51
|
Chen Y, Li X, Wang S, Miao R, Zhong J. Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients 2023; 15:nu15030591. [PMID: 36771298 PMCID: PMC9921472 DOI: 10.3390/nu15030591] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Iron functions as an essential micronutrient and participates in normal physiological and biochemical processes in the cardiovascular system. Ferroptosis is a novel type of iron-dependent cell death driven by iron accumulation and lipid peroxidation, characterized by depletion of glutathione and suppression of glutathione peroxidase 4 (GPX4). Dysregulation of iron metabolism and ferroptosis have been implicated in the occurrence and development of cardiovascular diseases (CVDs), including hypertension, atherosclerosis, pulmonary hypertension, myocardial ischemia/reperfusion injury, cardiomyopathy, and heart failure. Iron chelators deferoxamine and dexrazoxane, and lipophilic antioxidants ferrostatin-1 and liproxstatin-1 have been revealed to abolish ferroptosis and suppress lipid peroxidation in atherosclerosis, cardiomyopathy, hypertension, and other CVDs. Notably, inhibition of ferroptosis by ferrostatin-1 has been demonstrated to alleviate cardiac impairments, fibrosis and pathological remodeling during hypertension by potentiating GPX4 signaling. Administration of deferoxamine improved myocardial ischemia/reperfusion injury by inhibiting lipid peroxidation. Several novel small molecules may be effective in the treatment of ferroptosis-mediated CVDs. In this article, we summarize the regulatory roles and underlying mechanisms of iron metabolism dysregulation and ferroptosis in the occurrence and development of CVDs. Targeting iron metabolism and ferroptosis are potential therapeutic strategies in the prevention and treatment of hypertension and other CVDs.
Collapse
Affiliation(s)
- Yufei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (R.M.); (J.Z.)
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (R.M.); (J.Z.)
| |
Collapse
|
52
|
Yang H, Zhang X, Ding Y, Xiong H, Xiang S, Wang Y, Li H, Liu Z, He J, Tao Y, Yang H, Qi H. Elabela: Negative Regulation of Ferroptosis in Trophoblasts via the Ferritinophagy Pathway Implicated in the Pathogenesis of Preeclampsia. Cells 2022; 12:cells12010099. [PMID: 36611895 PMCID: PMC9818811 DOI: 10.3390/cells12010099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Preeclampsia is a leading contributor to increased maternal morbidity and mortality in the perinatal period. Increasing evidence demonstrates that ferroptosis is an essential mechanism for the pathogenesis of preeclampsia. Elabela is a novel small-molecule polypeptide, mainly expressed in embryonic and transplacental tissues, with an ability to promote cell proliferation and invasion. However, its specific regulatory mechanism in preeclampsia has not been completely elucidated. In this study, we first reveal an increased grade of ferroptosis accompanied by a downregulation of the expression of Elabela in preeclampsia placentas. We then confirm the presence of a ferroptosis phenotype in the placenta of the mouse PE-like model, and Elabela can reduce ferroptosis in the placenta and improve adverse pregnancy outcomes. Furthermore, we demonstrate that targeting Elabela alleviates the cellular dysfunction mediated by Erastin promoting increased lipid peroxidation in vitro. Subsequent mechanistic studies suggest that Elabela increases FTH1 levels by inhibiting the ferritinophagy pathway, and consequently chelates the intracellular labile iron pool and eventually arrests ferroptosis. In conclusion, Elabela deficiency exacerbates ferroptosis in the placenta, which is among the potential mechanisms in the pathogenesis of preeclampsia. Targeting the Elabela-ferritinophagy-ferroptosis signaling axis provides a new therapeutic intervention strategy to alleviate preeclampsia.
