51
|
Chen JL, Li B, Li XY, Su XC. Dynamic Exchange of the Metal Chelating Moiety: A Key Factor in Determining the Rigidity of Protein-Tag Conjugates in Paramagnetic NMR. J Phys Chem Lett 2020; 11:9493-9500. [PMID: 33108729 DOI: 10.1021/acs.jpclett.0c02196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Site-specific labeling of proteins with a paramagnetic tag is an efficient way to provide atomic-resolution information about the dynamics, interactions, and structures of the proteins and protein-ligand complexes. The paramagnetic effects manifested in NMR spectroscopy generally contain paramagnetic relaxation enhancement, pseudocontact shifts (PCSs), and residual dipolar coupling (RDC), and these effects correlate closely with the flexibility of protein-tag conjugates. The rigidity of the paramagnetic tag is greatly important in decoding the structural details of macromolecular complexes, because paramagnetic averaging reduces the PCSs and RDCs. Here we show that the dynamic exchange of the metal chelating moiety is a key factor in determining the rigidity of the paramagnetic tag in the protein conjugates. Decreasing the conformational exchange rates in the metal chelating moiety greatly minimizes the paramagnetic averaging and thus increases PCSs and RDCs. This effect has been demonstrated in an open-chain tag, Py-l-Cys-DTPA, which generates large PCSs and RDCs that are comparable to those of the reported cyclic DOTA-like tags. The proposed route offers a unique way to design suitable paramagnetic tags for applications in biological systems.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xia-Yan Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
52
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
53
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
54
|
Lang L, Ravera E, Parigi G, Luchinat C, Neese F. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J Phys Chem Lett 2020; 11:8735-8744. [PMID: 32930598 PMCID: PMC7584370 DOI: 10.1021/acs.jpclett.0c02462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A recently popularized approach for the calculation of pseudocontact shifts (PCSs) based on first-principles quantum chemistry (QC) leads to different results than the classic "semiempirical" equation involving the susceptibility tensor. Studies that attempted a comparison of theory and experiment led to conflicting conclusions with respect to the preferred theoretical approach. In this Letter, we show that after inclusion of previously neglected terms in the full Hamiltonian, one can deduce the semiempirical equations from a rigorous QC-based treatment. It also turns out that in the long-distance limit, one can approximate the complete A tensor in terms of the g tensor. By means of Kohn-Sham density functional theory calculations, we numerically confirm the long-distance expression for the A tensor and the theoretically predicted scaling behavior of the different terms. Our derivation suggests a computational strategy in which one calculates the susceptibility tensor and inserts it into the classic equation for the PCS.
Collapse
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
55
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
56
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
57
|
Müntener T, Böhm R, Atz K, Häussinger D, Hiller S. NMR pseudocontact shifts in a symmetric protein homotrimer. JOURNAL OF BIOMOLECULAR NMR 2020; 74:413-419. [PMID: 32621004 PMCID: PMC7508745 DOI: 10.1007/s10858-020-00329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
NMR pseudocontact shifts are a valuable tool for structural and functional studies of proteins. Protein multimers mediate key functional roles in biology, but methods for their study by pseudocontact shifts are so far not available. Paramagnetic tags attached to identical subunits in multimeric proteins cause a combined pseudocontact shift that cannot be described by the standard single-point model. Here, we report pseudocontact shifts generated simultaneously by three paramagnetic Tm-M7PyThiazole-DOTA tags to the trimeric molecular chaperone Skp and provide an approach for the analysis of this and related symmetric systems. The pseudocontact shifts were described by a "three-point" model, in which positions and parameters of the three paramagnetic tags were fitted. A good correlation between experimental data and predicted values was found, validating the approach. The study establishes that pseudocontact shifts can readily be applied to multimeric proteins, offering new perspectives for studies of large protein complexes by paramagnetic NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Raphael Böhm
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Kenneth Atz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| |
Collapse
|
58
|
Invernici M, Trindade IB, Cantini F, Louro RO, Piccioli M. Measuring transverse relaxation in highly paramagnetic systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:431-442. [PMID: 32710399 PMCID: PMC7508935 DOI: 10.1007/s10858-020-00334-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/09/2020] [Indexed: 05/16/2023]
Abstract
The enhancement of nuclear relaxation rates due to the interaction with a paramagnetic center (known as Paramagnetic Relaxation Enhancement) is a powerful source of structural and dynamics information, widely used in structural biology. However, many signals affected by the hyperfine interaction relax faster than the evolution periods of common NMR experiments and therefore they are broadened beyond detection. This gives rise to a so-called blind sphere around the paramagnetic center, which is a major limitation in the use of PREs. Reducing the blind sphere is extremely important in paramagnetic metalloproteins. The identification, characterization, and proper structural restraining of the first coordination sphere of the metal ion(s) and its immediate neighboring regions is key to understand their biological function. The novel HSQC scheme we propose here, that we termed R2-weighted, HSQC-AP, achieves this aim by detecting signals that escaped detection in a conventional HSQC experiment and provides fully reliable R2 values in the range of 1H R2 rates ca. 50-400 s-1. Independently on the type of paramagnetic center and on the size of the molecule, this experiment decreases the radius of the blind sphere and increases the number of detectable PREs. Here, we report the validation of this approach for the case of PioC, a small protein containing a high potential 4Fe-4S cluster in the reduced [Fe4S4]2+ form. The blind sphere was contracted to a minimal extent, enabling the measurement of R2 rates for the cluster coordinating residues.
