51
|
Farkouh A, Finelli R, Agarwal A. Beyond conventional sperm parameters: the role of sperm DNA fragmentation in male infertility. Minerva Endocrinol (Torino) 2021; 47:23-37. [PMID: 34881857 DOI: 10.23736/s2724-6507.21.03623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infertility is a condition that widely affects the couples all over the world. In this regard, sperm DNA fragmentation can lead to harmful reproductive consequences, including male infertility and poor outcomes after assisted reproductive techniques. The investigation of SDF in male infertility diagnostics has constantly increased over time, becoming more common in clinical practice with the recent publication of several guidelines regarding its testing. This narrative review aims to provide a comprehensive overview of the pathogenesis and causes of sperm DNA fragmentation, as well as the assays which are more commonly performed for testing. Moreover, we discussed the most recently published evidence regarding the use of SDF testing in clinical practice, highlighting the implications of high sperm DNA fragmentation rate on human reproduction, and the therapeutic approaches for the clinical management of infertile patients. Our review confirms a significant harmful impact of sperm DNA fragmentation on reproduction, and points out several interventions which can be applied in clinics to reduce sperm DNA fragmentation and improve reproductive outcomes. Sperm DNA fragmentation has been shown to adversely impact male fertility potential. As high sperm DNA fragmentation levels have been associated with poor reproductive outcomes, its testing may significantly help clinicians in defining the best therapeutic strategy for infertile patients.
Collapse
Affiliation(s)
- Ala'a Farkouh
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA -
| |
Collapse
|
52
|
Wang S, Zhang K, Yao Y, Li J, Deng S. Bacterial Infections Affect Male Fertility: A Focus on the Oxidative Stress-Autophagy Axis. Front Cell Dev Biol 2021; 9:727812. [PMID: 34746124 PMCID: PMC8566953 DOI: 10.3389/fcell.2021.727812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous factors trigger male infertility, including lifestyle, the environment, health, medical resources and pathogenic microorganism infections. Bacterial infections of the male reproductive system can cause various reproductive diseases. Several male reproductive organs, such as the testicles, have unique immune functions that protect the germ cells from damage. In the reproductive system, immune cells can recognize the pathogen-associated molecular patterns carried by pathogenic microorganisms and activate the host's innate immune response. Furthermore, bacterial infections can lead to oxidative stress through multiple signaling pathways. Many studies have revealed that oxidative stress serves dual functions: moderate oxidative stress can help clear the invaders and maintain sperm motility, but excessive oxidative stress will induce host damage. Additionally, oxidative stress is always accompanied by autophagy which can also help maintain host homeostasis. Male reproductive system homeostasis disequilibrium can cause inflammation of the genitourinary system, influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of oxidative stress and autophagy on bacterial infection in the male reproductive system, and we also explore the crosslink between oxidative stress and autophagy during this process.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
53
|
Semaida AI, El-Khashab MA, Saber AA, Hassan AI, Elfouly SA. Effects of Sargassum virgatum extracts on the testicular measurements, genomic DNA and antioxidant enzymes in irradiated rats. Int J Radiat Biol 2021; 98:191-204. [PMID: 34694945 DOI: 10.1080/09553002.2022.1998702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress and reactive oxygen species (ROS) are primarily responsible for the development of male infertility after exposure to γ-irradiation. The present work aimed to assess the ameliorative and therapeutic roles of the aqueous and ethanolic extracts of the edible seaweed Sargassum virgatum (S. virgatum) on spermatogenesis and infertility in γ-irradiated Wistar rats. MATERIALS AND METHODS Induction of infertility was performed by exposing the rats to 137Cs-gamma rays, using a single dose of 3.5 Gy. γ-irradiated rats were given the S. virgatum ethanolic (S. virgatum-EtOH) and aqueous extracts intraperitoneally on a daily base for two consecutive weeks at doses of 100 and 400 mg/kg body weight (b.wt.) for each seaweed extract. Morphometric data of the testes, semen quality indices, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx), and deoxyribonucleic acid (DNA) fragmentation were assessed. The results obtained were taken during two-time intervals of 15 and 60 days from the commencement of the algal treatments. In vitro antioxidant assays and polyphenolic compounds of S. virgatum were characterized. RESULTS Significant negative changes in the semen quality and morphometric data of the testes, as well as remarkable DNA fragmentation, were detected in the irradiated rats compared to the control. The levels of the endogenous antioxidant enzymes (SOD, CAT, GSH, and GPx) were also significantly diminished. Nonetheless, treatments of γ-irradiated rats with the S. virgatum-EtOH and aqueous extracts significantly improved the above-mentioned enzymes, in addition to noteworthy amendments in the dimensions of the testes, the semen quality, as well as the DNA structure. CONCLUSIONS The ameliorative potency of S. virgatum to cure γ-irradiation-induced male infertility, particularly 400 mg/kg ethanolic extract for 60 days, is the result of the consistent therapeutic interventions of its potent antioxidant and anti-apoptotic polyphenols, particularly protocatechuic, p-hydroxybenzoic, rosmarinic, chlorogenic, cinnamic and gentisic acids, as well as the flavonoids catechin, hesperidin, rutin and quercetin. Besides its high-value nutraceutical importance, S. virgatum could be a natural candidate for developing well-accepted radioprotectant products capable of treating γ-irradiation-induced male infertility.
