51
|
Yan H, Pu Z, Wang Y, Guo S, Wang T, Li S, Zhang Z, Zhou G, Zhan Z, Duan J. Rapid qualitative identification and quantitative analysis of Flos Mume based on Fourier transform near infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119344. [PMID: 33360057 DOI: 10.1016/j.saa.2020.119344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Flos Mume, an ancient Chinese plant, is widely used for food and medicine. There are numerous varieties of Flos Mume, whose main active components are chlorogenic acid, hyperoside and isoquercitrin. Currently, Flos Mume varieties are mainly distinguished by physical appearance and they have not been scientifically indexed for identification. Fourier transform near infrared spectroscopy (FT-NIR) is a technique that when combined with chemometrics, determines internal components of samples and classifies them. Here, to distinguish between different Flos Mume varieties, we used a qualitative identification model based on FT-NIR. Various model parameters indicated its stability and high predictive performance. We developed a rapid, non-destructive method of simultaneously analyzing 8 components but found that only neochlorogenic acid, chlorogenic acid, rutin, hyperoside, and isoquercitrin have application value. Other components were excluded due to low concentration and poor prediction. Chemometric analysis found that chlorogenic acid become an ingredient which is quite different in the different categories. The content of chlorogenic acid were the highest among these components. Different varieties of Flos Mume were distinguished based on chlorogenic acid content, indicating that chlorogenic acid has potential to become a key indicator for application in quality evaluation. The established FT-NIR model for chlorogenic acid detection had excellent predictive capacity. FT-NIR was the first time applied to Flos Mume and our findings offer theoretical reference for the rapid identification and quantitative analysis of Flos Mume based on FT-NIR. Flos Mume could be evaluated for quality quickly and easily by means of FT-NIR spectroscopy.
Collapse
Affiliation(s)
- Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Zongjin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Yingjun Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Tianshu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Simeng Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Zhenyu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Guisheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Zhilai Zhan
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
52
|
Wu C, Xu B, Li Z, Song P, Chao Z. Gender discrimination of Populus tomentosa barks by HPLC fingerprint combined with multivariate statistics. PLANT DIRECT 2021; 5:e00311. [PMID: 33748656 PMCID: PMC7963124 DOI: 10.1002/pld3.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 05/08/2023]
Abstract
A high-performance liquid chromatography (HPLC) fingerprint method with multivariate statistical analyses was applied to discriminate the male and female barks of Populus tomentosa for the first time. The samples of 11 male and 13 female barks of mature P. tomentosa were collected in Beijing. The chemical fingerprint of methanol extract was established by HPLC method with diode array detector (DAD). The principal component analysis (PCA), hierarchical clustering analysis (HCA), and supervised orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to discriminate male and female barks based on the area of common peaks identified in HPLC fingerprints. A clear grouping trend (R 2 X, 0.83; Q 2, 0.595) among the male and female samples was exhibited by PCA score plot. Two groups were clearly divided into male and female samples by HCA. Both male and female samples were well discriminated with OPLS-DA (R 2 X, 0.775; Q 2, 0.795). Seven potential chemical markers were screened by variable importance in projection (VIP values >1.0) of OPLS-DA model and four of them were identified as micranthoside, siebolside B, sakuranin, and isosakuranin. The HPLC fingerprint combined with multivariate statistical analyses could be used to discriminate the gender of barks of P. tomentosa and revealed the differences in chemical components, which enriched the basic studies on dioecious plant.
