51
|
Chen Z, Du S, Kong C, Zhang Z, Mokhtar AD. Intrathecal administration of TRPA1 antagonists attenuate cyclophosphamide-induced cystitis in rats with hyper-reflexia micturition. BMC Urol 2016; 16:33. [PMID: 27315798 PMCID: PMC4912737 DOI: 10.1186/s12894-016-0150-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/03/2016] [Indexed: 11/17/2022] Open
Abstract
Background The activation of TRPA1 channel is implicated in hyper-reflexic micturition similar to overactive bladder. In this study, we aimed to investigate the effects of blocking TRPA1 via intrathecal administration of antagonists on the afferent pathways of micturition in rats with cystitis. Methods The cystitis was induced by intraperitoneal cyclophosphamide administration. Cystometry was performed in control and cystitis rats, following the intrathecal injection of the TRPA1 antagonists HC-030031 and A-967079. Real-time PCR, agarose gel electrophoresis, western blotting and immunohistochemistry were used to investigate the levels of TRPA1 mRNA or protein in the bladder mucosa and L6-S1 dorsal root ganglia (DRG). Results Edema, submucosal hemorrhaging, stiffness and adhesion were noted during removal of the inflamed bladder. The expression of TRPA1 mRNA and protein was higher in the cystitis group in both the mucosa and DRG, but the difference was significant in the DRG (P < 0.05). Intrathecal administration of HC-030031 and A-967079 decreased the micturition reflex in the cystitis group. A 50 μg dose of HC-030031 increased the intercontraction interval (ICI) to 183 % of the no-treatment value (P < 0.05) and decreased the non-voiding contraction (N-VC) to 60 % of control (P < 0.01). Similarly, the treatment with 3 μg A-967079 increased the ICI to 142 % of the control value (P < 0.05) and decreased the N-VC to 77 % of control (P < 0.05). The effects of both antagonists weakened approximately 2 h after injection. Conclusions The TRPA1 had a pronounced upregulation in DRG but more slight in mucosa in rat cystitis. The blockade of neuronal activation of TRPA1 by intrathecal administration of antagonists could decrease afferent nerve activities and attenuated detrusor overactivity induced by inflammation.
Collapse
Affiliation(s)
- Zhipeng Chen
- China Medical University, No. 77 Puhe Road, Shenyang North New Area 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Shuqi Du
- China Medical University, No. 77 Puhe Road, Shenyang North New Area 110122, Shenyang, Liaoning Province, People's Republic of China. .,Department of Urology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District 110001, Shenyang, Liaoning Province, People's Republic of China.
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Al-Dhabi Mokhtar
- China Medical University, No. 77 Puhe Road, Shenyang North New Area 110122, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
52
|
Pierce AN, Di Silvestro ER, Eller OC, Wang R, Ryals JM, Christianson JA. Urinary bladder hypersensitivity and dysfunction in female mice following early life and adult stress. Brain Res 2016; 1639:58-73. [PMID: 26940840 DOI: 10.1016/j.brainres.2016.02.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
Early adverse events have been shown to increase the incidence of interstitial cystitis/painful bladder syndrome in adulthood. Despite high clinical relevance and reports of stress-related symptom exacerbation, animal models investigating the contribution of early life stress to female urological pain are lacking. We examined the impact of neonatal maternal separation (NMS) on bladder sensitivity and visceral neuroimmune status both prior-to, and following, water avoidance stress (WAS) in adult female mice. The visceromotor response to urinary bladder distension was increased at baseline and 8d post-WAS in NMS mice, while colorectal sensitivity was transiently increased 1d post-WAS only in naïve mice. Bladder micturition rate and output, but not fecal output, were also significantly increased following WAS in NMS mice. Changes in gene expression involved in regulating the stress response system were observed at baseline and following WAS in NMS mice, and WAS reduced serum corticosterone levels. Cytokine and growth factor mRNA levels in the bladder, and to a lesser extent in the colon, were significantly impacted by NMS and WAS. Peripheral mRNA levels of stress-responsive receptors were differentially influenced by early life and adult stress in bladder, but not colon, of naïve and NMS mice. Histological evidence of mast cell degranulation was increased in NMS bladder, while protein levels of protease activated receptor 2 (PAR2) and transient receptor potential ankyrin 1 (TRPA1) were increased by WAS. Together, this study provides new insight into mechanisms contributing to stress associated symptom onset or exacerbation in patients exposed to early life stress.
