51
|
Sushma K, Vijayalakshmi MA, Krishnan V, Satheeshkumar PK. Cloning, expression, purification and characterization of a single chain variable fragment specific to tumor necrosis factor alpha in Escherichia coli. J Biotechnol 2011; 156:238-44. [DOI: 10.1016/j.jbiotec.2011.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022]
|
52
|
Gray SA, Barr JR, Kalb SR, Marks JD, Baird CL, Cangelosi GA, Miller KD, Feldhaus MJ. Synergistic capture of Clostridium botulinum type A neurotoxin by scFv antibodies to novel epitopes. Biotechnol Bioeng 2011; 108:2456-67. [PMID: 21538339 DOI: 10.1002/bit.23196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/07/2022]
Abstract
A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, 3 also bound to full-length BoNT/A toxin complex with affinities ranging from 5 to 48 nM. Epitope binning showed that the three unique clones recognized at least two epitopes distinct from one another as well as from the detection MAbs. After production in E. coli, scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigens. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.
Collapse
Affiliation(s)
- Sean A Gray
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, Washington 98109; telephone: 206-256-7143; fax: 206-256-7229.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments. Protein Expr Purif 2011; 76:221-8. [DOI: 10.1016/j.pep.2010.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/13/2010] [Accepted: 12/13/2010] [Indexed: 11/17/2022]
|
54
|
Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D. Aggregation, stability, and formulation of human antibody therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:41-61. [DOI: 10.1016/b978-0-12-386483-3.00004-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
55
|
Boddapati S, Levites Y, Sierks MR. Inhibiting β-secretase activity in Alzheimer's disease cell models with single-chain antibodies specifically targeting APP. J Mol Biol 2010; 405:436-47. [PMID: 21073877 DOI: 10.1016/j.jmb.2010.10.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 01/09/2023]
Abstract
The Amyloid-β (Aβ) peptide is produced from the amyloid precursor protein (APP) by sequential proteolytic cleavage of APP first by β-secretase and then by γ-secretase. β-Site APP cleaving enzyme-1 (BACE-1) is the predominant enzyme involved in β-secretase processing of APP and is a primary therapeutic target for treatment of Alzheimer's disease. While inhibiting BACE-1 activity has obvious therapeutic advantages, BACE-1 also cleaves numerous other substrates with important physiological activity. Thus, blanket inhibition of BACE-1 function may have adverse side effects. We isolated a single chain variable fragment (scFv) from a human-based scFv yeast display library that selectively inhibits BACE-1 activity toward APP by binding the APP substrate at the proteolytic site. We selected the iBSEC1 scFv, since it recognizes the BACE-1 cleavage site on APP but does not bind the adjacent highly antigenic N-terminal of Aβ, and thus it will target APP but not soluble Aβ. When added to 7PA2 cells, a mammalian cell line that overexpresses APP, the iBSEC1 scFv binds APP on the cell surface, reduces toxicity induced by APP overexpression, and reduces both intracellular and extracellular Aβ levels by around 50%. Since the iBSEC1 scFv does not contain the antibody F(c) region, this construct does not pose the risk of exacerbating inflammation in the brain as faced with full-length monoclonal antibodies for potential therapeutic applications.
Collapse
Affiliation(s)
- Shanta Boddapati
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | | | | |
Collapse
|
56
|
Cho YK, Shusta EV. Antibody library screens using detergent-solubilized mammalian cell lysates as antigen sources. Protein Eng Des Sel 2010; 23:567-77. [PMID: 20498037 PMCID: PMC2920304 DOI: 10.1093/protein/gzq029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/01/2010] [Accepted: 04/09/2010] [Indexed: 01/04/2023] Open
Abstract
High-throughput generation of antibodies against cellular components is currently a challenge in proteomics, therapeutic development and other biological applications. It is particularly challenging to raise antibodies that target membrane proteins due to their insolubility in aqueous solutions. To address these issues, a yeast display library of human single-chain antibody fragments (scFvs) was efficiently screened directly against detergent-solubilized and biotinylated lysates of a target cell line, thereby avoiding issues with membrane protein insolubility and eliminating the need for heterologous expression or purification of antigens. Antibody clones that specifically bind plasma membrane proteins or intracellular proteins were identified, depending on the biotinylation method applied. Antibodies against a predetermined target could also be identified using cell lysate as an antigen source as demonstrated by selecting an scFv against the transferrin receptor (TfR). When secreted from yeast and purified, the selected scFvs are active under physiological conditions in the absence of detergents. In addition, this method allows facile characterization of target antigens because it is compatible with yeast display immunoprecipitation. We expect that this method will prove useful for multiplex affinity reagent generation and in targeted antibody screens.
