51
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
52
|
Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D, Rana V, Shabnam B, Khatoon E, Kumar AP, Kunnumakkara AB. Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. Int J Mol Sci 2020; 21:ijms21093285. [PMID: 32384682 PMCID: PMC7246494 DOI: 10.3390/ijms21093285] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.
Collapse
Affiliation(s)
- Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Elina Khatoon
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| |
Collapse
|
53
|
Chan YT, Wang N, Tan HY, Li S, Feng Y. Targeting Hepatic Stellate Cells for the Treatment of Liver Fibrosis by Natural Products: Is It the Dawning of a New Era? Front Pharmacol 2020; 11:548. [PMID: 32425789 PMCID: PMC7212390 DOI: 10.3389/fphar.2020.00548] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition that is worth studying widely. It is important to target and alleviate the disease at an early stage before turning into later cirrhosis or liver cancer. There are currently no direct medicines targeting the attenuation or reversal of liver fibrosis, and so there is an urgent need to look into this area. Traditional Chinese Medicine has a long history in using herbal medicines to treat liver diseases including fibrosis. It is time to integrate the ancient wisdom with modern science and technology to look for the best solution to the disease. In this review, the principal concept of the pathology of liver fibrosis will be described, and then some of the single compounds isolated from herbal medicines, including salvianolic acids, oxymatrine, curcumin, tetrandrine, etc. will be discussed from their effects to the molecular mechanism behind. Molecular targets of the compounds are analyzed by network pharmacology approach, and TGFβ/SMAD was identified as the most common pathway. This review serves to summarize the current findings of herbal medicines combining with modern medicines in the area of fibrosis. It hopefully provides insights in further pharmaceutical research directions.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
54
|
Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G, Kunnumakkara AB. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol Res 2020; 153:104635. [DOI: 10.1016/j.phrs.2020.104635] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
55
|
Cao X, He Q. Anti-Tumor Activities of Bioactive Phytochemicals in Sophora flavescens for Breast Cancer. Cancer Manag Res 2020; 12:1457-1467. [PMID: 32161498 PMCID: PMC7051174 DOI: 10.2147/cmar.s243127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with breast cancer and breast cancer survivors are frequent users of botanicals and their bioactive phytochemicals. In China, active ingredients in Sophora flavescens like matrine (MT), oxymatrine (OMT), other Sophora flavescens alkaloids and Compound Kushen Injection (CKI) are extensively used for multiple malignant tumors. In vivo and in vitro studies have confirmed that these activities or injection have significant effects on relieving symptoms, alleviating side effects after chemotherapy and improving the quality of life of breast cancer patients, where there is evidence for efficacy. A large number of experimental studies have also revealed that they can inhibit the proliferation, invasion and migration of breast cancer cells according to different mechanisms. This provides promising valuable supportive therapies for prevention, treatment and postoperative recovery of breast cancer. Rigorous clinical research and experimental studies reflect integrative care as it is used in hospital is needed to responsibly move this field forward. This review summarizes an up to date knowledge of the available bioactive phytochemicals, their discovery, current clinical and experimental status.
Collapse
Affiliation(s)
- Xianjiao Cao
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People's Republic of China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, People's Republic of China
| |
Collapse
|
56
|
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol Res 2020; 151:104541. [DOI: 10.1016/j.phrs.2019.104541] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
|
57
|
Yao W, Lin Z, Shi P, Chen B, Wang G, Huang J, Sui Y, Liu Q, Li S, Lin X, Liu Q, Yao H. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells. Biochem Pharmacol 2019; 171:113680. [PMID: 31669234 DOI: 10.1016/j.bcp.2019.113680] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide and tends to have drug resistance. Delicaflavone (DLF), a novel anticancer agent of biflavonoid from Selaginella doederleinii Hieron, showed strong anti-CRC activities, which has not yet been reported. In this study, we investigated the effects and possible anti-CRC mechanism of DLF in vitro and in vivo. It was shown that DLF significantly inhibited the cells viability and induced G2/M phase arrest, apoptosis, the loss of mitochondrial membrane potential (Δψm), generation of ROS and increase of intracellular Ca2+ in HT29 and HCT116 cells by MTT assay, TEM, flow cytometry and inverted fluorescence microscope. Western blot and qPCR assays results further confirmed DLF induced caspase-dependent apoptosis and inhibited PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in CRC cells. Meanwhile, DLF significantly suppressed the tumor growth via activation of Caspase-9 and Caspase-3 protein and decrease of ki67 and CD34 protein without apparent side effects in vivo. In summary, these results indicated DLF induced ROS-mediated cell cycle arrest and apoptosis through ER stress and mitochondrial pathway accompanying with the inhibition of PI3K/AKT/mTOR and Ras/MEK/Erk signaling cascade. Thus DLF could be a potential therapeutic agent for CRC.
Collapse
Affiliation(s)
- Wensong Yao
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; College of Medical Sciences, Ningde Normal University, Ningde 352100, China
| | - Zhen Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bing Chen
- Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, China
| | - Gang Wang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jianyong Huang
- Department of Pharmaceutics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yuxia Sui
- Department of Pharmacy, Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qicai Liu
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Qicai Liu
- Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|