Collapse
Affiliation(s)
- Cui Wu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Bo Xu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Zhuojun Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Pingping Song
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Zhimao Chao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| |
Collapse
|
53
|
Liang Z, Lai Y, Li M, Shi J, Lei CI, Hu H, Ung COL. Applying regulatory science in traditional chinese medicines for improving public safety and facilitating innovation in China: a scoping review and regulatory implications. Chin Med 2021; 16:23. [PMID: 33593397 PMCID: PMC7884970 DOI: 10.1186/s13020-021-00433-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/06/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The National Medical Products Administration (NMPA) in China has set to advance the regulatory capacity of traditional Chinese medicines (TCMs) with the adoption of regulatory science (RS). However, the priority of actions at the interface of RS and TCMs were yet to be defined. This research aims to identify the priority areas and summarize core actions for advancing RS for traditional medicines in China. METHODS A mixed approach of documentary analysis of government policies, regulations and official information about TCMs regulation in China, and a scoping review of literature using 4 databases (PubMed, ScienceDirect, Scopus and CNKI) on major concerns in TCMs regulation was employed. RESULTS Ten priority areas in the development of TCM-related regulatory science in China have been identified, including: (1) modernizing the regulatory system with a holistic approach; (2) advancing the methodology for the quality control of TCMs; (3) fostering the control mechanism of TCMs manufacturing process; (4) improving clinical evaluation of TCMs and leveraging real world data; (5) re-evaluation of TCMs injection; (6) developing evaluation standards for classic TCMs formula; (7) harnessing diverse data to improve pharmacovigilance of TCMs; (8) evaluating the value of integrative medicine in clinical practice with scientific research; (9) advancing the regulatory capacity to encourage innovation in TCMs; and (10) advancing a vision of collaboration for RS development in TCMs. CONCLUSIONS RS for TCMs in China encompasses revolution of operational procedures, advancement in science and technology, and cross-disciplinary collaborations. Such experiences could be integrated in the communications among drug regulatory authorities to promote standardized and scientific regulation of traditional medicines.
Collapse
Affiliation(s)
- Zuanji Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| | - Yunfeng Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| | - Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| | - Chi Ieong Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao Taipa, China
| |
Collapse
|
54
|
Hu H, Lee-Fong Y, Peng J, Hu B, Li J, Li Y, Huang H. Comparative Research of Chemical Profiling in Different Parts of Fissistigma oldhamii by Ultra-High-Performance Liquid Chromatography Coupled with Hybrid Quadrupole-Orbitrap Mass Spectrometry. Molecules 2021; 26:960. [PMID: 33670350 PMCID: PMC7918369 DOI: 10.3390/molecules26040960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.
Collapse
Affiliation(s)
- Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
- Department of Biology, Animal Physiology and Neurobiology Section, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2465, 3000 Leuven, Belgium
| | - Yau Lee-Fong
- State Key Laboratory of Quality of Traditional Chinese Medicine, Macao University of Science and Technology, Macau 999078, China;
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Jialin Li
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Yaoli Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
- State Key Laboratory of Quality of Traditional Chinese Medicine, Macao University of Science and Technology, Macau 999078, China;
| |
Collapse
|
55
|
Zhang Y, Li S, Liang Y, Liu R, Lv X, Zhang Q, Xu H, Bi K, Li Z, Li Q. A systematic strategy for uncovering quality marker of Asari Radix et Rhizoma on alleviating inflammation based chemometrics analysis of components. J Chromatogr A 2021; 1642:461960. [PMID: 33684872 DOI: 10.1016/j.chroma.2021.461960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Asari Radix et Rhizoma (Asarum), a traditional Chinese medicine (TCM), has been applied in clinical generally. However, due to the lack of valid methods for Asarum quality control, inhomogenous quality and therapy issues have become severe with each passing day. In this study, we aimed to establish a comprehensive multi-system to explore the quality control markers underlying pharmaceutical effects based on chemometrics analysis on the total ingredients of Asarum. In brief, DNA barcoding technology was used to screen out the unadulterated herbs in the 15 batches Asarum collected from different origins. Then, the chemical profiles of volatile/nonvolatile components of 10 batches Asarum with definite resource were obtained by HPLC Q-TOF/MS and GC/MS. Combination with chemometrics methods, 14 characteristic ingredients and 4 qualitative and quantitative markers were figured out preliminarily. Moreover, correlation analysis between the characteristic ingredients and the cytokines integrating the virtual targets prediction of network pharmacology, 3 potential bioactive substance were ascertained. In conclusion, l-asarinin, 2-Methoxy-4-vinylphenol and safrole were considered as the potent candidates for quality control markers based on the comprehensive understanding for therapeutic effects and the chemical information of Asarum, which provided a novel perspective of the development for the quality control of TCM.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Saiyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuting Liang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
56
|
Xu XF, Qu WJ, Jia Z, Han T, Liu MN, Bai YY, Wang M, Lin RC, Hua Q, Li XR. Effect of cultivation ages on anti-inflammatory activity of a new type of red ginseng. Biomed Pharmacother 2021; 136:111280. [PMID: 33485063 DOI: 10.1016/j.biopha.2021.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.
