51
|
Chen Y, Hung FY, Sugimoto K. Epigenomic reprogramming in plant regeneration: Locate before you modify. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102415. [PMID: 37437389 DOI: 10.1016/j.pbi.2023.102415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.
Collapse
Affiliation(s)
- Yu Chen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Fu-Yu Hung
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
52
|
Cai Z, Wang X, Xie Z, Wen Z, Yu X, Xu S, Su X, Luo J. Light response of gametophyte in Adiantum flabellulatum: transcriptome analysis and identification of key genes and pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1222414. [PMID: 37746005 PMCID: PMC10513451 DOI: 10.3389/fpls.2023.1222414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Light serves not only as a signaling cue perceived by plant photoreceptors but also as an essential energy source captured by chloroplasts. However, excessive light can impose stress on plants. Fern gametophytes possess the unique ability to survive independently and play a critical role in the alternation of generations. Due to their predominantly shaded distribution under canopies, light availability becomes a limiting factor for gametophyte survival, making it imperative to investigate their response to light. Previous research on fern gametophytes' light response has been limited to the physiological level. In this study, we examined the light response of Adiantum flabellulatum gametophytes under different photosynthetic photon flux density (PPFD) levels and identified their high sensitivity to low light. We thereby determined optimal and stress-inducing light conditions. By employing transcriptome sequencing, weighted gene co-expression network analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, we identified 10,995 differentially expressed genes (DEGs). Notably, 3 PHYBs and 5 Type 1 CRYs (CRY1s) were significantly down-regulated at low PPFD (0.1 μmol m-2 s-1). Furthermore, we annotated 927 DEGs to pathways related to photosynthesis and 210 to the flavonoid biosynthesis pathway involved in photoprotection. Additionally, we predicted 34 transcription factor families and identified a close correlation between mTERFs and photosynthesis, as well as a strong co-expression relationship between MYBs and bHLHs and genes encoding flavonoid synthesis enzymes. This comprehensive analysis enhances our understanding of the light response of fern gametophytes and provides novel insights into the mechanisms governing their responses to light.
Collapse
Affiliation(s)
- Zeping Cai
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xiaochen Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zhenyu Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zhenyi Wen
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Xudong Yu
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Shitao Xu
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xinyu Su
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
53
|
Sun S, Liu X, Zhang T, Yang H, Yu B. Functional Characterisation of the Transcription Factor GsWRKY23 Gene from Glycine soja in Overexpressed Soybean Composite Plants and Arabidopsis under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3030. [PMID: 37687277 PMCID: PMC10490167 DOI: 10.3390/plants12173030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
WRKY proteins are a superfamily of transcription factors (TFs) that play multiple roles in plants' growth, development, and environmental stress response. In this study, a novel WRKY gene called GsWRKY23 that is specifically upregulated in salt-tolerant Glycine soja accession BB52 seedlings was identified by transcriptomic analysis under salt stress. How the physiological functions and mechanisms of the GsWRKY23 gene affect salt tolerance was investigated using transformations of soybean hairy roots and Arabidopsis, including wild-type (WT) and atwrky23-mutant plants. The results showed that GsWRKY23 in the roots, stems, and leaves of BB52, along with its promoter in the cotyledons and root tips of GsWRKY23pro::GUS Arabidopsis seedlings, displayed enhanced induction under salt stress. GsWRKY23 localises to the nucleus and shows transcriptional activation ability in yeast cells. Compared to GsWRKY23-RNAi wild soybean hairy-root composite plants under salt stress, obvious improvements, such as superior growth appearance, plant height and fresh weight (FW), and leaf chlorophyll and relative water content (RWC), were displayed by GsWRKY23-overexpressing (OE) composite plants. Moreover, their relative electrolytic leakage (REL) values and malondialdehyde (MDA) contents in the roots and leaves declined significantly. Most of the contents of Na+ and Cl- in the roots, stems, and leaves of GsWRKY23-OE plants decreased significantly, while the content of K+ in the roots increased, and the content of NO3- displayed no obvious change. Ultimately, the Na+/K+ ratios of roots, stems, and leaves, along with the Cl-/NO3- ratios of roots and stems, decreased significantly. In the transgenic WT-GsWRKY23 and atwrky23-GsWRKY23 Arabidopsis seedlings, the salt-induced reduction in seed germination rate and seedling growth was markedly ameliorated; plant FW, leaf chlorophyll content, and RWC increased, and the REL value and MDA content in shoots decreased significantly. In addition, the accumulation of Na+ and Cl- decreased, and the K+ and NO3- levels increased markedly to maintain lower Na+/K+ and Cl-/NO3- ratios in the roots and shoots. Taken together, these results highlight the role of GsWRKY23 in regulating ionic homeostasis in NaCl-stressed overexpressed soybean composite plants and Arabidopsis seedlings to maintain lower Na+/K+ and Cl-/NO3- ratios in the roots and shoots, thus conferring improved salt tolerance.
