51
|
Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, Stocchi F, Lucini V, Giuliani R, Forrest E, Rice P, Anand R. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson's disease. Mov Disord 2014; 29:1273-80. [PMID: 25044402 DOI: 10.1002/mds.25961] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 11/10/2022] Open
Abstract
In a 6-month double-blind, placebo-controlled study of Parkinson's disease patients with motor fluctuations, safinamide 50 and 100 mg/d significantly increased ON-time without increasing dyskinesia. Further long-term safinamide use in these patients was evaluated over an additional 18 months. Patients continued on their randomized placebo, 50, or 100 mg/d safinamide. The primary endpoint was change in Dyskinesia Rating Scale total score during ON-time over 24 months. Other efficacy endpoints included change in ON-time without troublesome dyskinesia, changes in individual diary categories, depressive symptoms, and quality of life measures. Change in Dyskinesia Rating Scale was not significantly different in safinamide versus placebo groups, despite decreased mean total Dyskinesia Rating Scale with safinamide compared with an almost unchanged score in placebo. Ad hoc subgroup analysis of moderate to severe dyskinetic patients at baseline (36% of patients) showed a decrease with safinamide 100 mg/d compared with placebo (P = 0.0317). Improvements in motor function, activities of daily living, depressive symptoms, clinical status, and quality of life at 6 months remained significant at 24 months. Adverse events and discontinuation rates were similar with safinamide and placebo. This 2-year, controlled study of add-on safinamide in mid-to-late Parkinson's disease with motor fluctuations, although not demonstrating an overall difference in dyskinesias between patients and controls, showed improvement in dyskinesia in patients at least moderately dyskinetic at baseline. The study additionally demonstrated significant clinical benefits in ON-time (without troublesome dyskinesia), OFF-time, activities of daily living, motor symptoms, quality of life, and symptoms of depression.
Collapse
|
52
|
Tarazi FI, Sahli ZT, Wolny M, Mousa SA. Emerging therapies for Parkinson's disease: from bench to bedside. Pharmacol Ther 2014; 144:123-33. [PMID: 24854598 DOI: 10.1016/j.pharmthera.2014.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/01/2014] [Indexed: 02/08/2023]
Abstract
The prevalence of Parkinson's disease (PD) increases with age and is projected to increase in parallel to the rising average age of the population. The disease can have significant health-related, social, and financial implications not only for the patient and the caregiver, but for the health care system as well. While the neuropathology of this neurodegenerative disorder is fairly well understood, its etiology remains a mystery, making it difficult to target therapy. The currently available drugs for treatment provide only symptomatic relief and do not control or prevent disease progression, and as a result patient compliance and satisfaction are low. Several emerging pharmacotherapies for PD are in different stages of clinical development. These therapies include adenosine A2A receptor antagonists, glutamate receptor antagonists, monoamine oxidase inhibitors, anti-apoptotic agents, and antioxidants such as coenzyme Q10, N-acetyl cysteine, and edaravone. Other emerging non-pharmacotherapies include viral vector gene therapy, microRNAs, transglutaminases, RTP801, stem cells and glial derived neurotrophic factor (GDNF). In addition, surgical procedures including deep brain stimulation, pallidotomy, thalamotomy and gamma knife surgery have emerged as alternative interventions for advanced PD patients who have completely utilized standard treatments and still suffer from persistent motor fluctuations. While several of these therapies hold much promise in delaying the onset of the disease and slowing its progression, more pharmacotherapies and surgical interventions need to be investigated in different stages of PD. It is hoped that these emerging therapies and surgical procedures will strengthen our clinical armamentarium for improved treatment of PD.