Collapse
Affiliation(s)
- Michele Invernici
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal.
| | - Mario Piccioli
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
59
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
60
|
Softley CA, Bostock MJ, Popowicz GM, Sattler M. Paramagnetic NMR in drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:287-309. [PMID: 32524233 PMCID: PMC7311382 DOI: 10.1007/s10858-020-00322-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 05/05/2023]
Abstract
The presence of an unpaired electron in paramagnetic molecules generates significant effects in NMR spectra, which can be exploited to provide restraints complementary to those used in standard structure-calculation protocols. NMR already occupies a central position in drug discovery for its use in fragment screening, structural biology and validation of ligand-target interactions. Paramagnetic restraints provide unique opportunities, for example, for more sensitive screening to identify weaker-binding fragments. A key application of paramagnetic NMR in drug discovery, however, is to provide new structural restraints in cases where crystallography proves intractable. This is particularly important at early stages in drug-discovery programs where crystal structures of weakly-binding fragments are difficult to obtain and crystallization artefacts are probable, but structural information about ligand poses is crucial to guide medicinal chemistry. Numerous applications show the value of paramagnetic restraints to filter computational docking poses and to generate interaction models. Paramagnetic relaxation enhancements (PREs) generate a distance-dependent effect, while pseudo-contact shift (PCS) restraints provide both distance and angular information. Here, we review strategies for introducing paramagnetic centers and discuss examples that illustrate the utility of paramagnetic restraints in drug discovery. Combined with standard approaches, such as chemical shift perturbation and NOE-derived distance information, paramagnetic NMR promises a valuable source of information for many challenging drug-discovery programs.
Collapse
Affiliation(s)
- Charlotte A Softley
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
61
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
62
|
Hunashal Y, Cantarutti C, Giorgetti S, Marchese L, Molinari H, Niccolai N, Fogolari F, Esposito G. Exploring exchange processes in proteins by paramagnetic perturbation of NMR spectra. Phys Chem Chem Phys 2020; 22:6247-6259. [PMID: 32129386 DOI: 10.1039/c9cp06950j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of extrinsic paramagnetic probes on NMR relaxation rates for surface mapping of proteins and other biopolymers is a widely investigated and powerful NMR technique. Here we describe a new application of those probes. It relies on the setting of the relaxation delay to generate magnetization equilibrium and off-equilibrium conditions, in order to tailor the extent of steady state signal recovery with and without the water-soluble nitroxide Tempol. With this approach it is possible to identify signals whose relaxation is affected by exchange processes and, from the relative assignments, to map the protein residues involved in association or conformational interconversion processes on a micro-to-millisecond time scale. This finding is confirmed by the comparison with the results obtained from relaxation dispersion measurements. This simple and convenient method allows preliminary inspection to highlight regions where structural or chemical exchange events are operative, in order to focus on quantitative subsequent determinations by transverse relaxation dispersion experiments or analogous NMR relaxation studies, and/or to gain insights into the predictions of calculations.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and DAME, Università di Udine, 33100 Udine, Italy
| | - Cristina Cantarutti
- Institute of Chemistry, UMR CNRS 7272, Université Côte d'Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108, Nice Cedex 2, France
| | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Loredana Marchese
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), CNR, Via A. Corti, 12, 20133, Milano, Italy
| | - Neri Niccolai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Moro 2, 53100 Siena, Italy
| | - Federico Fogolari
- DMIF, Università di Udine, 33100 Udine, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| |
Collapse
|
63
|
Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics. J Mol Biol 2020; 432:2913-2929. [DOI: 10.1016/j.jmb.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
|
64
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
65
|
Joss D, Winter F, Häussinger D. A novel, rationally designed lanthanoid chelating tag delivers large paramagnetic structural restraints for biomolecular NMR. Chem Commun (Camb) 2020; 56:12861-12864. [DOI: 10.1039/d0cc04337k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, rationally designed lanthanoid chelating tag enables fast ligation to biomacromolecules and delivers long-range structural restraints by NMR.
Collapse
Affiliation(s)
- Daniel Joss
- Department of Chemistry
- University of Basel
- Basel 4056
- Switzerland
| | - Florine Winter
- Department of Chemistry
- University of Basel
- Basel 4056
- Switzerland
| | | |
Collapse
|
66
|
Chen JL, Wang X, Xiao YH, Su XC. Resonance Assignments of Lowly Populated and Unstable Enzyme Intermediate Complex under Real-Time Conditions. Chembiochem 2019; 20:2738-2742. [PMID: 31136055 DOI: 10.1002/cbic.201900240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 11/08/2022]
Abstract
Unstable and low-abundance protein complexes represent a large family of transient protein complexes that are difficult to characterize, even by means of high-resolution NMR spectroscopy. A method to assign the NMR signals of these unstable complexes through a combination of selective isotope labeling of amino acids in a protein and site-specific labeling the protein with a paramagnetic tag is presented herein. By using this method, the resonances of unstable thioester intermediate complex (lifetime <5 h and highest concentration ≈20 μm) generated by Staphylococcus aureus sortase A and its peptide substrate under a real-time reaction have been assigned.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu-Hao Xiao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
67
|
Suzuki T, Yanaka S, Watanabe T, Yan G, Satoh T, Yagi H, Yamaguchi T, Kato K. Remodeling of the Oligosaccharide Conformational Space in the Prebound State To Improve Lectin-Binding Affinity. Biochemistry 2019; 59:3180-3185. [PMID: 31553574 DOI: 10.1021/acs.biochem.9b00594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed an approach to improve the lectin-binding affinity of an oligosaccharide by remodeling its conformational space in the precomplexed state. To develop this approach, we used a Lewis X-containing oligosaccharide interacting with RSL as a model system. Using an experimentally validated molecular dynamics simulation, we designed a Lewis X analogue with an increased population of conformational species that were originally very minor but exclusively accessible to the target lectin without steric hindrance by modifying the nonreducing terminal galactose, which does not directly contact the lectin in the complex. This Lewis X mimetic showed 17 times higher affinity for the lectin than the native counterpart. Our approach, complementing the lectin-bound-state optimizations, offers an alternative strategy to create high-affinity oligosaccharides by increasing populations of on-pathway metastable conformers.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Tokio Watanabe
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Gengwei Yan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takumi Yamaguchi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| |
Collapse
|
68
|
Kocman V, Di Mauro GM, Veglia G, Ramamoorthy A. Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:36-46. [PMID: 31325686 PMCID: PMC6698407 DOI: 10.1016/j.ssnmr.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T1) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra. Consequently, most of the experimental time is "wasted" in waiting for the magnetization to recover between successive scans. In this review, we discuss how to set up an optimal paramagnetic relaxation enhancement (PRE) system to effectively reduce the T1 relaxation times avoiding significant broadening of NMR signals. Additionally, we describe how PRE-agents can be used to provide structural and dynamic information and can even be used to follow the intermediates of chemical reactions and to speed-up data acquisition. We also describe the unique challenges and benefits associated with the application of PRE to solid-state NMR spectroscopy, explaining how the use of PREs is more complex for membrane mimetic systems as PREs can also be exploited to change the alignment of oriented membrane systems. Functionalization of membrane mimetics, such as bicelles, can provide a controlled region of paramagnetic effect that has the potential, together with the desired alignment, to provide crucial biologically relevant structural information. And finally, we discuss how paramagnetic metals can be utilized to further increase the dynamic nuclear polarization (DNP) effects and how to preserve the enhancements when dissolution DNP is implemented.
