51
|
Dabbou S, Lauwaerts A, Ferrocino I, Biasato I, Sirri F, Zampiga M, Bergagna S, Pagliasso G, Gariglio M, Colombino E, Narro CG, Gai F, Capucchio MT, Gasco L, Cocolin L, Schiavone A. Modified Black Soldier Fly Larva Fat in Broiler Diet: Effects on Performance, Carcass Traits, Blood Parameters, Histomorphological Features and Gut Microbiota. Animals (Basel) 2021; 11:ani11061837. [PMID: 34205603 PMCID: PMC8233813 DOI: 10.3390/ani11061837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Black soldier fly (Hermetia illucens L.; BSF) is gaining interest as a functional feed additive, due to the high amount of medium-chain fatty acids (MCFAs) and monoglycerides, which provide antimicrobial activities and stimulate gastrointestinal health through inhibition of potentially pathogenic bacteria. The present study evaluated the effect of BSF and modified BSF larvae fat in broiler chicken’s diet. Overall results were comparable among the studied diets, suggesting that modified BSF larvae fat showed a positive modulation of fecal microbiota by a positive reduction in potentially pathogenic bacteria such as Clostridium and Corynebacterium, without affecting intestinal morphology or showing any adverse histopathological alternations. Abstract In this study, a total of 200 male broiler chickens (Ross 308) were assigned to four dietary treatments (5 pens/treatment and 10 birds/pen) for two feeding phases: starter (0–11 days of age) and grower-finisher (11–33 days of age). A basal diet containing soy oil (SO) as added fat was used as control group (C), tested against three experimental diets where the SO was partially substituted by BSF larvae fat (BSF) or one of two types of modified BSF larvae fat (MBSF1 and MBSF2, respectively). The two modified BSF larvae fats had a high and low ratio of monobutyrin to monoglycerides of medium chain fatty acid, respectively. Diet did not influence the growth or slaughter performance, pH, color, or the chemical composition of breast and thigh muscles, gut morphometric indices, or histopathological alterations in all the organs. As far as fecal microbiota are concerned, MBSF1 and MBSF2 diets reduced the presence of Clostridium and Corynebacterium, which can frequently cause infection in poultry. In conclusion, modified BSF larva fat may positively modulate the fecal microbiota of broiler chickens without influencing the growth performance and intestinal morphology or showing any adverse histopathological alternations.
Collapse
Affiliation(s)
- Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
| | | | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
- Correspondence:
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Via del Florio 2, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.S.); (M.Z.)
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Via del Florio 2, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.S.); (M.Z.)
| | - Stefania Bergagna
- Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (S.B.); (G.P.)
| | - Giulia Pagliasso
- Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (S.B.); (G.P.)
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| | - Carlos Garcés Narro
- Faculty of Veterinary Medicine, Universidad CEU Cardenal Herrera, CEU Universities, Alfara de Patriarca, E-46115 Valencia, Spain;
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy;
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| |
Collapse
|
52
|
Patterson PH, Acar N, Ferguson AD, Trimble LD, Sciubba HB, Koutsos EA. The impact of dietary Black Soldier Fly larvae oil and meal on laying hen performance and egg quality. Poult Sci 2021; 100:101272. [PMID: 34237547 PMCID: PMC8267591 DOI: 10.1016/j.psj.2021.101272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Recently, the US FDA and Association of American Feed Control Officials approved Black Soldier Fly larvae (BSFL) as a feed ingredient for poultry. The objectives of this work were 1) to evaluate the nutritional profile of BSFL oil and meal in laying hens, and 2) measure the impact of the BSFL treatments on hen performance and egg quality. In 2 experiments, BSFL oil and meal were fed to replicate hens from 43 to 47 wk and from 51 to 55 wk of age. The hens were fed isocaloric, isonitrogenous diets with 3 treatment levels of BSFL oil (1.5, 3, and 4.5%, Exp. 1) or BSFL meal (8, 16 and 24%, Exp. 2). Data were analyzed by one-factor ANOVA for the main effect of diet and Tukey's multiple comparison for mean separation when significant. Exp. 1 results suggest BSFL oil could readily substituted for soybean oil with commercial hens at inclusion levels up to 4.5%. ADFI, BW, egg production, FCR, and egg weight were not impacted by the oil treatments (P > 0.05). Yolk color among hens fed the BSFL oil was greater averaging 7.88 compared to 7.37 from Control hen eggs (P = 0.0001). Exp. 2 diet formulation replaced soybean oil and meal with BSFL meal, and some additional corn was used in the higher BSFL diets. Diet amino acid balance at the highest level of inclusion (24% BSFL meal) indicates arginine and tryptophan are limiting and ADFI, BW and egg production were reduced (P < 0.05). Egg production averaged 85.14% for the Control, 8 and 16% BSFL meal hens and was significantly greater than hens fed 24% meal at 77.01%. However, 8 and 16% BSFL meal levels had no negative impact on performance and were not significantly different than the Controls. Yolk color was again higher among the meal treatments compared to the control (P = 0.0351). These experiments indicate that BSFL oil and meal can be used as dietary energy, protein and amino acids for hen maintenance, egg production and yolk coloration, although there may be upper limits of dietary inclusion.