Collapse
Affiliation(s)
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
57
|
Gray SA, Weigel KM, Miller KD, Ndung'u J, Büscher P, Tran T, Baird C, Cangelosi GA. Flow cytometry-based methods for assessing soluble scFv activities and detecting antigens in solution. Biotechnol Bioeng 2010; 105:973-81. [PMID: 19953671 DOI: 10.1002/bit.22607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from non-immune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast-displayed and -secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast-displayed scFv that bind non-overlapping or non-competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast-displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.
Collapse
Affiliation(s)
- Sean A Gray
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Kasturirangan S, Brune D, Sierks M. Promoting alpha-secretase cleavage of beta-amyloid with engineered proteolytic antibody fragments. Biotechnol Prog 2009; 25:1054-63. [PMID: 19572401 DOI: 10.1002/btpr.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deposition of beta-amyloid (A beta) is considered as an important early event in the pathogenesis of Alzheimer's Disease (AD), and reduction of A beta levels by various therapeutic approaches is actively being pursued. A potentially non-inflammatory approach to facilitate clearance and reduce toxicity is to hydrolyze A beta at its alpha-secretase site. We have previously identified a light chain fragment, mk18, with alpha-secretase-like catalytic activity, producing the 1-16 and 17-40 amino acid fragments of A beta 40 as primary products, although hydrolysis is also observed following other lysine and arginine residues. To improve the specific activity of the recombinant antibody by affinity maturation, we constructed a single chain variable fragment (scFv) library containing a randomized CDR3 heavy chain region. A biotinylated covalently reactive analog mimicking alpha-secretase site cleavage was synthesized, immobilized on streptavidin beads, and used to select yeast surface expressed scFvs with increased specificity for A beta. After two rounds of selection against the analog, yeast cells were individually screened for proteolytic activity towards an internally quenched fluorogenic substrate that contains the alpha-secretase site of A beta. From 750 clones screened, the two clones with the highest increase in proteolytic activity compared to the parent mk18 were selected for further study. Kinetic analyses using purified soluble scFvs showed a 3- and 6-fold increase in catalytic activity (k(cat)/K(M)) toward the synthetic A beta substrate compared to the original scFv primarily due to an expected decrease in K(M) rather than an increase in k(cat). This affinity maturation strategy can be used to select for scFvs with increased catalytic specificity for A beta. These proteolytic scFvs have potential therapeutic applications for AD by decreasing soluble A beta levels in vivo.
Collapse
Affiliation(s)
- Srinath Kasturirangan
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
59
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
60
|
Xiong H, Li S, Yang Z, Burgess RR, Dynan WS. E. coli expression of a soluble, active single-chain antibody variable fragment containing a nuclear localization signal. Protein Expr Purif 2009; 66:172-80. [PMID: 19281848 DOI: 10.1016/j.pep.2009.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 01/10/2023]
Abstract
Single-chain antibody variable fragment (scFv) proteins consist of an antibody heavy chain variable sequence joined via a flexible linker to a light chain variable sequence. Prior work has shown that ScFv 18-2 binds the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and sensitizes cancer cells to radiation following nuclear microinjection. A potential clinical delivery strategy is based on modification of the scFv so that it can be taken up into cells and imported to the nucleus. This will require development of an expression system for a nuclear localization signal (NLS)-tagged scFv derivative. We found, however, that addition of the highly basic NLS severely compromised expression in the host-vector system used for the parental scFv. After testing a variety of host strains, fusion partners, and NLS sequences and placements, successful expression was obtained with a construct containing a stabilizing N-terminal maltose binding protein tag and a single, optimized, C-terminal NLS moiety. Amylose affinity-purified ScFv 18-2 NLS protein was stable to storage at 4 degrees C in the presence of glycerol or trehalose, bound selectively to an epitope peptide, and was cleavable at an engineered Factor Xa protease site. Following lipid-mediated uptake into cultured cells, NLS-tagged ScFv 18-2, unlike the parental ScFv 18-2, localized predominantly in the cell nucleus.
