51
|
Cao PF, Mangadlao JD, de Leon A, Su Z, Advincula RC. Catenated Poly(ε-caprolactone) and Poly(l-lactide) via Ring-Expansion Strategy. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00470] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peng-Fei Cao
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joey Dacula Mangadlao
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Al de Leon
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zhe Su
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rigoberto C. Advincula
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
52
|
Ogawa T, Nakazono K, Aoki D, Uchida S, Takata T. Effective Approach to Cyclic Polymer from Linear Polymer: Synthesis and Transformation of Macromolecular [1]Rotaxane. ACS Macro Lett 2015; 4:343-347. [PMID: 35596318 DOI: 10.1021/acsmacrolett.5b00067] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a convenient and scalable synthesis of cyclic poly(ε-caprolactone) (PCL) from its linear counterpart based on the rotaxane protocol. Cyclic PCL was prepared by ring-opening polymerization of ε-caprolactone (ε-CL) initiated by a pseudo[2]rotaxane initiator in the presence of diphenylphosphate (DPP) as a catalyst, followed by capping of the propagation end by using a bulky isocyanate to afford macromolecular [2]rotaxane. The successive intramolecular cyclization to macromolecular [1]rotaxane at the polymer terminus proceeded with good yield. The attractive interaction of the terminal ammonium/crown ether moiety was removed via N-acetylation. This enabled movement of the crown ether wheel along the axle PCL chain to the urethane region of the other terminus in solution state. Size-exclusion chromatography and 2D diffusion-ordered spectroscopy (DOSY) results demonstrated the formation of cyclic PCL from linear PCL, which is further supported by thermal property or crystallinity change before and after transformation.
Collapse
Affiliation(s)
- Takahiro Ogawa
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Kazuko Nakazono
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Daisuke Aoki
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
53
|
Müller A, Michell R, Pérez R, Lorenzo A. Successive Self-nucleation and Annealing (SSA): Correct design of thermal protocol and applications. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Wang J, Li Z, Pérez RA, Müller AJ, Zhang B, Grayson SM, Hu W. Comparing crystallization rates between linear and cyclic poly(epsilon-caprolactones) via fast-scan chip-calorimeter measurements. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Sugai N, Asai S, Tezuka Y, Yamamoto T. Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym Chem 2015. [DOI: 10.1039/c5py00158g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new methodology for a stimuli-responsive polymer was proposed on the basis of cyclization and photocleavage. This requires only a single reaction per polymer molecule.
Collapse
Affiliation(s)
- Naoto Sugai
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Shigeo Asai
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Takuya Yamamoto
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
56
|
Ogawa T, Usuki N, Nakazono K, Koyama Y, Takata T. Linear–cyclic polymer structural transformation and its reversible control using a rational rotaxane strategy. Chem Commun (Camb) 2015; 51:5606-9. [DOI: 10.1039/c4cc08982k] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for “polymer structural transformation” was developed. One [1]rotaxane unit was introduced at the chain end of a linear polymer and the wheel component position was defined by controlling the attractive interaction between the polymer ends. Thus, the reversible linear–cyclic structural transformation was demonstrated.
Collapse
Affiliation(s)
- Takahiro Ogawa
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Naoya Usuki
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuko Nakazono
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yasuhito Koyama
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
57
|
|
58
|
Pérez R, Córdova M, López J, Hoskins J, Zhang B, Grayson S, Müller A. Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
59
|
Pérez RA, López JV, Hoskins JN, Zhang B, Grayson SM, Casas MT, Puiggalí J, Müller AJ. Nucleation and Antinucleation Effects of Functionalized Carbon Nanotubes on Cyclic and Linear Poly(ε-caprolactones). Macromolecules 2014. [DOI: 10.1021/ma5005869] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo A. Pérez
- Grupo
de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Juan V. López
- Grupo
de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Jessica N. Hoskins
- Department
of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - Boyu Zhang
- Department
of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - María Teresa Casas
- Departament
d́Enginyería Química, Universitat Politécnica de Catanluya, Av. Diagonal 647, Barcelona E-08028, Spain
| | - Jordi Puiggalí
- Departament
d́Enginyería Química, Universitat Politécnica de Catanluya, Av. Diagonal 647, Barcelona E-08028, Spain
| | - Alejandro J. Müller
- Grupo
de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
- Institute
for Polymer Materials (POLYMAT) and Polymer Science and Technology
Department, Faculty of Chemistry, University of the Basque Country (UPV-EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque
Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
60
|
Wang X, Li L, Ye X, Wu C. Comparative Study of Solution Properties of Amphiphilic 8-Shaped Cyclic-(Polystyrene-b-Poly(acrylic acid))2 and Its Linear Precursor. Macromolecules 2014. [DOI: 10.1021/ma5000255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Wang
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianwei Li
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodong Ye
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chi Wu
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong
| |
Collapse
|