51
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
52
|
McNamara A, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol 2019; 93:20190334. [PMID: 31738081 DOI: 10.1259/bjr.20190334] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dose in proton radiotherapy is generally prescribed by scaling the physical proton dose by a constant value of 1.1. Relative biological effectiveness (RBE) is defined as the ratio of doses required by two radiation modalities to cause the same level of biological effect. The adoption of an RBE of 1.1. assumes that the biological efficacy of protons is similar to photons, allowing decades of clinical dose prescriptions from photon treatments and protocols to be utilized in proton therapy. There is, however, emerging experimental evidence that indicates that proton RBE varies based on technical, tissue and patient factors. The notion that a single scaling factor may be used to equate the effects of photons and protons across all biological endpoints and doses is too simplistic and raises concern for treatment planning decisions. Here, we review the models that have been developed to better predict RBE variations in tissue based on experimental data as well as using a mechanistic approach.
Collapse
Affiliation(s)
- Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
53
|
Choi C, Park S, Cho WK, Choi DH. Cyclin D1 is Associated with Radiosensitivity of Triple-Negative Breast Cancer Cells to Proton Beam Irradiation. Int J Mol Sci 2019; 20:ijms20194943. [PMID: 31591311 PMCID: PMC6801441 DOI: 10.3390/ijms20194943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/21/2023] Open
Abstract
Proton therapy offers a distinct physical advantage over conventional X-ray therapy, but its biological advantages remain understudied. In this study, we aimed to identify genetic factors that contribute to proton sensitivity in breast cancer (BC). Therefore, we screened relative biological effectiveness (RBE) of 230 MeV protons, compared to 6 MV X-rays, in ten human BC cell lines, including five triple-negative breast cancer (TNBC) cell lines. Clonogenic survival assays revealed a wide range of proton RBE across the BC cell lines, with one out of ten BC cell lines having an RBE significantly different from the traditional generic RBE of 1.1. An abundance of cyclin D1 was associated with proton RBE. Downregulation of RB1 by siRNA or a CDK4/6 inhibitor increased proton sensitivity but not proton RBE. Instead, the depletion of cyclin D1 increased proton RBE in two TNBC cell lines, including MDA-MB-231 and Hs578T cells. Conversely, overexpression of cyclin D1 decreased the proton RBE in cyclin D1-deficient BT-549 cells. The depletion of cyclin D1 impaired proton-induced RAD51 foci formation in MDA-MB-231 cells. Taken together, this study provides important clues about the cyclin D1-CDK4-RB1 pathway as a potential target for proton beam therapy in TNBC.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| |
Collapse
|
54
|
Sørensen BS. Commentary: RBE in proton therapy - where is the experimental in vivo data? Acta Oncol 2019; 58:1337-1339. [PMID: 31578911 DOI: 10.1080/0284186x.2019.1669819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Brita Singers Sørensen
- Department of Experimental Clinical Oncology and Danish Center for Particle Therapy, DCPT, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
55
|
Roobol SJ, Kouwenberg JJM, Denkova AG, Kanaar R, Essers J. Large Field Alpha Irradiation Setup for Radiobiological Experiments. Methods Protoc 2019; 2:mps2030075. [PMID: 31466405 PMCID: PMC6789741 DOI: 10.3390/mps2030075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022] Open
Abstract
The use of alpha particles irradiation in clinical practice has gained interest in the past years, for example with the advance of radionuclide therapy. The lack of affordable and easily accessible irradiation systems to study the cell biological impact of alpha particles hampers broad investigation. Here we present a novel alpha particle irradiation set-up for uniform irradiation of cell cultures. By combining a small alpha emitting source and a computer-directed movement stage, we established a new alpha particle irradiation method allowing more advanced biological assays, including large-field local alpha particle irradiation and cell survival assays. In addition, this protocol uses cell culture on glass cover-slips which allows more advanced microscopy, such as super-resolution imaging, for in-depth analysis of the DNA damage caused by alpha particles. This novel irradiation set-up provides the possibility to perform reproducible, uniform and directed alpha particle irradiation to investigate the impact of alpha radiation on the cellular level.