Collapse
Affiliation(s)
- Vojč Kocman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
69
|
Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:211-236. [PMID: 31779881 DOI: 10.1016/j.pnmrs.2019.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/18/2023]
Abstract
The magnetic interactions between the nuclear magnetic moment and the magnetic moment of unpaired electron(s) depend on the structure and dynamics of the molecules where the paramagnetic center is located and of their partners. The long-range nature of the magnetic interactions is thus a reporter of invaluable information for structural biology studies, when other techniques often do not provide enough data for the atomic-level characterization of the system. This precious information explains the flourishing of paramagnetism-assisted NMR studies in recent years. Many paramagnetic effects are related to the magnetic susceptibility of the paramagnetic metal. Although these effects have been known for more than half a century, different theoretical models and new approaches have been proposed in the last decade. In this review, we have summarized the consequences for NMR spectroscopy of magnetic interactions between nuclear and electron magnetic moments, and thus of the presence of a magnetic susceptibility due to metals, and we do so using a unified notation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
70
|
Arthanari H, Takeuchi K, Dubey A, Wagner G. Emerging solution NMR methods to illuminate the structural and dynamic properties of proteins. Curr Opin Struct Biol 2019; 58:294-304. [PMID: 31327528 PMCID: PMC6778509 DOI: 10.1016/j.sbi.2019.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
The first recognition of protein breathing was more than 50 years ago. Today, we are able to detect the multitude of interaction modes, structural polymorphisms, and binding-induced changes in protein structure that direct function. Solution-state NMR spectroscopy has proved to be a powerful technique, not only to obtain high-resolution structures of proteins, but also to provide unique insights into the functional dynamics of proteins. Here, we summarize recent technical landmarks in solution NMR that have enabled characterization of key biological macromolecular systems. These methods have been fundamental to atomic resolution structure determination and quantitative analysis of dynamics over a wide range of time scales by NMR. The ability of NMR to detect lowly populated protein conformations and transiently formed complexes plays a critical role in its ability to elucidate functionally important structural features of proteins and their dynamics.
Collapse
Affiliation(s)
- Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 135-0064 Tokyo, Japan.
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
71
|
Joss D, Häussinger D. Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:284-312. [PMID: 31779884 DOI: 10.1016/j.pnmrs.2019.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 05/14/2023]
Abstract
In this review, lanthanide chelating tags and their applications to pseudocontact shift NMR spectroscopy as well as analysis of residual dipolar couplings are covered. A complete overview is presented of DOTA-derived and non-DOTA-derived lanthanide chelating tags, critical points in the design of lanthanide chelating tags as appropriate linker moieties, their stability under reductive conditions, e.g., for in-cell applications, the magnitude of the anisotropy transferred from the lanthanide chelating tag to the biomacromolecule under investigation and structural properties, as well as conformational bias of the lanthanide chelating tags are discussed. Furthermore, all DOTA-derived lanthanide chelating tags used for PCS NMR spectroscopy published to date are displayed in tabular form, including their anisotropy parameters, with all employed lanthanide ions, CB-Ln distances and tagging reaction conditions, i.e., the stoichiometry of lanthanide chelating tags, pH, buffer composition, temperature and reaction time. Additionally, applications of lanthanide chelating tags for pseudocontact shifts and residual dipolar couplings that have been reported for proteins, protein-protein and protein-ligand complexes, carbohydrates, carbohydrate-protein complexes, nucleic acids and nucleic acid-protein complexes are presented and critically reviewed. The vast and impressive range of applications of lanthanide chelating tags to structural investigations of biomacromolecules in solution clearly illustrates the significance of this particular field of research. The extension of the repertoire of lanthanide chelating tags from proteins to nucleic acids holds great promise for the determination of valuable structural parameters and further developments in characterizing intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Joss
- University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
72
|
Srb P, Svoboda M, Benda L, Lepšík M, Tarábek J, Šícha V, Grüner B, Grantz-Šašková K, Brynda J, Řezáčová P, Konvalinka J, Veverka V. Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Phys Chem Chem Phys 2019; 21:5661-5673. [PMID: 30794275 DOI: 10.1039/c9cp00416e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transient and fuzzy intermolecular interactions are fundamental to many biological processes. Despite their importance, they are notoriously challenging to characterize. Effects induced by paramagnetic ligands in the NMR spectra of interacting biomolecules provide an opportunity to amplify subtle manifestations of weak intermolecular interactions observed for diamagnetic ligands. Here, we present an approach to characterizing dynamic interactions between a partially flexible dimeric protein, HIV-1 protease, and a metallacarborane-based ligand, a system for which data obtained by standard NMR approaches do not enable detailed structural interpretation. We show that for the case where the experimental data are significantly averaged to values close to zero the standard fitting of pseudocontact shifts cannot provide reliable structural information. We based our approach on generating a large ensemble of full atomic models, for which the experimental data can be predicted, ensemble averaged and finally compared to the experiment. We demonstrate that a combination of paramagnetic NMR experiments, quantum chemical calculations, and molecular dynamics simulations offers a route towards structural characterization of dynamic protein-ligand complexes.