Collapse
Affiliation(s)
- Angela N Pierce
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Elizabeth R Di Silvestro
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Olivia C Eller
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Ruipeng Wang
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Janelle M Ryals
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| |
Collapse
|
53
|
Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 2016; 13:193-204. [PMID: 26926246 DOI: 10.1038/nrurol.2016.13] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation.
Collapse
Affiliation(s)
- Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Beatrice M Girard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| |
Collapse
|
54
|
Payrits M, Sághy É, Mátyus P, Czompa A, Ludmerczki R, Deme R, Sándor Z, Helyes Z, Szőke É. A novel 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime compound is a potent Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and V1) receptor antagonist. Neuroscience 2016; 324:151-62. [PMID: 26930003 DOI: 10.1016/j.neuroscience.2016.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1, TRPV1) ion channels expressed on nociceptive primary sensory neurons are important regulators of pain and inflammation. TRPA1 is activated by several inflammatory mediators including formaldehyde and methylglyoxal that are products of the semicarbazide-sensitive amine-oxidase enzyme (SSAO). SZV-1287 is a new 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime SSAO inhibitor, its chemical structure is similar to other oxime derivatives described as TRPA1 antagonists. Therefore, we investigated its effects on TRPA1 and TRPV1 receptor activation on the cell bodies and peripheral terminals of primary sensory neurons and TRPA1 or TRPV1 receptor-expressing cell lines. Calcium influx in response to the TRPA1 agonist allyl-isothiocyanate (AITC) (200 μM) and the TRPV1 stimulator capsaicin (330 nM) in rat trigeminal neurons or TRPA1 and TRPV1 receptor-expressing cell lines was measured by microfluorimetry or radioactive (45)Ca(2+) uptake experiments. Calcitonin gene-related peptide (CGRP) release as the indicator of 100 μM AITC - or 100 nM capsaicin-induced peripheral sensory nerve terminal activation was measured by radioimmunoassay. SZV-1287 (100, 500 and 1000 nM) exerted a concentration-dependent significant inhibition on both AITC- and capsaicin-evoked calcium influx in trigeminal neurons and TRPA1 or TRPV1 receptor-expressing cell lines. It also significantly inhibited the TRPA1, but not the TRPV1 activation-induced CGRP release from the peripheral sensory nerve endings in a concentration-dependent manner. In contrast, the reference SSAO inhibitor LJP 1207 with a different structure had no effect on TRPA1 or TRPV1 activation in either model system. This is the first evidence that our novel oxime compound SZV-1287 originally developed as a SSAO inhibitor has a potent dual antagonistic action on TRPA1 and TRPV1 ion channels on primary sensory neurons.
Collapse
Affiliation(s)
- M Payrits
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - É Sághy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - P Mátyus
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - A Czompa
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Ludmerczki
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Deme
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - Z Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary.
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| |
Collapse
|
55
|
Shaffer AD, Feng B, La JH, Joyce SC, Gebhart GF. A novel role for follistatin in hypersensitivity following cystitis. Neurourol Urodyn 2015; 36:286-292. [PMID: 26713850 DOI: 10.1002/nau.22941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022]
Abstract
AIMS Previous studies have shown that the activin-binding protein follistatin reduces inflammation in several mouse models of colitis. To determine whether follistatin also has a beneficial effect following bladder inflammation, we induced cystitis in mice using cyclophosphamide (CYP) and examined the relationship between bladder hypersensitivity and bladder follistatin expression. METHODS Adult female C57BL/6 mice were treated with CYP (100 mg/kg) or vehicle (saline) three times over 5 days. Bladder hypersensitivity was assessed by recording the visceromotor response (VMR) to urinary bladder distension and in vitro single-fiber bladder afferent recording. Follistatin gene expression was measured using qRT-PCR. Immunohistochemistry was employed for further characterization. RESULTS Bladder hypersensitivity was established by day 6 and persisted to day 14 in CYP-treated mice. On day 14, hypersensitivity was accompanied by increases in follistatin gene expression in the bladder. Follistatin-like immunoreactivity colocalized with laminin, and the percentage of structures in the lamina propria that were follistatin-positive was increased in CYP-treated mice. Exogenous follistatin increased VMR and afferent responses to bladder distension in CYP- but not vehicle-treated mice. CONCLUSIONS Chronic bladder pain following CYP treatment is associated with increased follistatin expression in the bladder. These results suggest a novel, pro-nociceptive role for follistatin in cystitis, in contrast with its proposed therapeutic role in colitis. This protein has exciting potential as a biomarker and therapeutic target for bladder hypersensitivity. Neurourol. Urodynam. 36:286-292, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber D Shaffer