Collapse
Affiliation(s)
- Stefan J Roobol
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Jasper J M Kouwenberg
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Delft, 2629 JB, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands.
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands.
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
56
|
Friedrich T. Proton RBE dependence on dose in the setting of hypofractionation. Br J Radiol 2019; 93:20190291. [PMID: 31437004 DOI: 10.1259/bjr.20190291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypofractionated radiotherapy is attractive concerning patient burden and therapy costs, but many aspects play a role when it comes to assess its safety. While exploited for conventional photon therapy and carbon ion therapy, hypofractionation with protons is only rarely applied. One reason for this is uncertainty in the described dose, mainly due to the relative biological effectiveness (RBE), which is small for protons, but not negligible. RBE is generally dose-dependent, and for higher doses as used in hypofractionation, a thorough RBE evaluation is needed. This review article focuses on the RBE variability in protons and associated issues or implications for hypofractionation.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
57
|
Gjyshi O, Liao Z. Proton therapy for locally advanced non-small cell lung cancer. Br J Radiol 2019; 93:20190378. [PMID: 31430188 DOI: 10.1259/bjr.20190378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is an essential component of treatment for locally advanced non-small cell lung cancer (NSCLC) but can be technically challenging because of the proximity of lung tumors to nearby critical organs or structures. The most effective strategy for reducing radiation-induced toxicity is to reduce unnecessary exposure of normal tissues by using advanced technology; examples from photon (X-ray) therapy have included three-dimensional conformal radiation therapy versus its predecessor, two-dimensional radiation therapy, and intensity-modulated photon radiation therapy versus its predecessor, three-dimensional conformal therapy. Using particle-beam therapy rather than photons offers the potential for further advantages because of the unique depth-dose characteristics of the particles, which can be exploited to allow still higher dose escalation to tumors with greater sparing of normal tissues, with the ultimate goal of improving local tumor control and survival while preserving quality of life by reducing treatment-related toxicity. However, the costs associated with particle therapy with protons are considerably higher than the current state of the art in photon technology, and evidence of clinical benefit from protons is increasingly being demanded to justify the higher financial burden on the healthcare system. Some such evidence is available from preclinical studies, from retrospective, single-institution clinical series, from analyses of national databases, and from single-arm prospective studies in addition to several ongoing randomized comparative trials. This review summarizes the rationale for and challenges of using proton therapy to treat thoracic cancers, reviews the current clinical experience, and suggests topics for future research.
Collapse
Affiliation(s)
- Olsi Gjyshi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| |
Collapse
|
58
|
Sánchez‐Parcerisa D, López‐Aguirre M, Dolcet Llerena A, Udías JM. MultiRBE: Treatment planning for protons with selective radiobiological effectiveness. Med Phys 2019; 46:4276-4284. [DOI: 10.1002/mp.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel Sánchez‐Parcerisa
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | - Miguel López‐Aguirre
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | | | - José Manuel Udías
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| |
Collapse
|
59
|
Vitti ET, Parsons JL. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers (Basel) 2019; 11:cancers11070946. [PMID: 31284432 PMCID: PMC6679138 DOI: 10.3390/cancers11070946] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 01/31/2023] Open
Abstract
Proton beam therapy (PBT) offers significant benefit over conventional (photon) radiotherapy for the treatment of a number of different human cancers, largely due to the physical characteristics. In particular, the low entrance dose and maximum energy deposition in depth at a well-defined region, the Bragg peak, can spare irradiation of proximal healthy tissues and organs at risk when compared to conventional radiotherapy using high-energy photons. However, there are still biological uncertainties reflected in the relative biological effectiveness that varies along the track of the proton beam as a consequence of the increases in linear energy transfer (LET). Furthermore, the spectrum of DNA damage induced by protons, particularly the generation of complex DNA damage (CDD) at high-LET regions of the distal edge of the Bragg peak, and the specific DNA repair pathways dependent on their repair are not entirely understood. This knowledge is essential in understanding the biological impact of protons on tumor cells, and ultimately in devising optimal therapeutic strategies employing PBT for greater clinical impact and patient benefit. Here, we provide an up-to-date review on the radiobiological effects of PBT versus photon radiotherapy in cells, particularly in the context of DNA damage. We also review the DNA repair pathways that are essential in the cellular response to PBT, with a specific focus on the signaling and processing of CDD induced by high-LET protons.