Collapse
Affiliation(s)
- Shile Sun
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Liu
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianlei Zhang
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yang
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjun Yu
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
54
|
Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J, Xing H, Guo N. Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3007. [PMID: 37631217 PMCID: PMC10459988 DOI: 10.3390/plants12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The Ethylene Response Factor (ERF) transcription factors form a subfamily of the AP2/ERF family that is instrumental in mediating plant responses to diverse abiotic stressors. Herein, we present the isolation and characterization of the GmERF105 gene from Williams 82 (W82), which is rapidly induced by salt, drought, and abscisic acid (ABA) treatments in soybean. The GmERF105 protein contains an AP2 domain and localizes to the nucleus. GmERF105 was selectively bound to GCC-box by gel migration experiments. Under salt stress, overexpression of GmERF105 in Arabidopsis significantly reduced seed germination rate, fresh weight, and antioxidant enzyme activity; meanwhile, sodium ion content, malonic dialdehyde (MDA) content, and reactive oxygen species (ROS) levels were markedly elevated compared to the wild type. It was further found that the transcription levels of CSD1 and CDS2 of two SOD genes were reduced in OE lines. Furthermore, the GmERF105 transgenic plants displayed suppressed expression of stress response marker genes, including KIN1, LEA14, NCED3, RD29A, and COR15A/B, under salt treatment. Our findings suggest that GmERF105 can act as a negative regulator in plant salt tolerance pathways by affecting ROS scavenging systems and the transcription of stress response marker genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming Zhao
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Han Xing
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Na Guo
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| |
Collapse
|
55
|
Yao X, Lai D, Zhou M, Ruan J, Ma C, Wu W, Weng W, Fan Y, Cheng J. Genome-wide identification, evolution and expression pattern analysis of the GATA gene family in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2023; 14:1163357. [PMID: 37600205 PMCID: PMC10437121 DOI: 10.3389/fpls.2023.1163357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 08/22/2023]
Abstract
The GATA family of transcription factors is zinc finger DNA binding proteins involved in a variety of biological processes, including plant growth and development and response to biotic/abiotic stresses, and thus play an essential role in plant response to environmental changes. However, the GATA gene family of Sorghum (SbGATA) has not been systematically analyzed and reported yet. Herein, we used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 33 SbGATA genes identified. These SbGATA genes, distributed on 10 chromosomes, are classified into four subfamilies (I-IV) containing one pair of tandem duplications and nine pairs of segment duplications, which are more closely related to the monocot Brachypodium distachyon and Oryza sativa GATA genes. The physicochemical properties of the SbGATAs are significantly different among the subfamilies, while the protein structure and conserved protein motifs are highly conserved in the subfamilies. In addition, the transcription of SbGATAs is tissue-specific during Sorghum growth and development, which allows for functional diversity in response to stress and hormones. Collectively, our study lays a theoretical foundation for an in-depth analysis of the functions, mechanisms and evolutionary relationships of SbGATA during plant growth and development.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Dili Lai
- College of Agronomy, Guizhou University, Guiyang, China
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang, China
| | - Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang, China
| | - Yu Fan
- College of Agronomy, Guizhou University, Guiyang, China
| | | |
Collapse
|
56
|
Wang X, Guo H, Jin Z, Ding Y, Guo M. Comprehensive Characterization of B-Box Zinc Finger Genes in Citrullus lanatus and Their Response to Hormone and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2634. [PMID: 37514248 PMCID: PMC10386417 DOI: 10.3390/plants12142634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Plant B-BOX (BBX) zinc finger transcription factors play crucial roles in growth and development and the stress response. Although the BBX family has been characterized in various plants, systematic analysis in watermelon is still lacking. In this study, 25 watermelon ClBBX genes were identified. ClBBXs were grouped into five clades (Clade I, II, III, IV, and V) based on their conserved domains and phylogenetic relationships. Most of the ClBBXs (84%) might be localized in the nuclei or cytoplasm. The classification of ClBBXs was consistent with their gene structures. They were unevenly distributed in nine chromosomes except for Chr4 and Chr10, with the largest number of six members in Chr2. Segmental duplications were the major factor in ClBBX family expansion. Some BBXs of watermelon and Arabidopsis evolved from a common ancestor. In total, 254 hormonal and stress-responsive cis elements were discovered in ClBBX promoters. ClBBXs were differentially expressed in tissues, and the expression levels of ClBBX15 and 16 were higher in aboveground tissues than in roots, while the patterns of ClBBX21a, 21b, 21c, 28 and 30b were the opposite. With salicylic acid, methyl jasmonate and salt stress conditions, 17, 18 and 18 ClBBXs exhibited significant expression changes, respectively. In addition, many ClBBXs, including ClBBX29b, 30a and 30b, were also responsive to cold and osmotic stress. In summary, the simultaneous response of multiple ClBBXs to hormonal or abiotic stress suggests that they may have functional interactions in the stress hormone network. Clarifying the roles of key ClBBXs in transcriptional regulation and mediating protein interactions will be an important task. Our comprehensive characterization of the watermelon ClBBX family provides vital clues for the in-depth analysis of their biological functions in stress and hormone signaling pathways.