Collapse
Affiliation(s)
- Hairong Xiong
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
61
|
High-level expression of a functional humanized anti-CTLA4 single-chain variable fragment antibody in Pichia pastoris. Appl Microbiol Biotechnol 2009; 82:41-8. [DOI: 10.1007/s00253-008-1744-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
62
|
Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol 2009; 9:6. [PMID: 19175944 PMCID: PMC2642811 DOI: 10.1186/1472-6750-9-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 01/29/2009] [Indexed: 12/03/2022] Open
Abstract
Background Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide. Results Here we report the simplest and highly efficient method for the construction of a highly useful human single chain variable fragment (scFv) library. The least number of oligonucleotide primers, electroporations and ligation reactions were used to generate a library of 1.5 × 108 individual clones, without generation of sub-libraries. All possible combinations of heavy and light chains, among all immunoglobulin isotypes, were included by using a mixture of primers and overlapping extension PCR. The key difference from other similar libraries was the highest diversity of variable gene repertoires, which was derived from 140 non-immunized human donors. A wide variety of antigens were successfully used to affinity select specific binders. These included pure recombinant proteins, a hapten and complex antigens such as viral coat proteins, crude snake venom and cancer cell surface antigens. In particular, we were able to use standard bio-panning method to isolate antibody that can bind to soluble Aflatoxin B1, when using BSA-conjugated toxin as a target, as demonstrated by inhibition ELISA. Conclusion These results suggested that by using an optimized protocol and very high repertoire diversity, a compact and efficient phage antibody library can be generated. This advanced method could be adopted by any molecular biology laboratory to generate both naïve or immunized libraries for particular targets as well as for high-throughput applications.
Collapse
Affiliation(s)
- Potjamas Pansri
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | | | | | | | | |
Collapse
|
63
|
Inui H, Takehara A, Doi F, Nishi K, Takai M, Miyake S, Ohkawa H. A scFv antibody-based immunoaffinity chromatography column for clean-up of bisphenol A-contaminated water samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:353-358. [PMID: 19102649 DOI: 10.1021/jf802781t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This is a report on the development of immunoaffinity chromatography using a column of silica gel with an immobilized single-chain variable fragment (scFv) antibody specific to bisphenol A (BPA) for cleanup of BPA-contaminated water samples. The BBA-2187 scFv antibody specific to BPA was purified from the periplasmic fractions of the recombinant Escherichia coli. After a sample of BPA-contaminated river water was applied to the immunoaffinity column, the background signal intensity observed in high-performance liquid chromatography (HPLC) analysis of the eluates was markedly lower than that observed in HPLC analysis of the eluates from an Oasis HLB cartridge treated with the same sample. The immunoaffinity column efficiently concentrated BPA from actual river water samples with different matrices. Our results demonstrate that the immunoaffinity column with immobilized BBA-2187 scFv antibody is efficient for the cleanup of BPA-contaminated water samples from different sources.
Collapse
Affiliation(s)
- Hideyuki Inui
- Research Center for Environmental Genomics and Graduate School of Science and Technology, Kobe University, Rokkodaicho, Nada-ku, Kobe, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Ishikiriyama M, Nishina T, Kato T, Ueda H, Park EY. Human single-chain antibody expression in the hemolymph and fat body of silkworm larvae and pupae using BmNPV bacmids. J Biosci Bioeng 2009; 107:67-72. [DOI: 10.1016/j.jbiosc.2008.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 08/25/2008] [Indexed: 10/20/2022]
|
65
|
Abstract
Many biosensors depend on molecular recognition reagents to achieve highly sensitive and specific detection levels of an analyte of interest. Although new and improved detection platforms continue to be developed, improvements in the affinity and specificity of the molecular recognition reagents often dictate the ultimate performance level and utility of the instrument. Accordingly, large effort is placed in discovering and characterizing the reagents to be used for a biosensor application. Antibodies, owing to their unparalleled ability to bind a diverse array of antigens with high affinity and specificity, have been widely used as molecular recognition reagents in the biosensor field. The recent advent of recombinant in vitro antibody display technologies, in general, and yeast surface display, in particular, allow specific traits of a given antibody to be discreetly augmented to enhance biosensor performance. Large variegated libraries derived from existing antibodies already employed in a particular biosensor can be created and screened for mutations that confer a desired improved phenotype leading to enhanced biosensor performance. This chapter will provide a protocol for the affinity maturation of a previously isolated monoclonal antibody, the most widely used application of in vitro directed evolution.
Collapse
|
66
|
Huang D, Gore PR, Shusta EV. Increasing yeast secretion of heterologous proteins by regulating expression rates and post-secretory loss. Biotechnol Bioeng 2008; 101:1264-75. [DOI: 10.1002/bit.22019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
67
|
Miller KD, Pefaur NB, Baird CL. Construction and screening of antigen targeted immune yeast surface display antibody libraries. ACTA ACUST UNITED AC 2008; Chapter 4:Unit4.7. [PMID: 18770649 DOI: 10.1002/0471142956.cy0407s45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These protocols describe a yeast surface display-based process for the rapid selection of antibodies from immunized mice, eliminating the need for creating and screening hybridoma fusions. A yeast surface display library of single-chain antibody fragments (scFvs) is created from antigen-binding B cells from the splenocytes of immunized mice. The antigen targeted library is then screened for antigen specific scFv by magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Library construction and screening can be accomplished in as little as 2 weeks, resulting in a panel of scFvs specific for the target antigen.