Collapse
Affiliation(s)
- Huan Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing 404100, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hui Xiong
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| | - Shaojian Xiang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| | - Yang Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huanhuan Li
- Department of Emergency, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| | - Zheng Liu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie He
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuelan Tao
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongbing Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing 404100, China
- Correspondence: (H.Y.); (H.Q.)
| | - Hongbo Qi
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Correspondence: (H.Y.); (H.Q.)
| |
Collapse
|
53
|
Fang ZM, Zhang SM, Luo H, Jiang DS, Huo B, Zhong X, Feng X, Cheng W, Chen Y, Feng G, Wu X, Zhao F, Yi X. Methyltransferase-like 3 suppresses phenotypic switching of vascular smooth muscle cells by activating autophagosome formation. Cell Prolif 2022; 56:e13386. [PMID: 36564367 PMCID: PMC10068948 DOI: 10.1111/cpr.13386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Prevention of neointima formation is the key to improving long-term outcomes after stenting or coronary artery bypass grafting. RNA N6 -methyladenosine (m6 A) methylation has been reported to be involved in the development of various cardiovascular diseases, but whether it has a regulatory effect on neointima formation is unknown. Herein, we revealed that methyltransferase-like 3 (METTL3), the major methyltransferase of m6 A methylation, was downregulated during vascular smooth muscle cell (VSMC) proliferation and neointima formation. Knockdown of METTL3 facilitated, while overexpression of METTL3 suppressed the proliferation of human aortic smooth muscle cells (HASMCs) by arresting HASMCs at G2/M checkpoint and the phosphorylation of CDC2 (p-CDC2) was inactivated by METTL3. On the other hand, the migration and synthetic phenotype of HASMCs were enhanced by METTL3 knockdown, but inhibited by METTL3 overexpression. The protein levels of matrix metalloproteinase 2 (MMP2), MMP7 and MMP9 were reduced, while the expression level of tissue inhibitor of metalloproteinase 3 was increased in HASMCs with METTL3 overexpression. Moreover, METTL3 promoted the autophagosome formation by upregulating the expression of ATG5 (autophagy-related 5) and ATG7. Knockdown of either ATG5 or ATG7 largely reversed the regulatory effects of METTL3 overexpression on phenotypic switching of HASMCs, as evidenced by increased proliferation and migration, and predisposed to synthetic phenotype. These results indicate that METTL3 inhibits the phenotypic switching of VSMCs by positively regulating ATG5-mediated and ATG7-mediated autophagosome formation. Thus, enhancing the level of RNA m6 A or the formation of autophagosomes is the promising strategy to delay neointima formation.
Collapse
Affiliation(s)
- Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Min Zhang
- Cardiac Rehabilitation Center, Fuwai Hospital CAMS&PUMC, Beijing, China
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxuan Zhong
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenlin Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Zhao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
54
|
Xu J, Lin X, Han T, Zhou Q, Su Y, Jiang S, Xiao X, Liu T. Regulation mechanism of ferroptosis and its research progress in tumor immunotherapy. Front Mol Biosci 2022; 9:1045548. [PMID: 36387286 PMCID: PMC9641167 DOI: 10.3389/fmolb.2022.1045548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 08/21/2023] Open
Abstract
Ferroptosis is a novel regulatory cell death, which is characterized by iron dependency and mainly caused by accumulation of intracellular lipid peroxides and reactive oxygen species. Ferroptosis plays an important role in the occurrence and development of a variety of malignant tumors, especially in anti-tumor treatment. As an emerging treatment method, the immunotherapy has been widely applied in the clinical practice, and the role of ferroptosis in tumor immunotherapy has been gradually explored. This study aims to illustrate the features of ferroptosis, and its role in anti-tumor immunotherapy and potential clinical application.