Collapse
Affiliation(s)
- Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ravera E, Parigi G, Luchinat C. What are the methodological and theoretical prospects for paramagnetic NMR in structural biology? A glimpse into the crystal ball. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:173-179. [PMID: 31331762 DOI: 10.1016/j.jmr.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy is very sensitive to the presence of unpaired electrons, which perturb the NMR chemical shifts, J splittings and nuclear relaxation rates. These paramagnetic effects have attracted increasing attention over the last decades, and their use is expected to increase further in the future because they can provide structural information not easily achievable with other techniques. In fact, paramagnetic data provide long range structural restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements with the X-ray data. They are also precious for obtaining information on the conformational variability of biomolecular systems, possibly in conjunction with SAXS and/or DEER data. We foresee that new tools will be developed in the next years for the simultaneous analysis of the paramagnetic data with data obtained from different techniques, in order to take advantage synergistically of the information content of all of them. Of course, the use of the paramagnetic data for structural purposes requires the knowledge of the relationship between these data and the molecular coordinates. Recently, the equations commonly used, dating back to half a century ago, have been questioned by first principle quantum chemistry calculations. Our prediction is that further theoretical/computational improvements will essentially confirm the validity of the old semi-empirical equations for the analysis of the experimental paramagnetic data.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
74
|
Miao Q, Liu WM, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double-Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019; 58:13093-13100. [PMID: 31314159 PMCID: PMC6771572 DOI: 10.1002/anie.201906049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid‐based probes. The observed PCS are relatively small, making cobalt‐based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt‐based probes are discussed.
Collapse
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New, Taipei City, 24205, Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
75
|
Miao Q, Liu W, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double‐Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Wei‐Min Liu
- Department of Chemistry Fu Jen Catholic University No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205 Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
76
|
Joss D, Bertrams M, Häussinger D. A Sterically Overcrowded, Isopropyl‐Substituted, Lanthanide‐Chelating Tag for Protein Pseudocontact Shift NMR Spectroscopy: Synthesis of its Macrocyclic Scaffold and Benchmarking on Ubiquitin S57 C and hCA II S166 C. Chemistry 2019; 25:11910-11917. [DOI: 10.1002/chem.201901692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Joss
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Maria‐Sophie Bertrams
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
77
|
Bahramzadeh A, Huber T, Otting G. Three-Dimensional Protein Structure Determination Using Pseudocontact Shifts of Backbone Amide Protons Generated by Double-Histidine Co 2+-Binding Motifs at Multiple Sites. Biochemistry 2019; 58:3243-3250. [PMID: 31282649 DOI: 10.1021/acs.biochem.9b00404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pseudocontact shifts (PCSs) generated by paramagnetic metal ions contribute highly informative long-range structure restraints that can be measured in solution and are ideally suited to guide structure prediction algorithms in determining global protein folds. We recently demonstrated that PCSs, which are relatively small but of high quality, can be generated by a double-histidine (dHis) motif in an α-helix, which provides a well-defined binding site for a single Co2+ ion. Here we show that PCSs of backbone amide protons generated by dHis-Co2+ motifs positioned in four different α-helices of a protein deliver excellent restraints to determine the three-dimensional (3D) structure of a protein in a way akin to the global positioning system (GPS). We demonstrate the approach with GPS-Rosetta calculations of the 3D structure of the C-terminal domain of the chaperone ERp29 (ERp29-C). Despite the relatively small size of the PCSs generated by the dHis-Co2+ motifs, the structure calculations converged readily. Generating PCSs by the dHis-Co2+ motif thus presents an excellent alternative to the use of lanthanide tags.
Collapse
Affiliation(s)
- Alireza Bahramzadeh
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Thomas Huber
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| |
Collapse
|
78
|
Harnden AC, Suturina EA, Batsanov AS, Senanayake PK, Fox MA, Mason K, Vonci M, McInnes EJL, Chilton NF, Parker D. Unravelling the Complexities of Pseudocontact Shift Analysis in Lanthanide Coordination Complexes of Differing Symmetry. Angew Chem Int Ed Engl 2019; 58:10290-10294. [DOI: 10.1002/anie.201906031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Alice C. Harnden
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| | | | | | | | - Mark A. Fox
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| | - Kevin Mason
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| | - Michele Vonci
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J. L. McInnes
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F. Chilton
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - David Parker
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| |
Collapse
|
79
|
Carlon A, Ravera E, Parigi G, Murshudov GN, Luchinat C. Joint X-ray/NMR structure refinement of multidomain/multisubunit systems. JOURNAL OF BIOMOLECULAR NMR 2019; 73:265-278. [PMID: 30311122 PMCID: PMC6692505 DOI: 10.1007/s10858-018-0212-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Data integration in structural biology has become a paradigm for the characterization of biomolecular systems, and it is now accepted that combining different techniques can fill the gaps in each other's blind spots. In this frame, one of the combinations, which we have implemented in REFMAC-NMR, is residual dipolar couplings from NMR together with experimental data from X-ray diffraction. The first are exquisitely sensitive to the local details but does not give any information about overall shape, whereas the latter encodes more the information about the overall shape but at the same time tends to miss the local details even at the highest resolutions. Once crystals are obtained, it is often rather easy to obtain a complete X-ray dataset, however it is time-consuming to obtain an exhaustive NMR dataset. Here, we discuss the effect of including a-priori knowledge on the properties of the system to reduce the number of experimental data needed to obtain a more complete picture. We thus introduce a set of new features of REFMAC-NMR that allow for improved handling of RDC data for multidomain proteins and multisubunit biomolecular complexes, and encompasses the use of pseudo-contact shifts as an additional source of NMR-based information. The new feature may either help in improving the refinement, or assist in spotting differences between the crystal and the solution data. We show three different examples where NMR and X-ray data can be reconciled to a unique structural model without invoking mobility.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Garib N. Murshudov