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Feng
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun-Ho La
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sonali C Joyce
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
56
|
Asgar J, Zhang Y, Saloman JL, Wang S, Chung MK, Ro JY. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience 2015; 310:206-15. [PMID: 26393428 DOI: 10.1016/j.neuroscience.2015.09.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 12/30/2022]
Abstract
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is expressed in muscle afferents and direct activation of these receptors induces acute mechanical hypersensitivity. However, the functional role of TRPA1 under pathological muscle pain conditions and mechanisms by which TRPA1 mediate muscle pain and hyperalgesia are not clearly understood. Two rodent behavioral models validated to assess craniofacial muscle pain conditions were used to study ATP- and N-Methyl-D-aspartate (NMDA)-induced acute mechanical hypersensitivity and complete Freund's adjuvant (CFA)-induced persistent mechanical hypersensitivity. The rat grimace scale (RGS) was utilized to assess inflammation-induced spontaneous muscle pain. Behavioral pharmacology experiments were performed to assess the effects of AP18, a selective TRPA1 antagonist under these conditions. TRPA1 expression levels in trigeminal ganglia (TG) were examined before and after CFA treatment in the rat masseter muscle. Pre-treatment of the muscle with AP18 dose-dependently blocked the development of acute mechanical hypersensitivity induced by NMDA and α,β-methylene adenosine triphosphate (αβmeATP), a specific agonist for NMDA and P2X3 receptor, respectively. CFA-induced mechanical hypersensitivity and spontaneous muscle pain responses were significantly reversed by post-treatment of the muscle with AP18 when CFA effects were most prominent. CFA-induced myositis was accompanied by significant up-regulation of TRPA1 expression in TG. Our findings showed that TRPA1 in muscle afferents plays an important role in the development of acute mechanical hypersensitivity and in the maintenance of persistent muscle pain and hypersensitivity. Our data suggested that TRPA1 may serve as a downstream target of pro-nociceptive ion channels, such as P2X3 and NMDA receptors in masseter afferents, and that increased TRPA1 expression under inflammatory conditions may contribute to the maintenance of persistent muscle pain and mechanical hyperalgesia. Mechanistic studies elucidating transcriptional or post-translational regulation of TRPA1 expression under pathological pain conditions should provide important basic information to further advance the treatment of craniofacial muscle pain conditions.
Collapse
Affiliation(s)
- J Asgar
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Y Zhang
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - J L Saloman
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - S Wang
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - M-K Chung
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - J Y Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA; Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea.
| |
Collapse
|
57
|
Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents. J Neurosci 2015; 35:8423-32. [PMID: 26041911 DOI: 10.1523/jneurosci.3597-14.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.
Collapse
|
58
|
DeBerry JJ, Saloman JL, Dragoo BK, Albers KM, Davis BM. Artemin Immunotherapy Is Effective in Preventing and Reversing Cystitis-Induced Bladder Hyperalgesia via TRPA1 Regulation. THE JOURNAL OF PAIN 2015; 16:628-36. [PMID: 25892657 PMCID: PMC4489144 DOI: 10.1016/j.jpain.2015.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED Injury- or disease-induced artemin (ARTN) signaling can sensitize primary afferents and contribute to persistent pain. We demonstrate that administration of an ARTN neutralizing antibody, anti-artemin (α-ARTN), can block the development of, and reverse already established, bladder hyperalgesia associated with cyclophosphamide-induced cystitis in mice. We further demonstrate that α-ARTN therapy blocks upregulation of TRPA1, an ion channel contributing to persistent bladder pain during cyclophosphamide-induced cystitis, and decreases phospho-ERK1/2 immunoreactivity in regions of the spinal cord receiving bladder afferent input. Thus, α-ARTN is a promising novel therapeutic approach for treatment of bladder hyperalgesia that may be associated with interstitial cystitis/painful bladder syndrome, as well as cystitis associated with antitumor or immunosuppressive cyclophosphamide therapy. PERSPECTIVE α-ARTN therapy effectively prevented and reversed ongoing bladder hyperalgesia in an animal model of cystitis, indicating its potential as an efficacious treatment strategy for ongoing bladder pain associated with interstitial cystitis/painful bladder syndrome.