Collapse
Affiliation(s)
- P H Patterson
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - N Acar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - A D Ferguson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - L D Trimble
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - E A Koutsos
- EnviroFlight, 1118 Progress Way, Maysville, KY 41056, USA
| |
Collapse
|
53
|
Englmaierová M, Skřivan M, Taubner T, Skřivanová V, Čermák L. Effect of housing system and feed restriction on meat quality of medium-growing chickens. Poult Sci 2021; 100:101223. [PMID: 34157561 PMCID: PMC8237347 DOI: 10.1016/j.psj.2021.101223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the differences in meat quality of 420 Hubbard JA757 cockerels in relation to the housing system (litter and mobile box) and level of mixed feed (ad libitum [AL], reducing the level by 20% [R20] and 30% [R30]). Three groups of chickens were housed in litter boxes for the entire fattening period (stocking density: 0.094 m2/bird). The other 3 groups were housed in litter boxes until 28 d of age and then relocated into mobile boxes (stocking density: 0.154 m2/bird) on pasture until the end of the experiment at 57 d of age. Restricted groups received a reduced diet level from 29th to 57th d of age. Feed mixture restriction increased the pasture vegetation intake of chickens from 2.63 to 3.50 (R20) and 3.94 g of dry matter/bird/d (R30). Restriction adversely affected the dressing percentage (P < 0.001) and breast yield (P < 0.001), while the leg yield (P < 0.001) was increased with increasing restriction levels. Meat of chickens housed in mobile boxes on a pasture showed lower cooking loss (P < 0.001) and higher redness and yellowness values in the skin (P = 0.030 and P = 0.026; respectively) and meat (P = 0.008 and P < 0.001; respectively). The fragile meat after cooking was observed in chickens reared on litter (P = 0.001). As the level of restriction increased, the number of muscle fibres (P = 0.001) increased, and their cross-sectional area (P = 0.001) and diameter (P = 0.002) decreased. The highest contents of lutein (P = 0.002) and zeaxanthin (P = 0.006) in breast muscle were found in chickens housed in mobile boxes and fed 80% and 70% AL. However, the concentrations of α- and γ-tocopherol (P = 0.006 and P = 0.003) were negatively affected by feed restriction. A 30% reduction in feed level in outdoor housed chickens led to a decrease in oxidative stability (P = 0.024). Feed restriction (R20) in chickens housed in mobile boxes significantly increased the n3 fatty acids content (P = 0.002) and h/H index (P = 0.005) and reduced the n6/n3 ratio (P < 0.001) and atherogenic (P < 0.001) and thrombogenic index (P = 0.003), which possess a health benefits for human. In addition, restriction of mixed feed decreased cholesterol content in breast meat (P = 0.042). It might be concluded that, in terms of meat quality, cereal diet restriction of 20% in medium-growing cockerels housed in mobile boxes on a pasture is beneficial. The higher level of restriction does not lead to further improvement in meat quality indicators.
