considered as a novel treatment for different pathologies in horses and humans. Autologous mesenchymal stem cells (MSCs) are well known for their use in the treatment of tendinopathies; however, recent studies report a safe use of allogeneic MSCs for different orthopedic applications in horses. Moreover, it has been reported that pre-differentiation of MSCs prior to injection might result in improved clinical outcomes. For all these reasons, the present case report describes the use of allogeneic tenogenically induced peripheral blood-derived MSCs for the treatment of a proximal suspensory ligament injury. During conservative management for 4 months, the horse demonstrated no improvement of a right front lameness with a Grade 2/5 on the American Association of Equine Practitioners (AAEP) scale and a clear hypo-echoic area detectable in 30% of the cross sectional area. From 4 weeks after treatment, the lameness reduced to an AAEP Grade 1/5 and a clear filling of the lesion could be noticed on ultrasound. At 12 weeks (T4) after the first injection, a second intralesional injection with allogeneic tenogenically induced MSCs and platelet-rich plasma was given and at 4 weeks after the second injection (T5), the horse trotted sound under all circumstances with a close to total fiber alignment. The horse went back to previous performance level at 32 weeks after the first regenerative therapy and is currently still doing so (i.e., 20 weeks later or 1 year after the first stem cell treatment). In conclusion, the present case report demonstrated a positive evolution of proximal suspensory ligament desmitis after treatment with allogeneic tenogenically induced MSCs.
Collapse
Affiliation(s)
- Aurélie Vandenberghe
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium ; Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | - Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| | | | - Bert Seys
- Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | | | - Ineke Verweire
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| | - Marc Suls
- Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| |
Collapse
|
90
|
Park D, Lim J, Park JY, Lee SH. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology. Stem Cells Transl Med 2015; 4:1352-68. [PMID: 26450425 DOI: 10.5966/sctm.2015-0095] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. SIGNIFICANCE Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently attracted much attention in biology including stem cell research. These microplatforms and the future directions of stem cell microenvironment are described.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaeho Lim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-ang University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
91
|
New Developments in the Use of Biologics and Other Modalities in the Management of Lateral Epicondylitis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:439309. [PMID: 26114106 PMCID: PMC4465648 DOI: 10.1155/2015/439309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Lateral epicondylitis is a common source of elbow pain. Though it is often a self-limited condition, refractory lateral epicondylitis can lead to problems with activities of daily living and sometimes requires sick leave from work. Therefore prompt treatment is essential. Histopathologic studies have suggested that lateral epicondylitis is a tendinopathy, associated with apoptosis and autophagy, rather than a tendonitis associated with inflammation. Although corticosteroids have been used for short-term treatment, recent studies have suggested that they are not helpful and may even be harmful and delay healing in the treatment of lateral epicondylitis. Researchers have recently begun to investigate the use of biologics as potential treatment options for lateral epicondylitis. Autologous blood preparations including platelet rich plasma (PRP) and autologous whole blood injections (ABIs) have been proposed in order to deliver growth factors and other nutrients to the diseased tendon. Stem cell therapies have also been suggested as a method of improving tendon healing. This review discusses the current evidence for the use of PRP, ABI, and stem cell therapies for treatment of lateral epicondylitis. We also review the evidence for nonbiologic treatments including corticosteroids, prolotherapy, botulinum toxin A, and nitric oxide.
Collapse
|
92
|
Abbah SA, Spanoudes K, O'Brien T, Pandit A, Zeugolis DI. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models. Stem Cell Res Ther 2015; 5:38. [PMID: 25157898 PMCID: PMC4056691 DOI: 10.1186/scrt426] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity tendon-resident cells has directed substantial research efforts towards the exploration of the therapeutic potential of various stem cells in tendon injuries and pathophysiologies. Severe injuries require the use of a stem cell carrier to enable cell localisation at the defect site. The present study describes advancements that injectable carriers, tissue grafts, anisotropically orientated biomaterials, and cell-sheets have achieved in preclinical models as stem cell carriers for tendon repair.
Collapse
|
93
|
Hillmann A, Ahrberg AB, Brehm W, Heller S, Josten C, Paebst F, Burk J. Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model. Cell Transplant 2015; 25:109-24. [PMID: 25853993 DOI: 10.3727/096368915x687822] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have gained tremendous attention as potential therapeutic agents for the treatment of orthopedic diseases. Promising results have been obtained after application of MSCs for treatment of tendon and joint disease in the equine model, making it appear favorable to use these results as a basis for the translational process of the therapy. However, while the horse is considered a highly suitable model for orthopedic diseases, knowledge is lacking regarding the level of analogy of equine MSCs and their human counterparts. Therefore, the aim of this study was to assess the properties of human and equine adipose- and tendon-derived MSCs in a direct comparison. Basic properties of human and equine MSCs from both tissues were similar. The cells expressed CD29, CD44, CD90, and CD105 and lacked expression of CD73, CD14, CD34, CD45, CD79α, and MCHII/HLA-DR. No significant differences were found between proliferation potential of human and equine MSCs in early passages, but recovery of nucleated cells after tissue digestion as well as proliferation in later passages was higher in equine samples (p < 0.01). All samples showed a good migration capacity and multilineage differentiation potential. However, while osteogenic differentiation was achieved in all equine samples, it was only evident in five out of nine human tendon-derived samples. Human MSCs further showed a higher expression of collagen IIIA1 and tenascin-C, but lower expression of decorin and scleraxis (p < 0.01). Although revealing some potentially relevant differences, the study demonstrates a high level of analogy between human and equine MSCs, providing a basis for translational research in the equine model according to the guidelines issued by the authorities.