Collapse
Affiliation(s)
- Ahmed I Semaida
- Department of Animal Production (Animal Physiology), Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mona A El-Khashab
- Department of Animal Production (Animal Physiology), Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Abdullah A Saber
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shady A Elfouly
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
54
|
Cecchini Gualandi S, Giangaspero B, Di Palma T, Macchia G, Carluccio A, Boni R. Oxidative profile and protease regulator potential to predict sperm functionality in donkey (Equus asinus). Sci Rep 2021; 11:20551. [PMID: 34654898 PMCID: PMC8521582 DOI: 10.1038/s41598-021-99972-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Seminal plasma (SP) of donkey stallions was evaluated using various oxidative stress parameters as well as protease and protease inhibitor activities. SP was obtained by nine donkey stallions. In addition, one donkey stallion with non-obstructive azoospermia was enrolled in this study. Free radical scavenging activity (FRSA), the ferric reducing ability of plasma (FRAP), total antioxidant capacity (TAC), and total thiol level (TTL) were highly correlated with each other and with the protease inhibitor activity. However, only FRAP, TAC, and the nitrate/nitrite concentration (NOx) were significantly correlated with sperm concentration, production, and kinetics. Protease inhibitor activity was highly correlated with sperm concentration and production; however, it did not correlate with sperm kinetics. The azoospermic stallion produced a lower amount of semen than the normospermic stallions and its SP showed a lower antioxidant activity when evaluated with FRAP, TAC, and TTL as well as a higher NOx and a lower protease inhibitor activity. In conclusion, the evaluation of SP oxidative profile by FRAP, TAC, and NOx may provide reliable information on donkey sperm quality whereas protease inhibitor activity may play a role as a marker of the sperm concentration in this species.
Collapse
Affiliation(s)
| | - Brunella Giangaspero
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Tommaso Di Palma
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy
| | - Giuseppe Macchia
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy.
| |
Collapse
|
55
|
Anna Jeng H, Sikdar S, Pan CH, Chang-Chien GP. Mixture Analysis of Associations between Occupational Exposure to Polycyclic Aromatic Hydrocarbons and Sperm Oxidative DNA Damage. Ann Work Expo Health 2021; 66:203-215. [PMID: 34535990 DOI: 10.1093/annweh/wxab072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE This study aimed to determine (i) associations between levels of the polycyclic aromatic hydrocarbon (PAH) mixture with 16 targeted PAH compounds in the personal breathing zone area and sperm oxidative DNA damage, (ii) associations between levels of individual PAH compounds and sperm oxidative DNA damage, (iii) oxidative stress as the mode of action for the genotoxic effects on sperm, and (iv) any dose-response relationship between exposure to the PAH mixture and/or individual PAH compounds and sperm oxidative DNA damage. METHODS Sixteen targeted PAH compounds in the personal breathing zone area of 38 coke-oven workers and 24 control subjects were quantified using gas chromatography-mass spectrometry. Sperm oxidative damage and status were evaluated by measuring levels of sperm 7,8-dihydro-8-oxoguanie (8-oxodGuo), seminal malondialdehyde (MDA) and seminal reactive oxygen species (ROS). Bayesian kernel machine regression with hierarchical variable selection process was employed to determine associations of the PAH mixture and the biomarkers of sperm oxidative damage. A novel grouping approach needed for the hierarchical variable selection process was developed based on PAH bay region and molecular weight. RESULTS The PAH mixture exhibited a positive trend with increased sperm 8-oxodGuo levels at their lower percentiles (25th-50th). The exposure of the PAH mixture was associated with increased MDA levels in sperm. Bay and bay-like regions of the PAH mixture were the most important group for estimating the associations between the PAH mixture and sperm oxidative stress status. Benzo[a]anthracene was the main individual PAH compound that was associated with increased MDA levels. CONCLUSION Sperm oxidative DNA damage induced by occupational exposure to the PAH mixture had a suggestive association with increased MDA levels in coke-oven workers. Finally, the study identified that the individual PAH compound, benzo[a]anthracene, was the primary driver for the suggestive association between the PAH mixture and sperm oxidative damage.