Collapse
Affiliation(s)
- Xin-Fang Xu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Wen-Jia Qu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Zhe Jia
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Ting Han
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Meng-Nan Liu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Yu-Ying Bai
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Min Wang
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Rui-Chao Lin
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| | - Xiang-Ri Li
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
57
|
Zhang L, Yin X, Zhang J, Wei Y, Huo D, Ma C, Chang H, Cai K, Shi H. Comprehensive microbiome and metabolome analyses reveal the physiological mechanism of chlorotic Areca leaves. TREE PHYSIOLOGY 2021; 41:147-161. [PMID: 32857860 DOI: 10.1093/treephys/tpaa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
As an important economic crop in tropical areas, Areca catechu L. affects the livelihood of millions of farmers. The Areca yellow leaf phenomenon (AYLP) leads to severe crop losses and plant death. To better understand the relationship of microbes and chlorotic Areca leaves, microbial community structure as well as its correlation with differential metabolites was investigated by high-throughput sequencing and metabolomic approaches. High-throughput sequencing of the internal transcribed spacer 1 and 16S rRNA gene revealed that fungal diversity was dominated by Ascomycota and the bacterial community consisted of Proteobacteria as well as Actinobacteria. The microbiota structure on chlorotic Areca leaves exhibited significant changes based on non-metric multidimensional scaling analysis, which were attributed to 477 bacterial genera and 183 fungal genera. According to the results of the Kruskal-Wallis test, several potential pathogens were enriched on chlorotic Areca leaves. Further analysis based on metabolic pathways predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed the metabolism of half-yellow leaves and yellow leaves microbiota were significantly elevated in amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, partial xenobiotics biodegradation and metabolism. Furthermore, 22 significantly variable metabolites in Areca leaves were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry and statistical analysis. Moreover, we further investigated the correlation between the predominant microbes and differential metabolites. Taken together, the association between AYLP and microbiome of Areca leaves was explored from the microecological perspective by omics techniques, and these findings provide new insights into possible prevention, monitoring and control of AYLP in the future.
Collapse
Affiliation(s)
- Lin Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Jiachao Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Dongxue Huo
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Chenchen Ma
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haibo Chang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Kun Cai
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
58
|
Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
59
|
Discovery of Quality Markers in Hugan Qingzhi Formula by Integrating a Lipid-Lowering Bioassay with UHPLC-QQQ-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1594350. [PMID: 35198030 PMCID: PMC8860508 DOI: 10.1155/2020/1594350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease. The Hugan Qingzhi formula (HGQZ) has been proven effective in treating NAFLD through clinical and pharmacological mechanism studies. A screening study of the chemical components was carried out to better control the quality of this formula. Current research has combined biological activity assessment with chemical analysis to screen and identify the bioactive compounds in HGQZ for use as potential quality markers (Q-markers) to control the quality of this herbal product. The HGQZ extracted by three different solvents was evaluated in a free fatty acid-induced hepatic steatosis LO2 cell model. Simultaneously, the twelve major chemical constituents of these extracts were quantitatively measured by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). Extraction with 50% ethanol showed the most potent lipid-lowering effect in steatosis LO2 cells and the highest extraction rate of major chemical constituents. Correlation analysis was used to establish the relationship between the biological activities and chemical characteristics of these extracts. The results showed that the contents of typhaneoside, hyperoside, isoquercitrin, isorhamnetin-3-O-neohesperidoside, notoginsenoside R1, and alisol B 23-acetate were positively correlated to the lipid-lowering effect. The subsequent bioassay confirmed that typhaneoside, isoquercitrin, and alisol B 23-acetate played the role of reducing the lipid effect. In conclusion, 50% of ethanol extraction produced the most active extract of HGQZ. Typhaneoside, isoquercitrin, and alisol B 23-acetate could be considered potential Q-markers for the quality control of HGQZ.