Collapse
Affiliation(s)
- Aline Hillmann
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
94
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
95
|
Directing parthenogenetic stem cells differentiate into adipocytes for engineering injectable adipose tissue. Stem Cells Int 2014; 2014:423635. [PMID: 25587287 PMCID: PMC4284990 DOI: 10.1155/2014/423635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023] Open
Abstract
The selection of appropriate seed cells is crucial for adipose tissue engineering. Here, we reported the stepwise induction of parthenogenetic embryonic stem cells (pESCs) to differentiate into adipogenic cells and its application in engineering injectable adipose tissue with Pluronic F-127. pESCs had pluripotent differentiation capacity and could form teratomas that include the three primary germ layers. Cells that migrated from the embryoid bodies (EBs) were selectively separated and expanded to obtain embryonic mesenchymal stem cells (eMSCs). The eMSCs exhibited similar cell surface marker expression profiles with bone morrow mesenchymal stem cells (BMSCs) and had multipotent differentiation capacity. Under the induction of dexamethasone, indomethacin, and insulin, eMSCs could differentiate into adipogenic cells with increased expression of adipose-specific genes and oil droplet depositions within the cytoplasm. To evaluate their suitability as seed cells for adipose tissue engineering, the CM-Dil labelled adipogenic cells derived from eMSCs were seeded into Pluronic F-127 hydrogel and injected subcutaneously into nude mice. Four weeks after injection, glistering and semitransparent constructs formed in the subcutaneous site. Histological observations demonstrated that new adipose tissue was successfully fabricated in the specimen by the labelled cells. The results of the current study indicated that pESCs have great potential in the fabrication of injectable adipose tissue.
Collapse
|
96
|
Ho JO, Sawadkar P, Mudera V. A review on the use of cell therapy in the treatment of tendon disease and injuries. J Tissue Eng 2014; 5:2041731414549678. [PMID: 25383170 PMCID: PMC4221986 DOI: 10.1177/2041731414549678] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/28/2014] [Indexed: 12/28/2022] Open
Abstract
Tendon disease and injuries carry significant morbidity worldwide in both athletic and non-athletic populations. It is estimated that tendon injuries account for 30%−50% of all musculoskeletal injuries globally. Current treatments have been inadequate in providing an accelerated process of repair resulting in high relapse rates. Modern concepts in tissue engineering and regenerative medicine have led to increasing interest in the application of cell therapy for the treatment of tendon disease. This review will explore the use of cell therapy, by bringing together up-to-date evidence from in vivo human and animal studies, and discuss the issues surrounding the safety and efficacy of its use in the treatment of tendon disease.
Collapse
Affiliation(s)
- Jasmine Oy Ho
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| | - Prasad Sawadkar
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| | - Vivek Mudera
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
97
|
Davies BM, Morrey ME, Mouthuy PA, Baboldashti NZ, Hakimi O, Snelling S, Price A, Carr A. Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Regen Med 2014; 8:613-30. [PMID: 23998754 DOI: 10.2217/rme.13.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become an area of intense interest in the treatment of musculoskeletal conditions, such as muscle and tendon injury, as various animal and human trials have demonstrated that implantation with MSCs leads to improved healing and function. However, these trials have usually been relatively small scale and lacking in adequate controls. Additionally, the optimum source of these cells has yet to be determined, partly due to a lack of understanding as to how MSCs produce their beneficial effects when implanted. Scaffolds have been shown to improve tissue-engineering repairs but require further work to optimize their interactions with both native tissue and implanted MSCs. Robust, well-controlled trials are therefore required to determine the usefulness of MSCs in musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Benjamin M Davies
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford OX3 7HE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Tan C, Lui PPY, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One 2014; 9:e97453. [PMID: 24831949 PMCID: PMC4022525 DOI: 10.1371/journal.pone.0097453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