Collapse
Affiliation(s)
- Keith D Miller
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | |
Collapse
|
68
|
High-level expression of a functional humanized single-chain variable fragment antibody against CD25 in Pichia pastoris. Appl Microbiol Biotechnol 2008; 81:33-41. [DOI: 10.1007/s00253-008-1568-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
|
69
|
Seurynck-Servoss SL, Baird CL, Miller KD, Pefaur NB, Gonzalez RM, Apiyo DO, Engelmann HE, Srivastava S, Kagan J, Rodland KD, Zangar RC. Immobilization strategies for single-chain antibody microarrays. Proteomics 2008; 8:2199-210. [PMID: 18452230 DOI: 10.1002/pmic.200701036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sandwich ELISA microarrays have great potential for validating disease biomarkers. Each ELISA relies on robust-affinity reagents that retain activity when immobilized on a solid surface or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional IgG. Unfortunately, scFv are typically less active than IgG following immobilization on a solid surface and not always suitable for use in sandwich ELISAs. We therefore investigated different immobilization strategies and scFv constructs to determine a more robust strategy for using scFv as ELISA reagents. Two promising strategies emerged from these studies: (i) the precapture of epitope-tagged scFv using an antiepitope antibody and (ii) the direct printing of a thioredoxin (TRX)/scFv fusion protein on glass slides. Both strategies improved the stability of immobilized scFv and increased the sensitivity of the scFv ELISA microarray assays, although the antiepitope precapture method introduced a risk of reagent transfer. Using the direct printing method, we show that scFv against prostate-specific antigen (PSA) are highly specific when tested against 21 different IgG-based assays. In addition, the scFv microarray PSA assay gave comparable quantitative results (R(2) = 0.95) to a commercial 96-well ELISA when tested using human serum samples. In addition, we find that TRX-scFv fusions against epidermal growth factor and toxin X have good LOD. Overall, these results suggest that minor modifications of the scFv construct are sufficient to produce reagents that are suitable for use in multiplex assay systems.
Collapse
|
70
|
|
71
|
Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem 2008; 104:859-74. [DOI: 10.1111/j.1471-4159.2007.05064.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
72
|
Ettayebi K, Hardy ME. Recombinant norovirus-specific scFv inhibit virus-like particle binding to cellular ligands. Virol J 2008; 5:21. [PMID: 18237416 PMCID: PMC2267775 DOI: 10.1186/1743-422x-5-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/31/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Noroviruses cause epidemic outbreaks of gastrointestinal illness in all age-groups. The rapid onset and ease of person-to-person transmission suggest that inhibitors of the initial steps of virus binding to susceptible cells have value in limiting spread and outbreak persistence. We previously generated a monoclonal antibody (mAb) 54.6 that blocks binding of recombinant norovirus-like particles (VLP) to Caco-2 intestinal cells and inhibits VLP-mediated hemagglutination. In this study, we engineered the antigen binding domains of mAb 54.6 into a single chain variable fragment (scFv) and tested whether these scFv could function as cell binding inhibitors, similar to the parent mAb. RESULTS The scFv54.6 construct was engineered to encode the light (VL) and heavy (VH) variable domains of mAb 54.6 separated by a flexible peptide linker, and this recombinant protein was expressed in Pichia pastoris. Purified scFv54.6 recognized native VLPs by immunoblot, inhibited VLP-mediated hemagglutination, and blocked VLP binding to H carbohydrate antigen expressed on the surface of a CHO cell line stably transfected to express alpha 1,2-fucosyltransferase. CONCLUSION scFv54.6 retained the functional properties of the parent mAb with respect to inhibiting norovirus particle interactions with cells. With further engineering into a form deliverable to the gut mucosa, norovirus neutralizing antibodies represent a prophylactic strategy that would be valuable in outbreak settings.