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Huidan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhi Jin
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yina Ding
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Meng Guo
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
57
|
Sahu A, Singh R, Verma PK. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. PLANTA 2023; 258:31. [PMID: 37368167 DOI: 10.1007/s00425-023-04188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
MAIN CONCLUSION This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Collapse
Affiliation(s)
- Anubhav Sahu
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
58
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
59
|
Ramos RN, Zhang N, Lauff DB, Valenzuela-Riffo F, Figueroa CR, Martin GB, Pombo MA, Rosli HG. Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against Pseudomonas syringae pv. tomato. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01358-0. [PMID: 37226022 DOI: 10.1007/s11103-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Plants defend themselves against pathogens using a two-layered immune system. The first response, pattern-triggered immunity (PTI), is activated upon recognition of microbe-associated molecular patterns (MAMPs). Virulent bacteria such as Pseudomonas syringae pv. tomato (Pst), deliver effector proteins into the plant cell to promote susceptibility. However, some plants possess resistance (R) proteins that recognize specific effectors leading to the activation of the second response, effector-triggered immunity (ETI). Resistant tomatoes such as Río Grande-PtoR recognize two Pst effectors (AvrPto and AvrPtoB) through the host Pto/Prf complex and activate ETI. We previously showed that the transcription factors (TF) WRKY22 and WRKY25 are positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens in Nicotiana benthamiana. Here, the CRISPR-Cas9 technique was used to develop three knockout tomato lines for either one or both TFs. The single and double mutants were all compromised in Pto/Prf-mediated ETI and had a weaker PTI response. The stomata apertures in all of the mutant lines did not respond to darkness or challenge with Pst DC3000. The WRKY22 and WRKY25 proteins both localize in the nucleus, but we found no evidence of a physical interaction between them. The WRKY22 TF was found to be involved in the transcriptional regulation of WRKY25, supporting the idea that they are not functionally redundant. Together, our results indicate that both WRKY TFs play a role in modulating stomata and are positive regulators of plant immunity in tomato.
Collapse
Affiliation(s)
- Romina N Ramos
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Diana B Lauff
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Felipe Valenzuela-Riffo
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Carlos R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
60
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
61
|
Liu H, Tang X, Zhang N, Li S, Si H. Role of bZIP Transcription Factors in Plant Salt Stress. Int J Mol Sci 2023; 24:ijms24097893. [PMID: 37175598 PMCID: PMC10177800 DOI: 10.3390/ijms24097893] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Soil salinity has become an increasingly serious problem worldwide, greatly limiting crop development and yield, and posing a major challenge to plant breeding. Basic leucine zipper (bZIP) transcription factors are the most widely distributed and conserved transcription factors and are the main regulators controlling various plant response processes against external stimuli. The bZIP protein contains two domains: a highly conserved, DNA-binding alkaline region, and a diverse leucine zipper, which is one of the largest transcription factor families in plants. Plant bZIP is involved in many biological processes, such as flower development, seed maturation, dormancy, and senescence, and plays an important role in abiotic stresses such as salt damage, drought, cold damage, osmotic stress, mechanical damage, and ABA signal response. In addition, bZIP is involved in the regulation of plant response to biological stresses such as insect pests and pathogen infection through salicylic acid, jasmonic acid, and ABA signal transduction pathways. This review summarizes and discusses the structural characteristics and functional characterization of the bZIP transcription factor group, the bZIP transcription factor complex and its molecular regulation mechanisms related to salt stress resistance, and the regulation of transcription factors in plant salt stress resistance. This review provides a theoretical basis and research ideas for further exploration of the salt stress-related functions of bZIP transcription factors. It also provides a theoretical basis for crop genetic improvement and green production in agriculture.