Collapse
|
60
|
Kim YJ, Lee DY, Park HE, Yoon D, Lee B, Kim JG, Im KH, Lee YS, Lee WK, Kim JK. Serum Metabolic Profiling Reveals Potential Anti-Inflammatory Effects of the Intake of Black Ginseng Extracts in Beagle Dogs. Molecules 2020; 25:molecules25163759. [PMID: 32824755 PMCID: PMC7465512 DOI: 10.3390/molecules25163759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Black ginseng (BG) has better health benefits than white ginseng. The intake of BG changes the levels of metabolites, such as amino acids, fatty acids, and other metabolites. However, there is no research on the effect of BG extract intake on the metabolic profile of dog serum. In this study, serum metabolic profiling was conducted to investigate metabolic differences following the intake of BG extracts in beagle dogs. The beagle dogs were separated into three groups and fed either a regular diet (RD, control), RD with a medium concentration of BG extract (BG-M), or RD with a high concentration of BG extract (BG-H). Differences were observed among the three groups after the dogs ingested the experimental diet for eight weeks. The concentrations of alanine, leucine, isoleucine, and valine changed with the intake of BG extracts. Furthermore, levels of glycine and β-alanine increased in the BG-H group compared to the control and BG-M groups, indicating that BG extracts are associated with anti-inflammatory processes. Our study is the first to demonstrate the potential anti-inflammatory effect of BG extract in beagle dogs. Glycine and β-alanine are proposed as candidate serum biomarkers in dogs that can discriminate between the effects of ingesting BG-H.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Ho-Eun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (H.-E.P.); (W.-K.L.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Bumkyu Lee
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Kyung-Hoan Im
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (H.-E.P.); (W.-K.L.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
- Correspondence: ; Tel.: +82-32-835-8241
| |
Collapse
|
61
|
Li Y, Shen Y, Yao CL, Guo DA. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J Pharm Biomed Anal 2020; 185:113215. [DOI: 10.1016/j.jpba.2020.113215] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
|
62
|
Shi J, Cai Z, Chen S, Zou L, Liu X, Tang R, Ma J, Wang C, Chen J, Tan M. Qualitative and quantitative analysis of saponins in the flower bud of Panax ginseng (Ginseng Flos) by UFLC-Triple TOF-MS/MS and UFLC-QTRAP-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:287-296. [PMID: 31833631 DOI: 10.1002/pca.2894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/10/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Ginseng Flos (GF), the flower bud of Panax ginseng, is a worthy functional food with medicinal potential. A few studies have focused on the comprehensive and systematic analysis of its major bioactive constituents. OBJECTIVE The aims are to develop the methods of ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS) and ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UFLC-QTRAP-MS/MS) for the qualitative and quantitative analysis of the saponins in GF. METHODOLOGY UFLC-Triple TOF-MS/MS and UFLC-QTRAP-MS/MS were established for the qualitative and quantitative analysis of the saponins in GF, separately. RESULTS Fifty-one saponins were identified in GF using UFLC-Triple TOF-MS/MS method; among them, 21 saponins were characterized by comparing with standards. Furthermore, 12 ginsenosides (ginsenoside Re, Rg1 , Rf, 20(S)-Rg2 , 20(R)-Rg2 , Rb1 , Rc, Ro, Rb2 , F1 , Rd, and F2 ) were synchronously determined by UFLC-QTRAP-MS/MS method after the extraction with 70% methanol. This UFLC-QTRAP-MS/MS method showed good linearity (r >0.9991), the interday and intraday precision, repeatability and stability were all satisfied, the average recoveries of standard addition for the compounds were between 94.01% and 105.16%, and the relative standard deviations were less than 5%. CONCLUSION The results are available for the comprehensive quality control and assessment of GF and its relative products.