Collapse
Affiliation(s)
- Jing Xu
- Jining Medical University, Jining, China
| | - Xiaolin Lin
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Han
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Su
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqing Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuying Xiao
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Liu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Wang K, Song Y, Li H, Song J, Wang S. Identification of differentially expressed ferroptosis-related genes in abdominal aortic aneurysm: Bioinformatics analysis. Front Cardiovasc Med 2022; 9:991613. [PMID: 36247434 PMCID: PMC9558826 DOI: 10.3389/fcvm.2022.991613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Ferroptosis plays a crucial role in the development and progression of abdominal aortic aneurysm (AAA). The aim of this study was to identify differentially expressed genes associated with ferroptosis in AAA through bioinformatics analysis combined with experimental validation. Materials and methods Firstly, the mRNA expression profile datasets GSE57691 and GSE47472 from Gene Expression Omnibus database were screened, and principal component analysis was carried out. Next, the R software (version 4.0.0) was used to analyze potentially differentially expressed genes associated with AAA and ferroptosis. Subsequently, protein–protein interaction analysis, gene ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed on the selected candidate genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of the first five selected abnormal ferroptosis-related genes in clinical samples obtained from patients with AAA and healthy controls. Results Based on the information contained in the two datasets, a total of 20 differentially expressed ferroptosis-related genes (three upregulated genes and 17 downregulated genes) were selected. Protein–protein interaction analysis demonstrated interaction between these genes, while gene ontology enrichment analysis of ferroptosis genes with differential expression indicated that some enrichment items were associated with oxidative stress. The qRT-PCR results showed that the expression levels of interleukin-6 (IL-6), peroxiredoxin 1 (PRDX1), and stearoyl-CoA desaturase (SCD) were consistent with the bioinformatics prediction results obtained from the mRNA chip. Conclusion Bioinformatics analysis identified 20 potential ferroptosis-related differentially expressed genes in AAA. Further verification by qRT-PCR showed that IL-6, PRXD1, and SCD might affect the process of AAA by regulating ferroptosis. Our results might assist in further understanding the pathogenesis of AAA and guiding treatment.
Collapse
Affiliation(s)
- Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Clinical Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Jianshu Song
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shizhong Wang,
| |
Collapse
|
56
|
Fang ZM, Feng X, Chen Y, Luo H, Jiang DS, Yi X. Targeting autophagy in aortic aneurysm and dissection. Biomed Pharmacother 2022; 153:113547. [PMID: 36076620 DOI: 10.1016/j.biopha.2022.113547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023] Open
|
57
|
Huang F, Pang J, Xu L, Niu W, Zhang Y, Li S, Li X. Hedyotis diffusa injection induces ferroptosis via the Bax/Bcl2/VDAC2/3 axis in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154319. [PMID: 35853302 DOI: 10.1016/j.phymed.2022.154319] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung cancer has the highest mortality rate among all cancer types. In combination with multiple chemotherapeutic options, traditional Chinese medicine has proven indispensable for the comprehensive treatment of lung cancer. PURPOSE To investigate the effects of Hedyotis diffusa on lung adenocarcinoma cell lines and a BALB/c nude mouse xenograft model, and determine whether HDI could induce ferroptosis in lung adenocarcinoma cells along with the underlying mechanism. METHODS The anti-tumor activity of HDI was determined in vitro by cell counting kit-8, clonogenic, and transwell assays. Subsequently, electron microscopy, a lipid reactive oxygen species assay, ferrous ion staining, and a malondialdehyde assay were performed to determine the effect on ferroptosis in lung adenocarcinoma cells. The mechanism was then further investigated using small molecule inhibitors, siRNA, and plasmid overexpression in vitro. Finally, the effects of HDI were assessed in tumor-bearing BALB/c nude mice, and HE staining was performed to observe tissue damage after HDI treatment. RESULTS In vitro experiments showed that HDI could inhibit the viability of lung adenocarcinoma cells and induce lung adenocarcinoma cells ferroptosis via mechanisms independent of GPX4 and PUFA-PLS pathways but closely associated with VDAC2/3. HDI regulated VDAC2/3 activity by promoting Bax via inhibiting Bcl2, thereby inducing ferroptosis in lung adenocarcinoma cells. Furthermore, in vivo experiments showed that HDI significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice with less organ damage and toxicity, and significantly increased the expression of the ferroptosis-related indicators 4HNE, TFR, and HMOX1 in tumor tissue. CONCLUSION HDI can significantly reduce the survival of lung adenocarcinoma cells in vitro, inhibit the growth of subcutaneously transplanted tumors in BALB/c nude mice in vivo, and induce ferroptosis in lung adenocarcinoma cells via Bcl2 inhibition to promote Bax regulation of VDAC2/3.