- MRC Laboratory for Molecular Biology, Francis Crick Ave, CB2 0QH Cambridge, UK
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
80
|
Mallis RJ, Brazin KN, Duke-Cohan JS, Hwang W, Wang JH, Wagner G, Arthanari H, Lang MJ, Reinherz EL. NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology. JOURNAL OF BIOMOLECULAR NMR 2019; 73:319-332. [PMID: 30815789 PMCID: PMC6693947 DOI: 10.1007/s10858-019-00234-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 05/05/2023]
Abstract
Early studies of T cell structural biology using X-ray crystallography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) focused on a picture of the αβT cell receptor (αβTCR) component domains and their cognate ligands (peptides bound to MHC molecules, i.e. pMHCs) as static interaction partners. Moving forward requires integrating this corpus of data with dynamic technologies such as NMR, molecular dynamics (MD) simulations and real-time single molecule (SM) studies exemplified by optical tweezers (OT). NMR bridges relevant timescales and provides the potential for an all-atom dynamic description of αβTCR components prior to and during interactions with binding partners. SM techniques have opened up vistas in understanding the non-equilibrium nature of T cell signaling through the introduction of force-mediated binding measurements into the paradigm for T cell function. In this regard, bioforces consequent to T-lineage cell motility are now perceived as placing piconewton (pN)-level loads on single receptor-pMHC bonds to impact structural change and αβT-lineage biology, including peptide discrimination, cellular activation, and developmental progression. We discuss herein essential NMR technologies in illuminating the role of ligand binding in the preT cell receptor (preTCR), the αβTCR developmental precursor, and convergence of NMR, SM and MD data in advancing our comprehension of T cell development. More broadly we review the central hypothesis that the αβTCR is a mechanosensor, fostered by breakthrough NMR-based structural insights. Collectively, elucidating dynamic aspects through the integrative use of NMR, SM, and MD shall advance fundamental appreciation of the mechanism of T cell signaling as well as inform translational efforts in αβTCR and chimeric T cell (CAR-T) immunotherapies and T cell vaccinology.
Collapse
Affiliation(s)
- Robert J Mallis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kristine N Brazin
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 02455, Republic of Korea
| | - Jia-Huai Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
81
|
Harnden AC, Suturina EA, Batsanov AS, Senanayake PK, Fox MA, Mason K, Vonci M, McInnes EJL, Chilton NF, Parker D. Unravelling the Complexities of Pseudocontact Shift Analysis in Lanthanide Coordination Complexes of Differing Symmetry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alice C. Harnden
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| | | | | | | | - Mark A. Fox
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| | - Kevin Mason
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| | - Michele Vonci
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J. L. McInnes
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F. Chilton
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - David Parker
- Department of ChemistryDurham University South Road Durham DH1 3LE UK
| |
Collapse
|
82
|
Su XC, Chen JL. Site-Specific Tagging of Proteins with Paramagnetic Ions for Determination of Protein Structures in Solution and in Cells. Acc Chem Res 2019; 52:1675-1686. [PMID: 31150202 DOI: 10.1021/acs.accounts.9b00132] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-resolution NMR spectroscopy is sensitive to local structural variations and subtle dynamics of biomolecules and is an important technique for studying the structures, dynamics, and interactions of these molecules. Small-molecule probes, including paramagnetic tags, have been developed for this purpose. Paramagnetic effects manifested in magnetic resonance spectra have long been recognized as valuable tools for chemical analysis of small molecules, and these effects were later applied in the fields of chemical biology and structural biology. However, such applications require the installation of a paramagnetic center in the biomolecules of interest. Paramagnetic metal ions and stable free radicals are the most widely used paramagnetic probes for biological magnetic resonance spectroscopy, and therefore mild, high-yielding approaches for chemically attaching paramagnetic tags to biomolecules are in high demand. In this Account, we begin by discussing paramagnetic species, especially transition metal ions and lanthanide ions, that are suitable for NMR and EPR studies, particularly for in-cell applications. Thereafter, we describe approaches for site-specific tagging of proteins with paramagnetic ions and discuss considerations involved in designing high-quality paramagnetic tags, including the strength of the binding between the metal-chelating moiety and the paramagnetic ion, the chemical stability, and the flexibility of the tether between the paramagnetic tag and the target protein. The flexibility of a tag correlates strongly with the averaging of paramagnetic effects observed in NMR spectra, and we describe methods for increasing tag rigidity and applications of such tags in biological systems. We also describe specific applications of established site-specific tagging approaches and newly developed paramagnetic tags for the elucidation of protein structures and dynamics at atomic resolution both in solution and in cells. First, we describe the determination of the 3D structure of a short-lived, low-abundance enzyme intermediate complex in real time by using pseudocontact shifts as structural restraints. Second, we demonstrate the utility of stable paramagnetic tags for determining 3D structures of proteins in live cells, and pseudocontact shifts are shown to be valuable structural restraints for in-cell protein analysis. Third, we show that a NMR optimized paramagnetic tag allows one to determine distance restraints on proteins by double electron-electron resonance (DEER) measurements with high spatial resolution both in vitro and in cells. Finally, we summarize recent advances in site-specific tagging of proteins to achieve atomic-resolution information about structural changes of proteins, and the advantages and challenges of magnetic resonance spectroscopy in biological systems.
Collapse
Affiliation(s)
- Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
83
|
Ye Y, Wu Q, Zheng W, Jiang B, Pielak GJ, Liu M, Li C. Positively Charged Tags Impede Protein Mobility in Cells as Quantified by 19F NMR. J Phys Chem B 2019; 123:4527-4533. [PMID: 31042382 DOI: 10.1021/acs.jpcb.9b02162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are often tagged for visualization or delivery in the "sea" of other macromolecules in cells but how tags affect protein mobility remains poorly understood. Here, we employ in-cell 19F NMR to quantify the mobility of proteins with charged tags in Escherichia coli cells and Xenopus laevis oocytes. We find that the transient charge-charge interactions between the tag and cellular components affect protein mobility. More specifically, positively charged tags impede protein mobility.