Collapse
Affiliation(s)
- M Englmaierová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic.
| | - M Skřivan
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| | - T Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| | - V Skřivanová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| | - L Čermák
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| |
Collapse
|
54
|
Heuel M, Kreuzer M, Sandrock C, Leiber F, Mathys A, Gold M, Zurbrügg C, Gangnat IDM, Terranova M. Transfer of Lauric and Myristic Acid from Black Soldier Fly Larval Lipids to Egg Yolk Lipids of Hens Is Low. Lipids 2021; 56:423-435. [PMID: 33886120 DOI: 10.1002/lipd.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/05/2022]
Abstract
Implementing insects, such as the black soldier fly larvae (BSFL), as animal feed commonly includes the previous removal of substantial amounts of fat. This fat may represent an as yet underutilized energy source for livestock. However, transfer of lauric and myristic acid, prevalent in BSFL fat and undesired in human nutrition, into animal-source foods like eggs may limit its implementation. To quantify this, a laying hen experiment was performed comprising five different diets (10 hens/diet). These were a control diet with soybean oil and meal and a second diet with soybean oil but with partially defatted BSFL meal as protein source. The other three diets were based on different combinations of partially defatted BSFL meal and fat obtained by two different production methods. Lauric acid made up half of the BSFL fat from both origins. Both BSFL fats also contained substantial amounts of myristic and palmitic acid. However, in the insect-based diets, the net transfer from diet to egg yolk was less than 1% for lauric acid, whereas the net transfer for myristic and palmitic acid was about 30% and 100%, respectively. The net transfer did not vary between BSFL originating from production on different larval feeding substrates. The results illustrate that hens are able to metabolize or elongate very large proportions of ingested lauric acid and myristic acid, which are predominant in the BSFL lipids (together accounting for as much as 37 mol%), such that they collectively account for less than 3.5 mol% of egg yolk fatty acids.
Collapse
Affiliation(s)
- Maike Heuel
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Zurich, Universitaetstrasse 2, 8092, Switzerland
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Zurich, Universitaetstrasse 2, 8092, Switzerland
| | - Christoph Sandrock
- Research Institute of Organic Agriculture (FiBL), Department of Livestock Science, Frick, Ackerstrasse 113, 5070, Switzerland
| | - Florian Leiber
- Research Institute of Organic Agriculture (FiBL), Department of Livestock Science, Frick, Ackerstrasse 113, 5070, Switzerland
| | - Alexander Mathys
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Schmelzbergstrasse 9, 8092, Switzerland
| | - Moritz Gold
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Schmelzbergstrasse 9, 8092, Switzerland.,Eawag, Sanitation, Water and Solid Waste for Development (Sandec), Dübendorf, Überlandstrasse 133, 8600, Switzerland
| | - Christian Zurbrügg
- Eawag, Sanitation, Water and Solid Waste for Development (Sandec), Dübendorf, Überlandstrasse 133, 8600, Switzerland
| | - Isabelle D M Gangnat
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Zurich, Universitaetstrasse 2, 8092, Switzerland
| | - Melissa Terranova
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Zurich, Universitaetstrasse 2, 8092, Switzerland.,ETH Zurich, AgroVet-Strickhof, Lindau, Eschikon 27, 8315, Switzerland
| |
Collapse
|
55
|
Raksasat R, Lim JW, Kiatkittipong W, Kiatkittipong K, Ho YC, Lam MK, Font-Palma C, Mohd Zaid HF, Cheng CK. A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115488. [PMID: 32891050 DOI: 10.1016/j.envpol.2020.115488] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
Collapse
Affiliation(s)
- Ratchaprapa Raksasat
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Kunlanan Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Yeek Chia Ho
- Department of Civil and Environmental Engineering, Centre of Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Carolina Font-Palma
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Chester, Chester, CH2 4NU, UK
| | - Hayyiratul Fatimah Mohd Zaid
- Department of Chemical Engineering, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
56
|
Abstract
Abstract
The aim of this review is to discuss the usage of insect fats as an energy source in animal nutrition. Insects are a rich carrier of proteins, fat, and minerals. They are successfully introduced in animal diets (poultry, swine, rabbits, fish, and pets) as a source of many nutrients, including energy and essential fatty acids (FAs). The insects’ fat content and quality are highly affected by the type of substrate provided to the insects during the rearing period. The majority of the studies have shown that insect fats may be used as promising substitutes for conventional energy resources in animal nutrition without adverse effects on growth performance and feed utilization. They can positively affect meat quality by increasing the level of long-chain polyunsaturated FAs but may also positively influence animals by regulating the gut microbiota and stimulating the immune system. In conclusion, insect fat supplementation showed promising results in terms of their application in animal nutrition. However, compared to insect protein application, very few studies have been performed on insect fats. Therefore, because of the fat quality and content of insects, there is a need to extend experimentation regarding their implementation in animals’ diets as a replacement for conventional dietary energy resources.
Collapse
|