Collapse
Affiliation(s)
- Fuhao Huang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Liansong Xu
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Wenwen Niu
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Yaoshuai Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China.
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China.
| |
Collapse
|
58
|
He Y, Yi X, Zhang Z, Luo H, Li R, Feng X, Fang ZM, Zhu XH, Cheng W, Jiang DS, Zhao F, Wei X. JIB-04, a histone demethylase Jumonji C domain inhibitor, regulates phenotypic switching of vascular smooth muscle cells. Clin Epigenetics 2022; 14:101. [PMID: 35964071 PMCID: PMC9375951 DOI: 10.1186/s13148-022-01321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Vascular smooth muscle cell (VSMC) phenotype switching is critical for neointima formation, which is the major cause of restenosis after stenting or coronary artery bypass grafting. However, the epigenetic mechanisms regulating phenotype switching of VSMCs, especially histone methylation, are not well understood. As a main component of histone lysine demethylases, Jumonji demethylases might be involved in VSMC phenotype switching and neointima formation. Methods and results A mouse carotid injury model and VSMC proliferation model were constructed to investigate the relationship between histone methylation of H3K36 (downstream target molecule of Jumonji demethylase) and neointima formation. We found that the methylation levels of H3K36 negatively correlated with VSMC proliferation and neointima formation. Next, we revealed that JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) could increase the methylation levels of H3K36. Furthermore, we found that JIB-04 obviously inhibited HASMC proliferation, and a cell cycle assay showed that JIB-04 caused G2/M phase arrest in HASMCs by inhibiting the phosphorylation of RB and CDC2 and promoting the phosphorylation of CHK1. Moreover, JIB-04 inhibited the expression of MMP2 to suppress the migration of HASMCs and repressed the expression of contraction-related genes. RNA sequencing analysis showed that the biological processes associated with the cell cycle and autophagy were enriched by using Gene Ontology analysis after HASMCs were treated with JIB-04. Furthermore, we demonstrated that JIB-04 impairs autophagic flux by downregulating STX17 and RAB7 expression to inhibit the fusion of autophagosomes and lysosomes. Conclusion JIB-04 suppresses the proliferation, migration, and contractile phenotype of HASMCs by inhibiting autophagic flux, which indicates that JIB-04 is a promising reagent for the treatment of neointima formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01321-8.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Wenlin Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, East Lake Road 169, Wuhan, Hubei, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Fang Zhao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, East Lake Road 169, Wuhan, Hubei, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, China.
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
59
|
Ren J, Lv Y, Wu L, Chen S, Lei C, Yang D, Li F, Liu C, Zheng Y. Key ferroptosis-related genes in abdominal aortic aneurysm formation and rupture as determined by combining bioinformatics techniques. Front Cardiovasc Med 2022; 9:875434. [PMID: 36017103 PMCID: PMC9395677 DOI: 10.3389/fcvm.2022.875434] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high mortality and pathogenesis closely related to various cell death types, e.g., autophagy, apoptosis and pyroptosis. However, the association between AAA and ferroptosis is unknown. Methods GSE57691 and GSE98278 dataset were obtained from the Gene Expression Omnibus database, and a ferroptosis-related gene (FRG) set was downloaded from the FerrDb database. These data were normalized, and ferroptosis-related differentially expressed genes (FDEGs, AAA vs. normal samples) were identified using the limma package in R. FRGs expression was analyzed by Gene Set Expression Analysis (GSEA), and FDEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analyses using the clusterProfiler package in R and ClueGO in Cytoscape. Protein–protein interaction networks were assembled using Cytoscape, and crucial FDEGs were identified using CytoHubba. Critical FDEG transcription factors (TFs) were predicted with iRegulon. FDEGs were verified in