Collapse
Affiliation(s)
- Haotian Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
62
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
63
|
Chen C, Lu LL, Ma SY, Zhao YP, Wu N, Li WJ, Ma L, Kong XH, Xie ZM, Hou YX. Analysis of PAT1 subfamily members in the GRAS family of upland cotton and functional characterization of GhSCL13-2A in Verticillium dahliae resistance. PLANT CELL REPORTS 2023; 42:487-504. [PMID: 36680639 DOI: 10.1007/s00299-022-02971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
GhSCL13-2A, a member of the PAT1 subfamily in the GRAS family, positively regulates cotton resistance to Verticillium dahliae by mediating the jasmonic acid and salicylic acid signaling pathways and accumulation of reactive oxygen species. Verticillium wilt (VW) is a devastating disease of upland cotton (Gossypium hirsutum) that is primarily caused by the soil-borne fungus Verticillium dahliae. Scarecrow-like (SCL) proteins are known to be involved in plant abiotic and biotic stress responses, but their roles in cotton defense responses are still unclear. In this study, a total of 25 GhPAT1 subfamily members in the GRAS family were identified in upland cotton. Gene organization and protein domain analysis showed that GhPAT1 members were highly conserved. GhPAT1 genes were widely expressed in various tissues and at multiple developmental stages, and they were responsive to jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signals. Furthermore, GhSCL13-2A was induced by V. dahliae infection. V. dahliae resistance was enhanced in Arabidopsis thaliana by ectopic overexpression of GhSCL13-2A, whereas cotton GhSCL13-2A knockdowns showed increased susceptibility. Levels of reactive oxygen species (ROS) and JA were also increased and SA content was decreased in GhSCL13-2A knockdowns. At the gene expression level, PR genes and SA signaling marker genes were down-regulated and JA signaling marker genes were upregulated in GhSCL13-2A knockdowns. GhSCL13-2A was shown to be localized to the cell membrane and the nucleus. Yeast two-hybrid and luciferase complementation assays indicated that GhSCL13-2A interacted with GhERF5. In Arabidopsis, V. dahliae resistance was enhanced by GhERF5 overexpression; in cotton, resistance was reduced in GhERF5 knockdowns. This study revealed a positive role of GhSCL13-2A in V. dahliae resistance, establishing it as a strong candidate gene for future breeding of V. dahliae-resistant cotton cultivars.
Collapse
Affiliation(s)
- Chen Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li-Li Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National NanfanResearch Institute (Sanya), Chinese Academy ofAgricultural Sciences, Sanya, 572024, Hainan, China
| | - Shu-Ya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Peng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Na Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wen-Jie Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Ma
- Agricultural Science Institute of the Third Division of Xinjiang Production and Construction Corps, Tumushuke, 843901, Xinjiang, China
| | - Xian-Hui Kong
- Agricultural Science Institute of the Third Division of Xinjiang Production and Construction Corps, Tumushuke, 843901, Xinjiang, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Zong-Ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China.