Collapse
Affiliation(s)
- Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Wenwen Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Gary J Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, and Lineberger Comprehensive Cancer Center , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| |
Collapse
|
84
|
NMR Resonance Assignment Methodology: Characterizing Large Sparsely Labeled Glycoproteins. J Mol Biol 2019; 431:2369-2382. [PMID: 31034888 DOI: 10.1016/j.jmb.2019.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
Abstract
Characterization of proteins using NMR methods begins with assignment of resonances to specific residues. This is usually accomplished using sequential connectivities between nuclear pairs in proteins uniformly labeled with NMR active isotopes. This becomes impractical for larger proteins, and especially for proteins that are best expressed in mammalian cells, including glycoproteins. Here an alternate protocol for the assignment of NMR resonances of sparsely labeled proteins, namely, the ones labeled with a single amino acid type, or a limited subset of types, isotopically enriched with 15N or 13C, is described. The protocol is based on comparison of data collected using extensions of simple two-dimensional NMR experiments (correlated chemical shifts, nuclear Overhauser effects, residual dipolar couplings) to predictions from molecular dynamics trajectories that begin with known protein structures. Optimal pairing of predicted and experimental values is facilitated by a software package that employs a genetic algorithm, ASSIGN_SLP_MD. The approach is applied to the 36-kDa luminal domain of the sialyltransferase, rST6Gal1, in which all phenylalanines are labeled with 15N, and the results are validated by elimination of resonances via single-point mutations of selected phenylalanines to tyrosines. Assignment allows the use of previously published paramagnetic relaxation enhancements to evaluate placement of a substrate analog in the active site of this protein. The protocol will open the way to structural characterization of the many glycosylated and other proteins that are best expressed in mammalian cells.
Collapse
|
85
|
Zimmermann K, Joss D, Müntener T, Nogueira ES, Schäfer M, Knörr L, Monnard FW, Häussinger D. Localization of ligands within human carbonic anhydrase II using 19F pseudocontact shift analysis. Chem Sci 2019; 10:5064-5072. [PMID: 31183057 PMCID: PMC6530540 DOI: 10.1039/c8sc05683h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Unraveling the native structure of protein-ligand complexes in solution enables rational drug design. We report here the use of 19F pseudocontact shift (PCS) NMR as a method to determine fluorine positions of high affinity ligands bound within the drug target human carbonic anhydrase II with high accuracy. Three different ligands were localized within the protein by analysis of the obtained PCS from simple one-dimensional 19F spectra with an accuracy of up to 0.8 Å. In order to validate the PCS, four to five independent magnetic susceptibility tensors induced by lanthanide chelating tags bound site-specifically to single cysteine mutants were refined. Least-squares minimization and a Monte-Carlo approach allowed the assessment of experimental errors on the intersection of the corresponding four to five PCS isosurfaces. By defining an angle score that reflects the relative isosurface orientation for different tensor combinations, it was established that the ligand can be localized accurately using only three tensors, if the isosurfaces are close to orthogonal. For two out of three ligands, the determined position closely matched the X-ray coordinates. Our results for the third ligand suggest, in accordance with previously reported ab initio calculations, a rotated position for the difluorophenyl substituent, enabling a favorable interaction with Phe-131. The lanthanide-fluorine distance varied between 22 and 38 Å and induced 19F PCS ranged from 0.078 to 0.409 ppm, averaging to 0.213 ppm. Accordingly, even longer metal-fluorine distances will lead to meaningful PCS, rendering the investigation of protein-ligand complexes significantly larger than 30 kDa feasible.
Collapse
Affiliation(s)
- Kaspar Zimmermann
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Daniel Joss
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Thomas Müntener
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Elisa S Nogueira
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Marc Schäfer
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Livia Knörr
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Fabien W Monnard
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| |
Collapse
|
86
|
Williams RV, Yang JY, Moremen KW, Amster IJ, Prestegard JH. Measurement of residual dipolar couplings in methyl groups via carbon detection. JOURNAL OF BIOMOLECULAR NMR 2019; 73:191-198. [PMID: 31041649 PMCID: PMC7020099 DOI: 10.1007/s10858-019-00245-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Residual dipolar couplings (RDCs) provide both structural and dynamical information useful in the characterization of biological macromolecules. While most data come from the interaction of simple pairs of directly bonded spin-1/2 nuclei (1H-15N, 1H-13C, 1H-1H), it is possible to acquire data from interactions among the multiple spins of 13C-labeled methyl groups (1H3-13C). This is especially important because of the advantages that observation of 13C-labeled methyl groups offers in working with very large molecules. Here we consider some of the options for measurement of methyl RDCs in large and often fully protonated proteins and arrive at a pulse sequence that exploits both J-modulation and direct detection of 13C. Its utility is illustrated by application to a fully protonated two domain fragment from the mammalian glycoprotein, Robo1, 13C-methyl-labeled in all valines.
Collapse
Affiliation(s)
- Robert V Williams
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Jeong-Yeh Yang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - James H Prestegard
- Department of Chemistry, University of Georgia, Athens, GA, USA.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
87
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
88
|
Strickland M, Catazaro J, Rajasekaran R, Strub MP, O'Hern C, Bermejo GA, Summers MF, Marchant J, Tjandra N. Long-Range RNA Structural Information via a Paramagnetically Tagged Reporter Protein. J Am Chem Soc 2019; 141:1430-1434. [PMID: 30652860 DOI: 10.1021/jacs.8b11384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NMR has provided a wealth of structural and dynamical information for RNA molecules of up to ∼50 nucleotides, but its application to larger RNAs has been hampered in part by difficulties establishing global structural features. A potential solution involves measurement of NMR perturbations after site-specific paramagnetic labeling. Although the approach works well for proteins, the inability to place the label at specific sites has prevented its application to larger RNAs transcribed in vitro. Here, we present a strategy in which RNA loop residues are modified to promote binding to a paramagnetically tagged reporter protein. Lanthanide-induced pseudocontact shifts are demonstrated for a 232-nucleotide RNA bound to tagged derivatives of the spliceosomal U1A RNA-binding domain. Further, the method is validated with a 36-nucleotide RNA for which measured NMR values agreed with predictions based on the previously known protein and RNA structures. The ability to readily insert U1A binding sites into ubiquitous hairpin and/or loop structures should make this approach broadly applicable for the atomic-level study of large RNAs.