GSE98278 set, and key FDEGs in AAA (compared with normal samples) and ruptured AAA (RAAA; compared with AAA samples) were identified. Ferroptosis-related immune cell infiltration and correlations with key genes were analyzed by CIBERSORT. Key FEDGs were reverified in Ang II-induced AAA models of ApoE–/– and CD57B/6J mice by immunofluorescence assay. Results In AAA and normal samples, 40 FDEGs were identified, and the expression of suppressive FRGs was significantly downregulated with GSEA. For FDEGs, the GO terms were response to oxidative stress and cellular response to external stimulus, and the KEGG pathways were the TNF and NOD-like receptor signaling pathways. IL6, ALB, CAV1, PTGS2, NOX4, PRDX6, GPX4, HSPA5, HSPB1, and NCF2 were the most enriched genes in the crucial gene cluster. CEBPG, NFAT5, SOX10, GTF2IRD1, STAT1, and RELA were potential TFs affecting these crucial genes. Ferroptosis-related immune cells involved in AAA formation were CD8+ T, naive CD4+ T, and regulatory T cells (Tregs); M0 and M2 macrophages; and eosinophils. Tregs were also involved in RAAA. GPX4, SLC2A1, and PEBP1 expression was downregulated in both the RAAA and AAA samples. GPX4 and PEBP1 were more important in AAA because they influenced ferroptosis-related immune cell infiltration, and SLC2A1 was more important in RAAA. Conclusions This is the first study to show that ferroptosis is crucial to AAA/RAAA formation. The TNF and NOD-like signaling pathways and ferroptosis-related immune cell infiltration play key roles in AAA/RAAA. GPX4 is a key ferroptosis-related gene in AAA. Ferroptosis and related genes might be promising targets in the treatment of AAA/RAAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuxiang Lei
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuehong Zheng,
| |
Collapse
|
60
|
Li N, Yi X, He Y, Huo B, Chen Y, Zhang Z, Wang Q, Li Y, Zhong X, Li R, Zhu XH, Fang Z, Wei X, Jiang DS. Targeting Ferroptosis as a Novel Approach to Alleviate Aortic Dissection. Int J Biol Sci 2022; 18:4118-4134. [PMID: 35844806 PMCID: PMC9274489 DOI: 10.7150/ijbs.72528] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/04/2022] [Indexed: 12/12/2022] Open
Abstract
A variety of programmed cell death types have been shown to participate in the loss of smooth muscle cells (SMCs) during the development of aortic dissection (AD), but it is still largely unclear whether ferroptosis is involved in the development of AD. In the present study, we found that the expression of key ferroptosis regulatory proteins, solute carrier family 7 member 11 (SLC7A11), ferroptosis suppressor protein 1 (FSP1) and glutathione peroxidase 4 (GPX4) were downregulated in aortas of Stanford type A AD (TAAD) patients, and liproxstatin-1, a specific inhibitor of ferroptosis, obviously abolished the β-aminopropionitrile (BAPN)-induced development and rupture of AD in mice. Furthermore, the expression of methyltransferase-like 3 (METTL3), a major methyltransferase of RNA m6A, was remarkably upregulated in the aortas of TAAD patients, and the protein levels of METTL3 were negatively correlated with SLC7A11 and FSP1 levels in human aortas. Overexpression of METTL3 in human aortic SMCs (HASMCs) inhibited, while METTL3 knockdown promoted SLC7A11 and FSP1 expression. More importantly, overexpression of METTL3 facilitated imidazole ketone erastin- and cystine deprivation-induced ferroptosis, while knockdown of METTL3 repressed ferroptosis of HASMCs. Overexpression of either SLC7A11 or FSP1 largely abrogated the effect of METTL3 on HASMC ferroptosis. Therefore, we have revealed that ferroptosis is a critical cause of AD in both humans and mice and that METTL3 promotes ferroptosis of HASMCs by inhibiting the expression of SLC7A11 and FSP1. Thus, targeting ferroptosis or m6A RNA methylation is a potential novel strategy for the treatment of AD.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qunhui Wang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxuan Zhong
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zemin Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| |
Collapse
|
61
|
Chen Y, Yi X, Wei X, Jiang DS. Ferroptosis: A novel pathological mechanism of aortic dissection. Pharmacol Res 2022; 182:106351. [PMID: 35835368 DOI: 10.1016/j.phrs.2022.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation,Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation,Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