Collapse
Affiliation(s)
- Eirini Terpsi Vitti
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK.
| |
Collapse
|
60
|
Li Y, Dykstra M, Best TD, Pursley J, Chopra N, Keane FK, Khandekar MJ, Sharp GC, Paganetti H, Willers H, Fintelmann FJ, Grassberger C. Differential inflammatory response dynamics in normal lung following stereotactic body radiation therapy with protons versus photons. Radiother Oncol 2019; 136:169-175. [PMID: 31015121 PMCID: PMC6592748 DOI: 10.1016/j.radonc.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE To compare time-dependent changes in lung parenchyma of early-stage non-small cell lung carcinoma (NSCLC) patients after stereotactic body radiation therapy with protons (SBPT) or photons (SBRT). MATERIALS AND METHOD We retrospectively identified NSCLC patients treated with SBPT and matched each one with a SBRT patient by patient, tumor, and treatment characteristics. Lung parenchyma on serial post-treatment chest computer tomography (CT) scans was deformably registered with the treatment plan to analyze lung density changes as function of dose, quantified by Houndsfield Unit (HU)/Gy. A thoracic radiologist also evaluated the CTs using an established grading system. RESULTS We matched 23 SBPT/SBRT pairs, including 5 patients treated with both modalities (internally matched cohort). Normal lung response following SBPT significantly increased in the early time period (CTs acquired <6 months, median 3 months) post-treatment, and then did not change significantly in the later time period (CTs acquired 6-14 months, median 9 months). For SBRT, the normal lung response was similar to SBPT in the early time period, but then increased significantly from the early to the late time period (p = 0.007). These differences were most pronounced in sensitive (response >6 HU/Gy) patients and in the internally matched cohort. However, there was no significant difference in the maximum observed response in the entire cohort over all time periods, median 3.4 [IQR, 1.0-5.4] HU/Gy (SBPT) versus 2.5 [1.6-5.2] HU/Gy (SBRT). Qualitative radiological evaluation was highly correlated with the quantitative analysis (p < 0.0001). CONCLUSION While there was no significant difference in maximum response after SBPT versus SBRT, dose-defined lung inflammation occurred earlier after proton irradiation. Further investigation is warranted into the mechanisms of inflammation and therapeutic consequences after proton versus photon irradiation.
Collapse
Affiliation(s)
- Yanjing Li
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Michael Dykstra
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Till D Best
- Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Nitish Chopra
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Melin J Khandekar
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | | | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
61
|
Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci Rep 2019; 9:6359. [PMID: 31015540 PMCID: PMC6478946 DOI: 10.1038/s41598-019-42901-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 02/01/2023] Open
Abstract
Following radiation induced DNA damage, several repair pathways are activated to help preserve genome integrity. Double Strand Breaks (DSBs), which are highly toxic, have specified repair pathways to address them. The main repair pathways used to resolve DSBs are Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Cell cycle phase determines the availability of HR, but the repair choice between pathways in the G2 phases where both HR and NHEJ can operate is not clearly understood. This study compares several in silico models of repair choice to experimental data published in the literature, each model representing a different possible scenario describing how repair choice takes place. Competitive only scenarios, where initial protein recruitment determines repair choice, are unable to fit the literature data. In contrast, the scenario which uses a more entwined relationship between NHEJ and HR, incorporating protein co-localisation and RNF138-dependent removal of the Ku/DNA-PK complex, is better able to predict levels of repair similar to the experimental data. Furthermore, this study concludes that co-localisation of the Mre11-Rad50-Nbs1 (MRN) complexes, with initial NHEJ proteins must be modeled to accurately depict repair choice.