Collapse
Affiliation(s)
- Jennifer J DeBerry
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian K Dragoo
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathryn M Albers
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
59
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
60
|
Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:73-118. [PMID: 25744671 DOI: 10.1016/bs.pmbts.2015.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesia, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
61
|
Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM, Moilanen E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice--potential role for transient receptor potential ankyrin 1 in gout. PLoS One 2015; 10:e0117770. [PMID: 25658427 PMCID: PMC4319920 DOI: 10.1371/journal.pone.0117770] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/02/2015] [Indexed: 12/30/2022] Open
Abstract
Introduction In gout, monosodium urate (MSU) crystals deposit intra-articularly and cause painful arthritis. In the present study we tested the hypothesis that Transient Receptor Poten-tial Ankyrin 1 (TRPA1), an ion channel mediating nociceptive signals and neurogenic in-flammation, is involved in MSU crystal-induced responses in gout by utilizing three experi-mental murine models. Methods The effects of selective pharmacological inhibition (by HC-030031) and genetic depletion of TRPA1 were studied in MSU crystal-induced inflammation and pain by using 1) spontaneous weight-bearing test to assess MSU crystal-induced joint pain, 2) subcutaneous air-pouch model resembling joint inflammation to measure MSU crystal-induced cytokine production and inflammatory cell accumulation, and 3) MSU crystal-induced paw edema to assess acute vascular inflammatory responses and swelling. Results Intra-articularly injected MSU crystals provoked spontaneous weight shift off from the affected limb in wild type but not in TRPA1 knock-out mice referring alleviated joint pain in TRPA1 deficient animals. MSU crystal-induced inflammatory cell infiltration and accumulation of cytokines MCP-1, IL-6, IL-1beta, MPO, MIP-1alpha and MIP-2 into subcu-taneous air-pouch (resembling joint cavity) was attenuated in TRPA1 deficient mice and in mice treated with the selective TRPA1 inhibitor HC-030031 as compared to control animals. Further, HC-030031 treated and TRPA1 deficient mice developed tempered inflammatory edema when MSU crystals were injected into the paw. Conclusions TRPA1 mediates MSU crystal-induced inflammation and pain in experimental models supporting the role of TRPA1 as a potential mediator and a drug target in gout flare.
Collapse
Affiliation(s)
- Lauri J. Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Lauri Lehtimäki
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
62
|
Abstract
The ability of the body to perceive noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors. The molecular receptors of noxious mechanical, temperature, or chemical stimuli are expressed in these neurons and have drawn considerable attention as possible targets for analgesic development to improve treatment for the millions who suffer from chronic pain conditions. A number of thermoTRPs, a subset of the transient receptor potential family of ion channels, are activated by a wide range on noxious stimuli. In this review, we review the function of these channels and examine the evidence that thermoTRPs play a vital role in acute, inflammatory and neuropathic nociception.
Collapse
Affiliation(s)
- Robyn J Laing
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| |
Collapse
|
63
|
Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int 2015; 115:686-97. [DOI: 10.1111/bju.12876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yves Deruyver
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Thomas Voets
- Laboratory for Ion Channel Research; Department of Molecular Cell Biology; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
- Royal Melbourne Hospital; Melbourne Australia
| |
Collapse
|
64
|
Pierce AN, Christianson JA. Stress and Chronic Pelvic Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:509-35. [DOI: 10.1016/bs.pmbts.2014.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Identification of natural compound carnosol as a novel TRPA1 receptor agonist. Molecules 2014; 19:18733-46. [PMID: 25405290 PMCID: PMC6271858 DOI: 10.3390/molecules191118733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) cation channel is one of the well-known targets for pain therapy. Herbal medicine is a rich source for new drugs and potentially useful therapeutic agents. To discover novel natural TRPA1 agonists, compounds isolated from Chinese herbs were screened using a cell-based calcium mobilization assay. Out of the 158 natural compounds derived from traditional Chinese herbal medicines, carnosol was identified as a novel agonist of TRPA1 with an EC50 value of 12.46 µM. And the agonistic effect of carnosol on TRPA1 could be blocked by A-967079, a selective TRPA1 antagonist. Furthermore, the specificity of carnosol was verified as it showed no significant effects on two other typical targets of TRP family member: TRPM8 and TRPV3. Carnosol exhibited anti-inflammatory and anti-nociceptive properties; the activation of TRPA1 might be responsible for the modulation of inflammatory nociceptive transmission. Collectively, our findings indicate that carnosol is a new anti-nociceptive agent targeting TRPA1 that can be used to explore further biological role in pain therapy.
Collapse
|