62
|
Song W, Chen J, Wei L. Ferroptosis in aortic dissection: Cause or effect. Pharmacol Res 2022; 182:106344. [PMID: 35809765 DOI: 10.1016/j.phrs.2022.106344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Wenyu Song
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinmiao Chen
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Lai Wei
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
63
|
Guo Y, Zhang W, Zhou X, Zhao S, Wang J, Guo Y, Liao Y, Lu H, Liu J, Cai Y, Wu J, Shen M. Roles of Ferroptosis in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:911564. [PMID: 35677693 PMCID: PMC9168067 DOI: 10.3389/fcvm.2022.911564] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death characterized by lipid peroxidation and iron overload, which is different from other types of programmed cell death, including apoptosis, necroptosis, autophagy, and pyroptosis. Over the past years, emerging studies have shown a close relation between ferroptosis and various cardiovascular diseases such as atherosclerosis, acute myocardial infarction, ischemia/reperfusion injury, cardiomyopathy, and heart failure. Herein, we will review the contributions of ferroptosis to multiple cardiovascular diseases and the related targets. Further, we discuss the potential ferroptosis-targeting strategies for treating different cardiovascular diseases.
Collapse
Affiliation(s)
- Yuting Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Wei Zhang
- Department of Cardiology, Second Medical Center, PLA General Hospital, Beijing, China
| | - Xinger Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Shihao Zhao
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Jian Wang
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yi Guo
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yichao Liao
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Haihui Lu
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Jie Liu
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yanbin Cai
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
- Jiao Wu
| | - Mingzhi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
- *Correspondence: Mingzhi Shen
| |
Collapse
|
64
|
Zhou Y, Zha L, Wu J, Wang M, Zhou M, Wu G, Cheng X, Huang Z, Xie Q, Tu X. MED12 Regulates Smooth Muscle Cell Functions and Participates in the Development of Aortic Dissection. Genes (Basel) 2022; 13:genes13040692. [PMID: 35456498 PMCID: PMC9027749 DOI: 10.3390/genes13040692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Aortic dissection (AD) is a life-threatening disease with high morbidity and mortality, and effective pharmacotherapeutic remedies for it are lacking. Therefore, AD’s molecular pathogenesis and etiology must be elucidated. The aim of this study was to investigate the possible mechanism of mediator complex subunit 12 (human: MED12, mouse: Med12)involvement in AD. Firstly, we examined the expression of MED12 protein (human: MED12, mouse: Med12) in the aortic tissues of AD patients and AD mice. Subsequently, Med12 gene silencing was accomplished with RNA interference (siRNA). The effects of Med12 on AD and the possible biological mechanisms were investigated based on the proliferation, senescence, phenotypic transformation, and its involved signal pathway of mouse aortic smooth muscle cells (MOVAS), s. The results show that the expression of MED12 in the aortae of AD patients and AD mice was decreased. Moreover, the downregulation of Med12 inhibited the proliferation of MOVAS and promoted senescence. Further research found that Med12, as an inhibitor of the TGFβ1 signaling pathway, reduced the expression of Med12 and enhanced the activity of the TGFβ1 nonclassical signaling pathway, while TGFβ1 inhibited the phenotype transformation and proliferation of MOVAS by inhibiting Med12 synthesis. In conclusion, Med12 affected the phenotype, proliferation, and senescence of MOVAS through the TGFβ signaling pathway. This study provides a potential new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yingchao Zhou
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao 266034, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Mengchen Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
- Correspondence: (Q.X.); (X.T.)
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
- Correspondence: (Q.X.); (X.T.)
| |
Collapse
|