Collapse
Affiliation(s)
- Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichen Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renmao Tang
- Technology Center, SZYY Group Pharmaceutical Limited, Taizhou, China
| | - Jimei Ma
- Technology Center, SZYY Group Pharmaceutical Limited, Taizhou, China
| | - Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
63
|
Yue J, Zuo Z, Huang H, Wang Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit Rev Anal Chem 2020; 51:373-398. [PMID: 32166968 DOI: 10.1080/10408347.2020.1736506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genus Panax, as worldwide medicinal plants, has a medical history for thousands of years. Most of the entire genus are traditional ethnobotanical medicine in China, Myanmar, Thailand, Vietnam and Laos, which have given rise to international attention and use. This paper reviewed more than 210 articles and related books on the research of Panax medicinal plants and their Chinese patent medicines published in the last 30 years. The purpose was to review and summarize the species classification, geographical distribution, and ethnic minorities medicinal records of the genus Panax, and further to review the analytical tools and data analysis methods for the authentication and quality assessment of Panax medicinal materials and Chinese patent medicines. Five main technologies applied in the identification and evaluation of Panax have been introduced and summarized. Chromatography was the most widely used one. Further research and development of molecular identification technology had the potential to become a mainstream identification technology. In addition, some novel, controversial, and worthy methods including electronic noses, electronic eyes, and DNA barcoding were also introduced. At the same time, more than 80% of the researches were carried out by a combination of chemometric pattern-recognition technologies and multi-analysis technologies. All the technologies and methods applied can provide strong support and guarantee for the identification and evaluation of genus Panax, and also conduce to excellent reference value for the development and in-depth research of new technologies in Panax.
Collapse
Affiliation(s)
- Jiaqi Yue
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
64
|
Zhang Y, Lv X, Qu J, Zhang X, Zhang M, Gao H, Zhang Q, Liu R, Xu H, Li Q, Bi K. A systematic strategy for screening therapeutic constituents of Schisandra chinensis (Turcz .) Baill infiltrated blood-brain barrier oriented in lesions using ethanol and water extracts: a novel perspective for exploring chemical material basis of herb medicines. Acta Pharm Sin B 2020; 10:557-568. [PMID: 32140399 PMCID: PMC7049611 DOI: 10.1016/j.apsb.2019.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/03/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Schisandra chinensis, a widely used Chinese herbal medicine, was considered as central nervous system (CNS) drug for years. Both ethanol extracts (EES) and water extracts (WES) of it were applied clinically. Unfortunately, the difference of their efficacy and even effective material foundation of S. chinensis remains obscure. In this study, to explore the active constituents of S. chinensis, we compared pharmacodynamics and chemical profiles in vitro/in vivo of EES/WES for the first time using multiple chemical analysis, pharmacological and data processing approaches. It was proved that there was no significant difference in the anti-depressive effects between WES and EES. However, the contents of most components in vitro and in plasma were higher in EES than those in WES, which was unconvincing for their similar efficacy. Therefore, we further explored components of S. chinensis targeted onto brain and the results showed that 5 lignans were identified with definite absorptivity respectively both in EES and WES caused by the limitation of blood−brain barrier. Moreover, bioinformatic analysis predicted their anti-depressive action. Above all, the systematic strategy screened 5 brain-targeted effective substances of S. chinensis and it was suggested that exploring the components into nidi would promote the studies on herbs effective material basis.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiameng Qu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingyang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding author. Tel.: +86 24 23986012; fax: +86 24 23986259.
| |
Collapse
|
65
|
Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2020; 45:1-21. [PMID: 33437152 PMCID: PMC7790905 DOI: 10.1016/j.jgr.2019.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yingbo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| |
Collapse
|
66
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
67
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
68
|
Gao W, Liu K, Wang R, Liu XG, Li XS, Li P, Yang H. Integration of targeted metabolite profiling and sequential optimization method for discovery of chemical marker combination to identify the closely-related plant species. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152829. [PMID: 31039532 DOI: 10.1016/j.phymed.2019.152829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Quality control of herbal medicines based on characteristic components is an important trend. Although the plant metabolomics provide a powerful tool for species classification, the discovered marker is usually limited in practical application. For rapid discovery of efficient marker combination, we proposed a strategy integrating targeted metabolite profiling and sequential optimization method. METHODS This strategy included: (1) directional enrichment and chemical profiling of targeted metabolites by matrix solid phase dispersion (MSPD) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). (2) Partial least squares discrimination analysis (PLS-DA)-based sequential screening of efficient marker combination was constructed for various species predictions. Five Lonicera species and their characteristic metabolites, sponins, were taken as a case study. RESULTS A total of 19 saponins were identified, and 12 major and available saponins were enriched based on MSPD and quantified by LC-MS/MS in 5 Lonicera species flower buds. Followed by 3 runs of PLS-DA-based screening, a combination consisting of macranthoidin B, dipsacoside B and α-hederin was discovered as the effective chemical marker for 5 analogous Lonicera flower classification. CONCLUSION Our study provides an effective and applicable approach to select the practical marker combination for the assessment of analogical herb medicines.