Collapse
Affiliation(s)
- Khalil Ettayebi
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Michele E Hardy
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
73
|
An scFv intrabody against the nonamyloid component of alpha-synuclein reduces intracellular aggregation and toxicity. J Mol Biol 2007; 377:136-47. [PMID: 18237741 DOI: 10.1016/j.jmb.2007.11.096] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/16/2007] [Accepted: 11/26/2007] [Indexed: 11/21/2022]
Abstract
Prevention of abnormal misfolding and aggregation of alpha synuclein (syn) protein in vulnerable neurons should be viable therapeutic strategies for reducing pathogenesis in Parkinson's disease. The nonamyloid component (NAC) region of alpha-syn shows strong tendencies to form beta-sheet structures, and deletion of this region has been shown to reduce aggregation and toxicity in vitro and in vivo. The binding of a molecular species to this region may mimic the effects of such deletions. Single-chain variable fragment (scFv) antibodies retain the binding specificity of antibodies and, when genetically manipulated to create high-diversity libraries, allow in vitro selection against peptides. Accordingly, we used a yeast surface display library of an entire naive repertoire of human scFv antibodies to select for binding to a NAC peptide. Candidate scFv antibodies (after transfer to mammalian expression vectors) were screened for viability in a neuronal cell line by transient cotransfection with A53T mutant alpha-syn. This provided a ranking of the protective efficacies of the initial panel of intracellular antibodies (intrabodies). High steady-state expression levels and apparent conformational epitope binding appeared more important than in vitro affinity in these assays. None of the scFv antibodies selected matched the sequences of previously reported anti-alpha-syn scFv antibodies. A stable cell line expressing the most effective intrabody, NAC32, showed highly significant reductions in abnormal aggregation in two separate models. Recently, intrabodies have shown promising antiaggregation and neuroprotective effects against misfolded mutant huntingtin protein. The NAC32 study extends such work significantly by utilizing information about the pathogenic capacity of a specific alpha-syn region to offer a new generation of in vitro-derived antibody fragments, both for further engineering as direct therapeutics and as a tool for rational drug design for Parkinson's disease.
Collapse
|
74
|
Li T, Cheng J, Hu B, Liu Y, Qian G, Liu F. Construction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in Pichia pastoris. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9554-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
75
|
Dahan S, Chevet E, Liu JF, Dominguez M. Antibody-based Proteomics: From bench to bedside. Proteomics Clin Appl 2007; 1:922-33. [PMID: 21136747 DOI: 10.1002/prca.200700153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Indexed: 01/09/2023]
Abstract
Over the past 75 years, antibodies have gone from being recognized as disease biomarkers to being used as very powerful therapeutic tools. This evolution has been accelerated by the identification of mAb and the extensive use of immunological tools both at fundamental and clinical levels. In this review, we evaluate how antibodies can be used to assess the proteome of cells or tissues and their relevance for clinical applications. These antibody-based proteomics approaches also require analytical and technological pipelines as well as specific enabling tools which are described. Our first objective was to establish how large-scale datasets (provided by high-throughput studies such as proteomics and transcriptomics) can be integrated with literature searches and clinical data to identify potentially relevant markers against which antibodies should be raised. Then based on an extensive literature review and our experience, we compare the methodologies developed to produce specific antibodies either in vivo or in vitro. This is followed by the description of the validation tools currently available and it also includes the use of antibody-based approaches in the establishment of molecular signatures utilized at the bench and soon available for bedside use.
Collapse
|
76
|
Gasser B, Mattanovich D. Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 2006; 29:201-12. [PMID: 17120087 DOI: 10.1007/s10529-006-9237-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/11/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Yeasts and filamentous fungi have gained significant interest for the production of recombinant antibodies and antibody fragments. The opportunities and constraints of antibody (fragment) production in these hosts are highlighted as well as cell engineering strategies to overcome the constraints. Following aspects are addressed: folding, assembly and secretion of antibody related proteins, process optimization to improve productivity and quality, proteolysis, and, as a major point of interest, glycosylation.
Collapse
Affiliation(s)
- Brigitte Gasser
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | |
Collapse
|
77
|
Huang D, Shusta EV. A yeast platform for the production of single-chain antibody-green fluorescent protein fusions. Appl Environ Microbiol 2006; 72:7748-59. [PMID: 17028228 PMCID: PMC1694270 DOI: 10.1128/aem.01403-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 microg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.
Collapse
Affiliation(s)
- Dagang Huang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | |
Collapse
|
78
|
Abstract
Maximizing the expression yields of recombinant whole antibodies and antibody fragments such as Fabs, single-chain Fvs and single-domain antibodies is highly desirable since it leads to lower production costs. Various eukaryotic and prokaryotic expression systems have been exploited to accommodate antibody expression but Escherichia coli systems have enjoyed popularity, in particular with respect to antibody fragments, because of their low cost and convenience. In many instances, product yields have been less than adequate and intrinsic and extrinsic variables have been investigated in an effort to improve yields. This review deals with various aspects of antibody expression in E. coli with a particular focus on single-domain antibodies.
Collapse
Affiliation(s)
- Mehdi Arbabi-Ghahroudi
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | |
Collapse
|
79
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|