Collapse
Affiliation(s)
- F I Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
| | - Z T Sahli
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; School of Medicine, American University of Beirut, Beirut, Lebanon
| | - M Wolny
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - S A Mousa
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
53
|
Müller T. Current status of safinamide for the drug portfolio of Parkinson's disease therapy. Expert Rev Neurother 2014; 13:969-77. [PMID: 24053341 DOI: 10.1586/14737175.2013.827488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by a slowly ongoing neuronal death. This alters dopaminergic and glutamatergic neurotransmission and causes a wide variety of motor and non-motor features. Safinamide has a unique pharmacological profile, which combines modulation of dopamine metabolism by reversible, highly specific monoamine oxidase-B inhibition, blockage of voltage-dependent sodium channels, modulation of calcium channels and of glutamate release induced by abnormal neuronal activity. Therefore, safinamide represents an ideal candidate for the treatment of PD. This compound asks for one time daily intake only within an optimum dose range between 50 and 100 mg. In clinical trials, safinamide was well tolerated and safe, improved motor behavior even in combination with dopamine agonist only, ameliorated levodopa-associated motor complications. Safinamide has the potential to become an important compound for the therapy of PD, since its symptomatic efficacy appears to be superior to available monoamine oxidase-B inhibitors or N-methyl-d-aspartate receptor antagonists like amantadine, according to available trial outcomes.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088 Berlin, Germany +49 309 279 0223 +49 309 279 0703
| |
Collapse
|
54
|
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder of unknown etiology, although a complex interaction between environmental and genetic factors has been implicated as a pathogenic mechanism of selected neuronal loss. A better understanding of the etiology, pathogenesis, and molecular mechanisms underlying the disease process may be gained from research on animal models. While cell and tissue models are helpful in unraveling involved molecular pathways, animal models are much better suited to study the pathogenesis and potential treatment strategies. The animal models most relevant to PD include those generated by neurotoxic chemicals that selectively disrupt the catecholaminergic system such as 6-hydroxydopamine; 1-methyl-1,2,3,6-tetrahydropiridine; agricultural pesticide toxins, such as rotenone and paraquat; the ubiquitin proteasome system inhibitors; inflammatory modulators; and several genetically manipulated models, such as α-synuclein, DJ-1, PINK1, Parkin, and leucine-rich repeat kinase 2 transgenic or knock-out animals. Genetic and nongenetic animal models have their own unique advantages and limitations, which must be considered when they are employed in the study of pathogenesis or treatment approaches. This review provides a summary and a critical review of our current knowledge about various in vivo models of PD used to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Weidong Le
- />1st Affiliated Hospital, Dalian Medical University, Dalian, 116011 China
| | - Pavani Sayana
- />Department of Medicine, Gandhi Medical College, Padmarao Nagar, Secunderabad, AP 500020 India
| | - Joseph Jankovic
- />Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
55
|
Abstract
Despite advances in the treatment of Parkinson's disease there are still many unmet needs, including neuroprotection, treatment of motor complications, treatment of dyskinesia, treatment of psychosis, and treatment of nondopaminergic symptoms. In this review, I highlight the obstacles to develop a neuroprotective drug and some of the treatment strategies recently approved or still in clinical trials designed to meet these unmet needs.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele, Via della Pisana 235, 00163, Rome, Italy,
| |
Collapse
|
56
|
Ramirez-Zamora A, Molho E. Treatment of motor fluctuations in Parkinson’s disease: recent developments and future directions. Expert Rev Neurother 2013; 14:93-103. [DOI: 10.1586/14737175.2014.868306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
57
|
Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, Stocchi F, Lucini V, Giuliani R, Forrest E, Rice P, Anand R. Randomized trial of safinamide add-on to levodopa in Parkinson's disease with motor fluctuations. Mov Disord 2013; 29:229-37. [PMID: 24323641 PMCID: PMC4285943 DOI: 10.1002/mds.25751] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/22/2022] Open
Abstract
Levodopa is effective for the motor symptoms of Parkinson's disease (PD), but is associated with motor fluctuations and dyskinesia. Many patients require add-on therapy to improve motor fluctuations without exacerbating dyskinesia. The objective of this Phase III, multicenter, double-blind, placebo-controlled, parallel-group study was to evaluate the efficacy and safety of safinamide, an α-aminoamide with dopaminergic and nondopaminergic mechanisms, as add-on to l-dopa in the treatment of patients with PD and motor fluctuations. Patients were randomized to oral safinamide 100 mg/day (n = 224), 50 mg/day (n = 223), or placebo (n = 222) for 24 weeks. The primary endpoint was total on time with no or nontroublesome dyskinesia (assessed using the Hauser patient diaries). Secondary endpoints included off time, Unified Parkinson's Disease Rating Scale (UPDRS) Part III (motor) scores, and Clinical Global Impression-Change (CGI-C). At week 24, mean ± SD increases in total on time with no or nontroublesome dyskinesia were 1.36 ± 2.625 hours for safinamide 100 mg/day, 1.37 ± 2.745 hours for safinamide 50 mg/day, and 0.97 ± 2.375 hours for placebo. Least squares means differences in both safinamide groups were significantly higher versus placebo. Improvements in off time, UPDRS Part III, and CGI-C were significantly greater in both safinamide groups versus placebo. There were no significant between-group differences for incidences of treatment-emergent adverse events (TEAEs) or TEAEs leading to discontinuation. The addition of safinamide 50 mg/day or 100 mg/day to l-dopa in patients with PD and motor fluctuations significantly increased total on time with no or nontroublesome dyskinesia, decreased off time, and improved parkinsonism, indicating that safinamide improves motor symptoms and parkinsonism without worsening dyskinesia.
Collapse
|
58
|
Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson's disease: emerging treatments. Neuropsychiatr Dis Treat 2013; 9:1605-17. [PMID: 24174877 PMCID: PMC3808152 DOI: 10.2147/ndt.s36693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease therapy is still focused on the use of L-3,4-dihydroxyphenylalanine (levodopa or L-dopa) for the symptomatic treatment of the main clinical features of the disease, despite intensive pharmacological research in the last few decades. However, regardless of its effectiveness, the long-term use of levodopa causes, in combination with disease progression, the development of motor complications termed levodopa-induced dyskinesias (LIDs). LIDs are the result of profound modifications in the functional organization of the basal ganglia circuitry, possibly related to the chronic and pulsatile stimulation of striatal dopaminergic receptors by levodopa. Hence, for decades the key feature of a potentially effective agent against LIDs has been its ability to ensure more continuous dopaminergic stimulation in the brain. The growing knowledge regarding the pathophysiology of LIDs and the increasing evidence on involvement of nondopaminergic systems raises the possibility of more promising therapeutic approaches in the future. In the current review, we focus on novel therapies for LIDs in Parkinson's disease, based mainly on agents that interfere with glutamatergic, serotonergic, adenosine, adrenergic, and cholinergic neurotransmission that are currently in testing or clinical development.