| | - Yu-Xia Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
64
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
65
|
Liu Y, Huang Y, Li Z, Feng M, Ge W, Zhong C, Xue R. Genome-wide identification of the TGA genes in common bean ( Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection. Front Genet 2023; 14:1137634. [PMID: 36755571 PMCID: PMC9901207 DOI: 10.3389/fgene.2023.1137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Fusarium wilt, which affects common bean all across the world, is caused by Fusarium oxysporum f. sp. Phaseoli (Fop). It is necessary to have functional genes in response to Fop infection because they might be used to manage disease. As a crucial regulator, TGA-binding transcription factor (TGA) is engaged in the defense mechanism of plants against pathogens. The role of TGA regulators in common bean in response to Fop infection, however, has not been documented. Hence, we performed genome-wide identified and characterized eight TGA genes in common bean. In this study, eight PvTGA genes were distributed on six chromosomes and classified into four subgroups. The PvTGA genes have the same conserved bZIP and DOG1 domains, but there are specific sequence structures in different PvTGAs. Phylogenetic and synteny analysis explained that PvTGA gene has a close genetic relationship with legume TGAs and that PvTGA03 and PvTGA05 may play an important role in evolution. Transcriptome data explained that expression levels of PvTGA genes showed diversity in different tissues. After Fop inoculation, the expression levels of PvTGA03 and PvTGA07 were significantly different between resistant and susceptible genotypes. Under SA treatment, the expression levels of PvTGA03, PvTGA04, PvTGA06, PvTGA07 and PvTGA08 were significantly different. These results imply that PvTGA03 and PvTGA07 play key roles in SA-mediated resistance to Fusarium wilt. Together, these findings advance knowledge of the PvTGA gene family in common bean and will help future studies aimed at reducing Fusarium wilt.
Collapse
Affiliation(s)
- Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| | - Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| |
Collapse
|
66
|
Iqbal A, Bocian J, Hameed A, Orczyk W, Nadolska-Orczyk A. Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. Int J Mol Sci 2022; 23:15431. [PMID: 36499751 PMCID: PMC9736367 DOI: 10.3390/ijms232315431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.
Collapse
Affiliation(s)
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
67
|
Yan W, Li Z, Pian C, Wu Y. PlantBind: an attention-based multi-label neural network for predicting plant transcription factor binding sites. Brief Bioinform 2022; 23:6713513. [PMID: 36155619 DOI: 10.1093/bib/bbac425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Identification of transcription factor binding sites (TFBSs) is essential to understanding of gene regulation. Designing computational models for accurate prediction of TFBSs is crucial because it is not feasible to experimentally assay all transcription factors (TFs) in all sequenced eukaryotic genomes. Although many methods have been proposed for the identification of TFBSs in humans, methods designed for plants are comparatively underdeveloped. Here, we present PlantBind, a method for integrated prediction and interpretation of TFBSs based on DNA sequences and DNA shape profiles. Built on an attention-based multi-label deep learning framework, PlantBind not only simultaneously predicts the potential binding sites of 315 TFs, but also identifies the motifs bound by transcription factors. During the training process, this model revealed a strong similarity among TF family members with respect to target binding sequences. Trans-species prediction performance using four Zea mays TFs demonstrated the suitability of this model for transfer learning. Overall, this study provides an effective solution for identifying plant TFBSs, which will promote greater understanding of transcriptional regulatory mechanisms in plants.
Collapse
Affiliation(s)
| | - Zutan Li
- Nanjing Agricultur al University
| | - Cong Pian
- College of Sciences at Nanjing Agricultural University
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, College of Agriculture, Academy for Advanced Interdisciplinary Studies at Nanjing Agricultural University
| |
Collapse
|
68
|
Alptekin B, Erfatpour M, Mangel D, Pauli D, Blake T, Turner H, Lachowiec J, Sherman J, Fischer A. Selection of favorable alleles of genes controlling flowering and senescence improves malt barley quality. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:59. [PMID: 37313013 PMCID: PMC10248683 DOI: 10.1007/s11032-022-01331-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Malt barley (Hordeum vulgare L.) is an important cash crop with stringent grain quality standards. Timing of the switch from vegetative to reproductive growth and timing of whole-plant senescence and nutrient remobilization are critical for cereal grain yield and quality. Understanding the genetic variation in genes associated with these developmental traits can streamline genotypic selection of superior malt barley germplasm. Here, we determined the effects of allelic variation in three genes encoding a glycine-rich RNA-binding protein (HvGR-RBP1) and two NAC transcription factors (HvNAM1 and HvNAM2) on malt barley agronomics and quality using previously developed markers for HvGR-RBP1 and HvNAM1 and a novel marker for HvNAM2. Based on a single-nucleotide polymorphism (SNP) in the first intron, the utilized marker differentiates NAM2 alleles of low-grain protein variety 'Karl' and of higher protein variety 'Lewis'. We demonstrate that the selection of favorable alleles for each gene impacts heading date, senescence timing, grain size, grain protein concentration, and malt quality. Specifically, combining 'Karl' alleles for the two NAC genes with the 'Lewis' HvGR-RBP1 allele extends grain fill duration, increases the percentage of plump kernels, decreases grain protein, and provides malt quality stability. Molecular markers for these genes are therefore highly useful tools in malt barley breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01331-7.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
| | - Mohammad Erfatpour
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Dylan Mangel
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Duke Pauli
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Tom Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Hannah Turner
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Jamie Sherman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Andreas Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
69
|
Thakur S, Vasudev PG. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 2022; 49:10995-11008. [PMID: 36074230 DOI: 10.1007/s11033-022-07825-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants' research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.