Collapse
Affiliation(s)
- Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Ke Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Xiao-Shi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
69
|
Simultaneous determination of metabolic and elemental markers in methamphetamine-induced hepatic injury to rats using LC-MS/MS and ICP-MS. Anal Bioanal Chem 2019; 411:3361-3372. [PMID: 31119349 DOI: 10.1007/s00216-019-01810-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
Methamphetamine (METH) is one of the most highly addictive illicit drugs abused all over the world. Much evidence indicates that METH abuse leads to major toxicity, medical consequences, and even severe public health consequences. Existing studies usually focus on the pathomechanism of METH-induced toxicity; therefore, data on metabolites and elements correlating with particular toxicity remain scarce. The objective of the present study is to develop appropriate analytical procedures to identify the differential metabolic and elemental biomarkers on METH-induced hepatic injury to rats. The rats were administrated with METH (15 mg/mL/kg, two times per day) via intraperitoneal (i.p.) injections for four consecutive days. The alanine aminotransferase and aspartate aminotransferase activity levels of in the rat serum of the METH group increase significantly compared with those of the control group, suggesting obvious hepatic injury. The results are further confirmed by the histopathological microscopic observation. A total of 18 small molecular metabolites and 19 elements are selected to perform the simultaneous quantification based on the combination of liquid chromatography coupled with tandem mass spectrometry and inductively coupled plasma mass spectrometry. Sample preparation was optimized to cover all the analytes. Both methods are optimized and validated according to developed guidelines such as limits of detection, limits of quantification, linearity, precision, and recovery. All the obtained data are within the satisfactory range. The normalized data were processed according to the partial least squares discrimination analysis (PLS-DA) model. Five differential metabolic and six elemental markers are identified in rat plasma based on the variable importance in projection (VIP) (> 1) and t test results. Overall, the results obtained in this study demonstrate the developed methods are suitable for simultaneous determination of metabolic and elemental markers in the hepatic injury to rats induced by METH. Graphical abstract.
Collapse
|
70
|
A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of ginsenosides from white and red ginsengs. J Pharm Biomed Anal 2019; 163:24-33. [DOI: 10.1016/j.jpba.2018.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/19/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
|
71
|
Study on the Discrimination between Citri Reticulatae Pericarpium Varieties Based on HS-SPME-GC-MS Combined with Multivariate Statistical Analyses. Molecules 2018; 23:molecules23051235. [PMID: 29786662 PMCID: PMC6099961 DOI: 10.3390/molecules23051235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 12/27/2022] Open
Abstract
Citri reticulatae pericarpium (CRP), the dried pericarps of Citrus reticulata Blanco and its cultivars, has been widely used in drugs and foods in China for centuries. In this study, an accurate and feasible analytical method based on HS-SPME-GC-MS coupled with multivariate statistical analyses was developed to comprehensively compare volatile compounds of pericarps derived from Citrus reticulata “Chachi” (“Guangchenpi” in Chinese, GCP) and other cultivars of Citrus reticulata Blanco (“Chenpi” in Chinese, CP). Principal component analysis, hierarchical cluster analysis, and orthogonal partial least-squares-discrimination analysis were performed to extract meaningful attributes from volatile profiles based on GC-MS data. Results indicated that samples from GCP and CP could easily be differentiated, and seven potential chemical markers were screened for the quality control of CRP. This study illuminated the volatile profile in CRP, and provides a practical method for the authentication of CRP varieties.
Collapse
|
72
|
Liu CX, Liu L, Guo DA. Quality marker of TCMs: concept and applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:85-86. [PMID: 29895496 DOI: 10.1016/j.phymed.2018.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Chang-Xiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Liang Liu
- State Key Laboratory of Quality Research of Chinese Medicines, Macau University of Science and Technology, Macau SAR, China
| | - De-An Guo
- Shanghai Institute of Materia Medica, CSA, Shanghai, 201203, China
| |
Collapse
|