Collapse
|
59
|
Leuratti C, Sardina M, Ventura P, Assandri A, Müller M, Brunner M. Disposition and metabolism of safinamide, a novel drug for Parkinson's disease, in healthy male volunteers. Pharmacology 2013; 92:207-16. [PMID: 24136086 DOI: 10.1159/000354805] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Absorption, biotransformation and elimination of safinamide, an enantiomeric α-aminoamide derivative developed as an add-on therapy for Parkinson's disease patients, were studied in healthy volunteers administered a single oral dose of 400 mg (14)C safinamide methanesulphonate, labelled in metabolically stable positions. METHODS Pharmacokinetics of the parent compound were investigated up to 96 h, of (14)C radioactivity up to 192/200 h post-dose. RESULTS/CONCLUSIONS Maximum concentration was achieved at 1 h (plasma, median Tmax) for parent drug and at 7 and 1.5 h for plasma and whole blood (14)C radioactivity, respectively. Terminal half-lives were about 22 h for unchanged safinamide and 80 h for radioactivity. Safinamide deaminated acid and the N-dealkylated acid were identified as major metabolites in urine and plasma. In urine, the β-glucuronide of the N-dealkylated acid and the monohydroxy safinamide were also characterized. In addition, the glycine conjugate of the N-dealkylated acid and 2-[4-hydroxybenzylamino]propanamide were tentatively identified as minor urinary metabolites.
Collapse
Affiliation(s)
- Chiara Leuratti
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
60
|
Borgohain R, Kandadai RM. Safinamide: a novel anti-Parkinsonian drug with multiple actions. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SUMMARY Parkinson’s disease is the second most common neurodegenerative disease associated with motor symptoms, such as resting tremor, rigidity, bradykinesia and postural instability. Levodopa, dopamine agonists, MAO-B inhibitors and COMTs form the mainstay of treatment. However, advanced disease is associated with motor complications, especially dyskinesias, that limit dopaminergic replacement therapy. Safinamide is a novel anti-Parkinsonian drug with actions such as MAO-B and glutamate receptor inhibition, and sodium and calcium channel blockade. Safinamide has been shown to be effective as an adjunct to dopamine agonists and levodopa. The possible antidyskinetic and neuroprotective properties add to the usefulness of the drug; it is also a potential anticonvulsant drug.
Collapse
Affiliation(s)
- Rupam Borgohain
- Department of Neurology, Nizam’s Institute of Medical Science, Punjagutta, Hyderabad 500082, India.
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Science, Punjagutta, Hyderabad 500082, India
| |
Collapse
|
61
|
Richel DJ, Colly LP, Lurvink E, Willemze R. Comparison of the antileukaemic activity of 5 aza-2-deoxycytidine and arabinofuranosyl-cytosine in rats with myelocytic leukaemia. Br J Cancer 1989; 23:729-42. [PMID: 2465015 DOI: 10.1517/13543784.2014.897694] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using a Brown Norway rat leukaemia model (BNML), which is a realistic model of human myelocytic leukaemia, we compared the antileukaemic activity, influence on cell cycle kinetics and effect on normal haematopoiesis of 5 aza-2-deoxycytidine (aza-dC) and arabinofuranosyl-cytosine (ara-C). The antileukaemic activity was evaluated by means of a survival study. For aza-dC a dose-response relationship was demonstrated for doses up to 50 mg kg-1 (3 times q 12 h); a higher dose resulted in only a slight increase in median survival time (MST). For ara-C a weak dose-response relationship was observed. At the maximum dose of aza-dC and ara-C tested, aza-dC induced a 10-day longer survival time than ara-C, which means 2 logs more of leukaemic cell kill for aza-dC. By means of flow cytometric analysis and a 3HTdR uptake study it was shown that aza-dC does not influence the cell cycle kinetics in the first 24 h after exposure, in contrast to ara-C which caused the characteristic G1/S blockage and synchronization. The influence of aza-dC and ara-C on normal haematopoiesis was evaluated with the CFU-S assay. The dose-response curve for CFU-S did not show a significant difference in stem cell cytotoxicity between aza-dC and ara-C. In the BNML model aza-dC is a much more effective antileukaemic agent than ara-C, while the toxic effect on normal haematopoiesis is comparable to that of ara-C.
Collapse
Affiliation(s)
- D J Richel
- Division of Hematology, University Hospital Leiden, The Netherlands
| | | | | | | |
Collapse
|