Collapse
Affiliation(s)
- Sudipa Thakur
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India.
| | - Prema G Vasudev
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
| |
Collapse
|
70
|
Characterizations of a Class-I BASIC PENTACYSTEINE Gene Reveal Conserved Roles in the Transcriptional Repression of Genes Involved in Seed Development. Curr Issues Mol Biol 2022; 44:4059-4069. [PMID: 36135190 PMCID: PMC9497819 DOI: 10.3390/cimb44090278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The developmental regulation of flower organs involves the spatio-temporal regulation of floral homeotic genes. BASIC PENTACYSTEINE genes are plant-specific transcription factors that is involved in many aspects of plant development through gene transcriptional regulation. Although studies have shown that the BPC genes are involved in the developmental regulation of flower organs, little is known about their role in the formation of double-flower due. Here we characterized a Class I BPC gene (CjBPC1) from an ornamental flower—Camellia japonica. We showed that CjBPC1 is highly expressed in the central whorls of flowers in both single and doubled varieties. Overexpression of CjBPC1 in Arabidopsis thaliana caused severe defects in siliques and seeds. We found that genes involved in ovule and seed development, including SEEDSTICK, LEAFY COTYLEDON2, ABSCISIC ACID INSENSITIVE 3 and FUSCA3, were significantly down-regulated in transgenic lines. We showed that the histone 3 lysine 27 methylation levels of these downstream genes were enhanced in the transgenic plants, indicating conserved roles of CjBPC1 in recruiting the Polycomb Repression Complex for gene suppression.
Collapse
|
71
|
Sreeharsha RV, Mudalkar S, Reddy AR. Genome sequencing and analysis uncover the regulatory elements involved in the development and oil biosynthesis of Pongamia pinnata (L.) - A potential biodiesel feedstock. FRONTIERS IN PLANT SCIENCE 2022; 13:747783. [PMID: 36092428 PMCID: PMC9454018 DOI: 10.3389/fpls.2022.747783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Due to rapid industrialization, the consumption of petro-products has increased, while fossil fuel resources have been gradually depleted. There has been a resurgence of interest in plant-derived biofuels as a sustainable alternative to fossil fuels for the purpose of reducing greenhouse gas emissions. Pongamia pinnata L., which is also known as Millettia pinnata is an oil-yielding, leguminous tree with a large and complex genome. Despite its multiple industrial applications, this orphan tree species has inconsistent yields and a limited understanding of its functional genomics. We assessed physiological and morphological characteristics of five high-yielding pongamia accessions and deduced important yield descriptors. Furthermore, we sequenced the genome of this potential biofuel feedstock using Illumina HiSeq, NextSeq, and MiSeq platforms to generate paired-end reads. Around 173 million processed reads amounting to 65.2 Gb were assembled into a 685 Mb genome, with a gap rate of 0.02%. The sequenced scaffolds were used to identify 30,000 gene models, 406,385 Simple-Sequence-Repeat (SSR) markers, and 43.6% of repetitive sequences. We further analyzed the structural information of genes belonging to certain key metabolic pathways, including lipid metabolism, photosynthesis, circadian rhythms, plant-pathogen interactions, and karanjin biosynthesis, all of which are commercially significant for pongamia. A total of 2,219 scaffolds corresponding to 29 transcription factor families provided valuable information about gene regulation in pongamia. Similarity studies and phylogenetic analysis revealed a monophyletic group of Fabaceae members wherein pongamia out-grouped from Glycine max and Cajanus cajan, revealing its unique ability to synthesize oil for biodiesel. This study is the first step toward completing the genome sequence of this imminent biofuel tree species. Further attempts at re-sequencing with different read chemistry will certainly improve the genetic resources at the chromosome level and accelerate the molecular breeding programs.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Shalini Mudalkar
- Department of Tree Breeding and Improvement, Forest College and Research Institute (FCRI), Hyderabad, India
| | | |
Collapse
|
72
|