Collapse
Affiliation(s)
- Madeleine Strickland
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | - Rohith Rajasekaran
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Marie-Paule Strub
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | - Guillermo A Bermejo
- Office of Intramural Research, Center for Information Technology, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | | | - Nico Tjandra
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
89
|
Meissner J, Wu Y, Jestin J, Shelton WA, Findenegg GH, Bharti B. pH-Induced reorientation of cytochrome c on silica nanoparticles. SOFT MATTER 2019; 15:350-354. [PMID: 30468443 DOI: 10.1039/c8sm01909f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The orientation of cytochrome c molecules at the surface of silica nanoparticles was studied in a wide pH range by combining small-angle neutron scattering, adsorption measurements, and molecular dynamics simulations. The results indicate a reorientation of the ellipsoidal protein from head-on to side-on as the pH is increased. This is attributed to changes in the surface charge distribution of both the protein and the nanoparticles.
Collapse
Affiliation(s)
- Jens Meissner
- Stranski Laboratory of Physical and Theoretical Chemistry, Technical University Berlin, 10623 Berlin, Germany.
| | - Yao Wu
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jacques Jestin
- Laboratoire Léon Brillouin, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - William A Shelton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA. and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gerhard H Findenegg
- Stranski Laboratory of Physical and Theoretical Chemistry, Technical University Berlin, 10623 Berlin, Germany.
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
90
|
Müntener T, Thommen F, Joss D, Kottelat J, Prescimone A, Häussinger D. Synthesis of chiral nine and twelve-membered cyclic polyamines from natural building blocks. Chem Commun (Camb) 2019; 55:4715-4718. [DOI: 10.1039/c9cc00720b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rational strategy for the facile and efficient cyclization of amino acid-based linear precursors forming nine and twelve-membered cyclic peptidomimetics is reported.
Collapse
Affiliation(s)
- Thomas Müntener
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | | - Daniel Joss
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Jérémy Kottelat
- School of Engineering and Architecture of Fribourg
- 1705 Fribourg
- Switzerland
| | | | | |
Collapse
|
91
|
Joss D, Häussinger D. P4T-DOTA – a lanthanide chelating tag combining a sterically highly overcrowded backbone with a reductively stable linker. Chem Commun (Camb) 2019; 55:10543-10546. [DOI: 10.1039/c9cc04676c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly rigidified lanthanide complex induces strong pseudocontact shifts and residual dipolar couplings for structural analysis of proteins in solution.
Collapse
Affiliation(s)
- Daniel Joss
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
92
|
Ravera E, Takis PG, Fragai M, Parigi G, Luchinat C. NMR Spectroscopy and Metal Ions in Life Sciences. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Panteleimon G. Takis
- Giotto Biotech S.R.L.; Via Madonna del Piano 6 50019 Sesto Fiorentino (FI) Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
93
|
Joss D, Walliser RM, Zimmermann K, Häussinger D. Conformationally locked lanthanide chelating tags for convenient pseudocontact shift protein nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 72:29-38. [PMID: 30117038 DOI: 10.1007/s10858-018-0203-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Pseudocontact shifts (PCS) generated by lanthanide chelating tags yield valuable restraints for investigating protein structures, dynamics and interactions in solution. In this work, dysprosium-, thulium- and terbium-complexes of eight-fold methylated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid tags [DOTA-M8-(4R4S)-SSPy] are presented that induce large pseudocontact shifts up to 5.5 ppm and adopt exclusively the square antiprismatic conformation. This is in contrast to our earlier findings on complexes of the stereoisomeric DOTA-M8-(8S)-SSPy, where significant amounts of the twisted square antiprismatic conformer for the Dy tag were observed. The Dy-, Tm-, Tb- and Lu-complexes of DOTA-M8-(4R4S)-SSPy were conjugated to ubiquitin S57C and selectively 15N leucine labeled human carbonic anhydrase II S50C, resulting in only one set of signals. Furthermore, we investigated the conformation of the thulium- and dysprosium-complexes in vacuo and with implicit water solvent using density functional theory calculations. The calculated energy differences between the two different conformations (7.0-50.5 kJ/mol) and experimental evidence from the corresponding ytterbium- and yttrium-complexes clearly suggest a SAP [Λ(δδδδ)] geometry for the complexes presented in this study. The lanthanide chelating tag studied in this work offer insights into the solution structure of proteins by inducing strong pseudocontact shifts, show different tensor properties compared to its predecessor, enables a convenient assignment procedure, is accessed by a more economic synthesis than its predecessor and constitutes a highly promising starting point for further developments of lanthanide chelating tags.
Collapse
Affiliation(s)
- Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Roché M Walliser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kaspar Zimmermann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.
| |
Collapse
|
94
|
Moure MJ, Eletsky A, Gao Q, Morris LC, Yang JY, Chapla D, Zhao Y, Zong C, Amster IJ, Moremen KW, Boons GJ, Prestegard JH. Paramagnetic Tag for Glycosylation Sites in Glycoproteins: Structural Constraints on Heparan Sulfate Binding to Robo1. ACS Chem Biol 2018; 13:2560-2567. [PMID: 30063822 PMCID: PMC6161356 DOI: 10.1021/acschembio.8b00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enzyme- and click chemistry-mediated methodology for the site-specific nitroxide spin labeling of glycoproteins has been developed and applied. The procedure relies on the presence of single N-glycosylation sites that are present natively in proteins or that can be engineered into glycoproteins by mutational elimination of all but one glycosylation site. Recombinantly expressing glycoproteins in HEK293S (GnT1-) cells results in N-glycans with high-mannose structures that can be processed to leave a single GlcNAc residue. This can in turn be modified by enzymatic addition of a GalNAz residue that is subject to reaction with an alkyne-carrying TEMPO moiety using copper(I)-catalyzed click chemistry. To illustrate the procedure, we have made an application to a two-domain construct of Robo1, a protein that carries a single N-glycosylation site in its N-terminal domains. The construct has also been labeled with 15N at amide nitrogens of lysine residues to provide a set of sites that are used to derive an effective location of the paramagnetic nitroxide moiety of the TEMPO group. This, in turn, allowed measurements of paramagnetic perturbations to the spectra of a new high affinity heparan sulfate ligand. Calculation of distance constraints from these data facilitated determination of an atomic level model for the docked complex.