We hypothesized that the transplantation of Scx-transduced tendon-derived stem cells (TDSCs) promoted better tendon repair compared to the transplantation of mock-transduced cells. This study thus aimed to investigate the effect of Scx transduction on the expression of lineage markers in TDSCs and the effect of the resulting cell line in the promotion of tendon repair. Rat non-GFP or GFP-TDSCs were transduced with Scx or empty lentiviral vector (Mock) and selected by blasticidin. The mRNA expressions of Scx and different lineage markers were examined by qRT-PCR. The effect of the transplantation of GFP-TDSC-Scx on tendon repair was then tested in a rat unilateral patellar tendon window injury model. The transplantation of GFP-TDSC-Mock and scaffold-only served as controls. At week 2, 4 and 8 post-transplantation, the repaired patellar tendon was harvested for ex vivo fluorescent imaging, vivaCT imaging, histology, immunohistochemistry and biomechanical test. GFP-TDSC-Scx consistently showed higher expressions of most of tendon- and cartilage- related markers compared to the GFP-TDSC-Mock. However, the effect of Scx transduction on the expressions of bone-related markers was inconclusive. The transplanted GFP-TDSCs could be detected in the window wound at week 2 but not at week 4. Ectopic mineralization was detected in some samples at week 8 but there was no difference among different groups. The GFP-TDSC-Scx group only statistically significantly improved tendon repair histologically and biomechanically compared to the Scaffold-only group and the GFP-TDSC-Mock group at the early stage of tendon repair. There was significant higher expression of collagen type I in the window wound in the GFP-TDSC-Scx group compared to the other two groups at week 2. The transplantation of GFP-TDSC-Scx promoted healing at the early stage of tendon repair in a rat patellar tendon window injury model.
Collapse
Affiliation(s)
- Chunlai Tan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Mei Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
99
|
Fang Z, Zhu T, Shen WL, Tang QM, Chen JL, Yin Z, Ji JF, Heng BC, Ouyang HW, Chen X. Transplantation of fetal instead of adult fibroblasts reduces the probability of ectopic ossification during tendon repair. Tissue Eng Part A 2014; 20:1815-26. [PMID: 24410299 DOI: 10.1089/ten.tea.2013.0296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although cell transplantation therapy can effectively promote functional tendon repair, occasional ectopic ossification during tendon regeneration undermines its efficacy. The effect of transplanted cell types on ectopic ossification has not yet been systematically evaluated. This study compared the rate of ectopic ossification during tendon repair upon transplantation with mouse fetal fibroblasts (FFs) and their adult counterparts (adult fibroblasts [AFs]). Alkaline phosphatase (ALP) staining, immunofluorescence, and gene expression analysis were used to compare the spontaneous osteogenic differentiation of FFs and AFs in vitro. X-ray, histology, and gene expression analysis were used to investigate the ectopic ossification in a mouse Achilles tendon repair model in vivo. ALP staining and immunofluorescence data in vitro showed that FFs had less spontaneous osteogenic differentiation capacity, and lower expression of runt-related transcription factor 2 (runx2). For the in vivo study, the FFs transplant group displayed reduced ectopic ossification (2/7 vs. 7/7, Mann-Whitney test p<0.01) at 14 weeks post-transplantation and enhanced tendon repair (general histological score at week 6, 7.53 vs. 10.56, p<0.05). More chondrocytes formed at 6 weeks, and all mice developed bone marrow at 14 weeks post-transplantation in the AFs transplant group. Gene expression analysis of the regenerated tissue showed significantly higher expression levels of transforming growth factor beta1 (TGF-β1) and transforming growth factor beta3 (TGF-β3) in the AFs group during the early stages of tendon repair. Our study demonstrates that transplantation of fetal instead of AFs is more promising for tendon repair, underscoring the importance of the origin of seed cells for tendon repair.
Collapse
Affiliation(s)
- Zhi Fang
- 1 Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine , Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Liu H, Zhu S, Zhang C, Lu P, Hu J, Yin Z, Ma Y, Chen X, OuYang H. Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration. Cell Tissue Res 2014; 356:287-98. [PMID: 24705622 DOI: 10.1007/s00441-014-1834-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
Tendons that connect muscles to bone are often the targets of sports injuries. The currently unsatisfactory state of tendon repair is largely attributable to the limited understanding of basic tendon biology. A number of tendon lineage-related transcription factors have recently been uncovered and provide clues for the better understanding of tendon development. Scleraxis and Mohawk have been identified as critical transcription factors in tendon development and differentiation. Other transcription factors, such as Sox9 and Egr1/2, have also been recently reported to be involved in tendon development. However, the molecular mechanisms and application of these transcription factors remain largely unclear and this prohibits their use in tendon therapy. Here, we systematically review and analyze recent findings and our own data concerning tendon transcription factors and tendon regeneration. Based on these findings, we provide interaction and temporal programming maps of transcription factors, as a basis for future tendon therapy. Finally, we discuss future directions for tendon regeneration with differentiation and trans-differentiation approaches based on transcription factors.
Collapse
Affiliation(s)
- Huanhuan Liu
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|