Gandass N, Salvi P. Intrinsically disordered protein, DNA binding with one finger transcription factor ( OsDOF27) implicates thermotolerance in yeast and rice. FRONTIERS IN PLANT SCIENCE 2022; 13:956299. [PMID: 35968137 PMCID: PMC9372624 DOI: 10.3389/fpls.2022.956299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intrinsically disorder regions or proteins (IDRs or IDPs) constitute a large subset of the eukaryotic proteome, which challenges the protein structure-function paradigm. These IDPs lack a stable tertiary structure, yet they play a crucial role in the diverse biological process of plants. This study represents the intrinsically disordered nature of a plant-specific DNA binding with one finger transcription factor (DOF-TF). Here, we have investigated the role of OsDOF27 and characterized it as an intrinsically disordered protein. Furthermore, the molecular role of OsDOF27 in thermal stress tolerance has been elucidated. The qRT-PCR analysis revealed that OsDOF27 was significantly upregulated under different abiotic stress treatments in rice, particularly under heat stress. The stress-responsive transcript induction of OsDOF27 was further correlated with enriched abiotic stress-related cis-regulatory elements present in its promoter region. The in vivo functional analysis of the potential role of OsDOF27 in thermotolerance was further studied in yeast and in planta. Ectopic expression of OsDOF27 in yeast implicates thermotolerance response. Furthermore, the rice transgenic lines with overexpressing OsDOF27 revealed a positive role in mitigating heat stress tolerance. Collectively, our results evidently show the intrinsically disorderedness in OsDOF27 and its role in thermal stress response in rice.
Collapse
|
73
|
Huang Y, Du L, Wang M, Ren M, Yu S, Yang Q. Multifaceted roles of zinc finger proteins in regulating various agronomic traits in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:974396. [PMID: 35958192 PMCID: PMC9359907 DOI: 10.3389/fpls.2022.974396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Rice is an important cereal crop, which provides staple food for more than half of the world's population. To meet the demand of the ever-growing population in the next few decades, an extra increase in rice yield is an urgent need. Given that various agronomic traits contribute to the yield of rice, deciphering the key regulators involved in multiple agronomic trait formation is particularly important. As a superfamily of transcription factors, zinc finger proteins participate in regulating multiple genes in almost every stage of rice growth and development. Therefore, understanding zinc finger proteins underlying regulatory network would provide insights into the regulation of agronomic traits in rice. To this end, we intend to summarize the current advances in zinc finger proteins, with emphasis on C2H2 and CCCH proteins, and then discuss their potential in improving rice yield.
Collapse
Affiliation(s)
- Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Guangdong Province Key Laboratory of Plant Molecular Breeding, Guangzhou, China
| | - Longgang Du
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Meixi Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Mengyun Ren
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shouwu Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Qianying Yang
- Division of Integrative Bioscience and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang-si, South Korea
| |
Collapse
|
74
|
Overcoming Metabolic Constraints in the MEP-Pathway Enrich Salvia sclarea Hairy Roots in Therapeutic Abietane Diterpenes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abietane diterpenoids (e.g., carnosic acid, aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol) synthesized in the roots of several Salvia species have proved to have promising biological activities, but their use on a large scale is limited by the very low content extracted from in vivo roots. In this review, we summarized our efforts and the achieved results aimed at optimizing the synthesis of these diterpenes in Salvia sclarea hairy roots by either elicitation or by modifying the expression of genes encoding enzymes of the MEP-pathway, the biosynthetic route from which they derive. Stable S. sclarea hairy roots (HRs) were treated with methyl jasmonate or coronatine, or genetically engineered, by tuning the expression of genes controlling enzymatic rate-limiting steps (DXS, DXR, GGPPS, CPPS alone or in combination), by silencing of the Ent-CPPS gene, encoding an enzyme acting at gibberellin lateral competitive route or by coordinate up-regulation of biosynthetic genes mediated by transcription factors (WRKY and MYC2). Altogether, these different approaches successfully increased the amount of abietane diterpenes in S. sclarea HRs from to 2 to 30 times over the content found in the control HR line.