Collapse
Affiliation(s)
- Maria J. Moure
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Alexander Eletsky
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Qi Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Laura C. Morris
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yuejie Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
95
|
Müntener T, Kottelat J, Huber A, Häussinger D. New Lanthanide Chelating Tags for PCS NMR Spectroscopy with Reduction Stable, Rigid Linkers for Fast and Irreversible Conjugation to Proteins. Bioconjug Chem 2018; 29:3344-3351. [DOI: 10.1021/acs.bioconjchem.8b00512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Müntener
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Jérémy Kottelat
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Annika Huber
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
96
|
Hewitt SH, Butler SJ. Application of lanthanide luminescence in probing enzyme activity. Chem Commun (Camb) 2018; 54:6635-6647. [PMID: 29790500 DOI: 10.1039/c8cc02824a] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzymes play critical roles in the regulation of cellular function and are implicated in numerous disease conditions. Reliable and practicable assays are required to study enzyme activity, to facilitate the discovery of inhibitors and activators of enzymes related to disease. In recent years, a variety of enzyme assays have been devised that utilise luminescent lanthanide(iii) complexes, taking advantage of their high detection sensitivities, long luminescence lifetimes, and line-like emission spectra that permit ratiometric and time-resolved analyses. In this Feature article, we focus on recent progress in the development of enzyme activity assays based on lanthanide(iii) luminescence, covering a variety of strategies including Ln(iii)-labelled antibodies and proteins, Ln(iii) ion encapsulation within defined peptide sequences, reactivity-based Ln(iii) probes, and discrete Ln(iii) complexes. Emerging approaches for monitoring enzyme activity are discussed, including the use of anion responsive lanthanide(iii) complexes, capable of molecular recognition and luminescence signalling of polyphosphate anions.
Collapse
Affiliation(s)
- Sarah H Hewitt
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | | |
Collapse
|
97
|
Orton HW, Otting G. Accurate Electron-Nucleus Distances from Paramagnetic Relaxation Enhancements. J Am Chem Soc 2018; 140:7688-7697. [PMID: 29790335 DOI: 10.1021/jacs.8b03858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Measurements of paramagnetic relaxation enhancements (PREs) in 1H NMR spectra are an important tool to obtain long-range distance information in proteins, but quantitative interpretation is easily compromised by nonspecific intermolecular PREs. Here we show that PREs generated by lanthanides with anisotropic magnetic susceptibilities offer a route to accurate calibration-free distance measurements. As these lanthanides change 1H chemical shifts due to pseudocontact shifts, the relaxation rates in the paramagnetic and diamagnetic state can be measured with a single sample that simultaneously contains the protein labeled with a paramagnetic and a diamagnetic lanthanide ion. Nonspecific intermolecular PREs are thus automatically subtracted when calculating the PREs as the difference in nuclear relaxation rates between paramagnetic and diamagnetic protein. Although PREs from lanthanides with anisotropic magnetic susceptibilities are complicated by additional cross-correlation effects and residual dipolar couplings (RDCs) in the paramagnetic state, these effects can be controlled by the choice of lanthanide ion and experimental conditions. Using calbindin D9k with erbium, we succeeded in measuring intramolecular PREs with unprecedented accuracy, resulting in distance predictions with a root-mean-square-deviation of <0.9 Å in the range 11-24 Å.
Collapse
Affiliation(s)
- Henry W Orton
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| |
Collapse
|
98
|
Welegedara AP, Adams LA, Huber T, Graham B, Otting G. Site-Specific Incorporation of Selenocysteine by Genetic Encoding as a Photocaged Unnatural Amino Acid. Bioconjug Chem 2018; 29:2257-2264. [DOI: 10.1021/acs.bioconjchem.8b00254] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adarshi P. Welegedara
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Adams
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
99
|
Strategies Towards Protease Inhibitors for Emerging Flaviviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:175-186. [PMID: 29845533 PMCID: PMC7121277 DOI: 10.1007/978-981-10-8727-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infections with flaviviruses are a continuing public health threat. In addition to vaccine development and vector control, the search for antiviral agents that alleviate symptoms in patients are of considerable interest. Among others, the flaviviral protease NS2B-NS3 is a promising drug target to inhibit viral replication. Flaviviral proteases share a high degree of structural similarity and substrate-recognition profile, which may facilitate a strategy towards development of pan-flaviviral protease inhibitors. However, the success of various drug discovery attempts during the last decade has been limited by the nature of the viral enzyme as well as a lack of robust structural templates. Small-molecular, structurally diverse protease inhibitors have been reported to reach affinities in the lower micromolar range. Peptide-based, substrate-derived compounds are often nanomolar inhibitors, however, with highly compromised drug-likeness. With some exceptions, the antiviral cellular activity of most of the reported compounds have been patchy and insufficient for further development. Recent progress has been made in the elucidation of inhibitor binding using different structural methods. This will hopefully lead to more rational attempts for the identification of various lead compounds that may be successful in cellular assays, animal models and ultimately translated to patients.
Collapse
|
100
|
Bahramzadeh A, Jiang H, Huber T, Otting G. Two Histidines in an α‐Helix: A Rigid Co
2+
‐Binding Motif for PCS Measurements by NMR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alireza Bahramzadeh
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Hailun Jiang
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|