Collapse
|
62
|
Comparison of Proton and Photon Beam Irradiation in Radiation-Induced Intestinal Injury Using a Mouse Model. Int J Mol Sci 2019; 20:ijms20081894. [PMID: 30999572 PMCID: PMC6514697 DOI: 10.3390/ijms20081894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
When radiotherapy is applied to the abdomen or pelvis, normal tissue toxicity in the gastrointestinal (GI) tract is considered a major dose-limiting factor. Proton beam therapy has a specific advantage in terms of reduced doses to normal tissues. This study investigated the fundamental differences between proton- and X-ray-induced intestinal injuries in mouse models. C57BL/6J mice were irradiated with 6-MV X-rays or 230-MeV protons and were sacrificed after 84 h. The number of surviving crypts per circumference of the jejunum was identified using Hematoxylin and Eosin staining. Diverse intestinal stem cell (ISC) populations and apoptotic cells were analyzed using immunohistochemistry (IHC) and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay, respectively. The crypt microcolony assay revealed a radiation-dose-dependent decrease in the number of regenerative crypts in the mouse jejunum; proton irradiation was more effective than X-ray irradiation with a relative biological effectiveness of 1.14. The jejunum is the most sensitive to radiations, followed by the ileum and the colon. Both types of radiation therapy decreased the number of radiosensitive, active cycling ISC populations. However, a higher number of radioresistant, reserve ISC populations and Paneth cells were eradicated by proton irradiation than X-ray irradiation, as shown in the IHC analyses. The TUNEL assay revealed that proton irradiation was more effective in enhancing apoptotic cell death than X-ray irradiation. This study conducted a detailed analysis on the effects of proton irradiation versus X-ray irradiation on intestinal crypt regeneration in mouse models. Our findings revealed that proton irradiation has a direct effect on ISC populations, which may result in an increase in the risk of GI toxicity during proton beam therapy.
Collapse
|
63
|
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019; 11:E60. [PMID: 30634444 PMCID: PMC6356970 DOI: 10.3390/cancers11010060] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Collapse
Affiliation(s)
- Pernille B Elming
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Brita S Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Arlene L Oei
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
64
|
Nielsen S, Bassler N, Grzanka L, Laursen L, Swakon J, Olko P, Andreassen CN, Alsner J, Singers Sørensen B. Comparison of Coding Transcriptomes in Fibroblasts Irradiated With Low and High LET Proton Beams and Cobalt-60 Photons. Int J Radiat Oncol Biol Phys 2018; 103:1203-1211. [PMID: 30529373 DOI: 10.1016/j.ijrobp.2018.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To identify differential cellular responses after proton and photon irradiation by comparing transcriptomes of primary fibroblasts irradiated with either radiation type. METHODS AND MATERIALS A panel of primary dermal fibroblast cultures was irradiated with low and higher linear energy transfer (LET) proton beams. Cobalt-60 photon irradiation was used as reference. Dose was delivered in 3 fractions of 3.5 Gy (relative biological effectiveness) using a relative biological effectiveness of 1.1 for proton doses. Cells were harvested 2 hours after the final fraction was delivered, and RNA was purified. RNA sequencing was performed using Illumina NextSeq 500 with high-output kit. The edgeR package in R was used for differential gene expression analysis. RESULTS Pairwise comparisons of the transcriptomes in the 3 treatment groups showed that there were 84 and 56 differentially expressed genes in the low LET group compared with the Cobalt-60 group and the higher LET group, respectively. The higher LET proton group and the Cobalt-60 group had the most distinct transcriptome profiles, with 725 differentially regulated genes. Differentially regulated canonical pathways and various regulatory factors involved in regulation of biological mechanisms such as inflammation, carcinogenesis, and cell cycle control were identified. CONCLUSIONS Inflammatory regulators associated with the development of normal tissue complications and malignant transformation factors seem to be differentially regulated by higher LET proton and Cobalt-60 photon irradiation. The reported transcriptome differences could therefore influence the progression of adverse effects and the risk of developing secondary cancers.
Collapse
Affiliation(s)
- Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Louise Laursen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
65
|
Pötter R, Balosso J, Baumann M, Bert C, Davies J, Enghardt W, Fossati P, Harris S, Jones B, Krämer M, Mayer R, Mock U, Pullia M, Schreiner T, Dosanjh M, Debus J, Orecchia R, Georg D. Union of light ion therapy centers in Europe (ULICE EC FP7) – Objectives and achievements of joint research activities. Radiother Oncol 2018; 128:83-100. [DOI: 10.1016/j.radonc.2018.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/21/2018] [Indexed: 12/25/2022]
|