Collapse
|
75
|
Transcriptional regulation of plant innate immunity. Essays Biochem 2022; 66:607-620. [PMID: 35726519 PMCID: PMC9528082 DOI: 10.1042/ebc20210100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022]
Abstract
Transcriptional reprogramming is an integral part of plant immunity. Tight regulation of the immune transcriptome is essential for a proper response of plants to different types of pathogens. Consequently, transcriptional regulators are proven targets of pathogens to enhance their virulence. The plant immune transcriptome is regulated by many different, interconnected mechanisms that can determine the rate at which genes are transcribed. These include intracellular calcium signaling, modulation of the redox state, post-translational modifications of transcriptional regulators, histone modifications, DNA methylation, modulation of RNA polymerases, alternative transcription inititation, the Mediator complex and regulation by non-coding RNAs. In addition, on their journey from transcription to translation, mRNAs are further modulated through mechanisms such as nuclear RNA retention, storage of mRNA in stress granules and P-bodies, and post-transcriptional gene silencing. In this review, we highlight the latest insights into these mechanisms. Furthermore, we discuss some emerging technologies that promise to greatly enhance our understanding of the regulation of the plant immune transcriptome in the future.
Collapse
|
76
|
Zhang X, Cao H, Wang H, Zhao J, Gao K, Qiao J, Li J, Ge S. The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review. NANOMATERIALS 2022; 12:nano12060936. [PMID: 35335748 PMCID: PMC8949508 DOI: 10.3390/nano12060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
Numerous reports of graphene-family nanomaterials (GFNs) promoting plant growth have opened up a wide range of promising potential applications in agroforestry. However, several toxicity studies have raised growing concerns about the biosafety of GFNs. Although these studies have provided clues about the role of GFNs from different perspectives (such as plant physiology, biochemistry, cytology, and molecular biology), the mechanisms by which GFNs affect plant growth remain poorly understood. In particular, a systematic collection of data regarding differentially expressed genes in response to GFN treatment has not been conducted. We summarize here the fate and biological effects of GFNs in plants. We propose that soil environments may be conducive to the positive effects of GFNs but may be detrimental to the absorption of GFNs. Alterations in plant physiology, biochemistry, cytological structure, and gene expression in response to GFN treatment are discussed. Coincidentally, many changes from the morphological to biochemical scales, which are caused by GFNs treatment, such as affecting root growth, disrupting cell membrane structure, and altering antioxidant systems and hormone concentrations, can all be mapped to gene expression level. This review provides a comprehensive understanding of the effects of GFNs on plant growth to promote their safe and efficient use.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
| | - Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
- Correspondence: (H.C.); (H.W.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (H.C.); (H.W.)
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Kun Gao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Jun Qiao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Jingwei Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Sai Ge
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
77
|
Comparative Transcriptome and Phytochemical Analysis Provides Insight into Triterpene Saponin Biosynthesis in Seeds and Flowers of the Tea Plant (Camellia sinensis). Metabolites 2022; 12:metabo12030204. [PMID: 35323647 PMCID: PMC8949954 DOI: 10.3390/metabo12030204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
Triterpene saponins exhibit various biological and pharmacological activities. However, the knowledge on saponin biosynthesis in tea plants (Camellia sinensis L.) is still limited. In this work, tea flower and seed samples at different developmental stages and leaves were collected and analyzed with UPLC-PDA-MS and RNA sequencing for saponin determination and transcriptome comparison. The saponin content reached around 19% in the freshly mature seeds and 7% in the green flower buds, and decreased with the fruit ripeness and flower blooming. Almost no saponins were detected in leaf samples. PCA and KEGG analysis suggested that the gene expression pattern and secondary metabolism in TF1 and TS2 vs. leaf samples were significantly different. Weighted gene coexpression network analysis (WGCNA) uncovered two modules related to saponin content. The mevalonate (MVA) instead of 2-C-methyl-d-erythritol-4-phospate (MEP) pathway was responsible for saponin accumulation in tea plants, and 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), diphosphomevalonate decarboxylase (MVD) and isopentenyl diphosphate isomerase (IDI) may be the key enzymes involved in saponin biosynthesis in tea seeds and flowers. Moreover, ten transcription factors (TFs) were predicted to regulate saponin biosynthesis in the tea plant. Taken together, our study provides a global insight into the saponin biosynthesis and accumulation in the tea plant.
Collapse
|