Collapse
Affiliation(s)
- Hueiwang Anna Jeng
- School of Community and Environmental Health, College of Health Sciences, Old Dominion University, 4608 Hampton Boulevard, Norfolk, VA 23509, USA
| | - Sinjini Sikdar
- Department of Mathematics and Statistics, College of Sciences, Old Dominion University, 4608 Hampton Boulevard, Norfolk, VA 23509, USA
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, No. 99, Lane 407, Hengke Rd., Sijhih District, New Taipei City 22143, Taiwan.,School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 11490, Taiwan
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, No. 840, Chengqing Rd., Niaosong District, Kaohsiung City 833, Taiwan
| |
Collapse
|
56
|
The β 2Tubulin, Rad50-ATPase and enolase cis-regulatory regions mediate male germline expression in Tribolium castaneum. Sci Rep 2021; 11:18131. [PMID: 34518617 PMCID: PMC8438054 DOI: 10.1038/s41598-021-97443-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
Genetics-based pest management processes, including the sterile insect technique, are an effective method for the control of some pest insects. However, current SIT methods are not directly transferable to many important pest insect species due to the lack of genetic sexing strains. Genome editing is revolutionizing the way we conduct genetics in insects, including in Tribolium castaneum, an important genetic model and agricultural pest. We identified orthologues of β2Tubulin, Rad50-ATPase and enolase in T. castaneum. Using RT-PCR, we confirmed that these genes are predominantly expressed in the testis. PiggyBac-based transformation of T. castaneum cis-regulatory regions derived from Tc-β2t, Tc-rad50 or Tc-eno resulted in EGFP expression specifically in the T. castaneum testis. Additionally, we determined that each of these regulatory regions regulates EGFP expression in different cell types of the male gonad. Cis-regulatory regions from Tc-β2t produced EGFP expression throughout spermatogenesis and also in mature sperms; Tc-rad50 resulted in expression only in the haploid spermatid, while Tc-eno expressed EGFP in late spermatogenesis. In summary, the regulatory cis-regions characterized in this study are not only suited to study male gonadal function but could be used for development of transgenic sexing strains that produce one sex in pest control strategies.
Collapse
|
57
|
Buonomo B, Massarotti C, Dellino M, Anserini P, Ferrari A, Campanella M, Magnotti M, De Stefano C, Peccatori FA, Lambertini M. Reproductive issues in carriers of germline pathogenic variants in the BRCA1/2 genes: an expert meeting. BMC Med 2021; 19:205. [PMID: 34503502 PMCID: PMC8431919 DOI: 10.1186/s12916-021-02081-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Healthy individuals and patients with cancer who are carriers of germline pathogenic variants in the BRCA1/2 genes face multiple reproductive challenges that require appropriate counseling and specific expertise. MAIN BODY On December 5th-7th, 2019, patient advocates and physicians with expertise in the field of reproductive medicine, fertility preservation, and oncology were invited to "San Giuseppe Moscati" Hospital in Avellino (Italy) for a workshop on reproductive management of women with germline pathogenic variants in the BRCA1/2 genes. From the discussion regarding the current evidence and future prospective in the field, eight main research questions were formulated and eight recommendations were developed regarding fertility, fertility preservation, preimplantation genetic testing, and pregnancy in healthy carriers and patients with cancer. CONCLUSION Several misconceptions about the topic persist among health care providers and patients often resulting in a discontinuous and suboptimal management. With the aim to offer patient-tailored counseling about reproductive issues, both awareness of current evidences and research should be promoted.
Collapse
Affiliation(s)
- Barbara Buonomo
- Fertility and Procreation Unit, Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Massarotti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), School of Medicine, University of Genova, Genova, Italy.,Academic Unit of Obstetrics and Gynaecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Miriam Dellino
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Paola Anserini
- Physiopathology of Human Reproduction Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alberta Ferrari
- Department of Surgical Sciences, General Surgery III-Breast Surgery, Fondazione IRCCS Policlinico San Matteo, and Department of Clinical Surgical Sciences, University of Pavia, Pavia, Italy
| | - Maria Campanella
- aBRCAdabra, National Patient Advocacy Association for carriers of BRCA genes mutation, Palermo, Italy
| | - Mirosa Magnotti
- ACTO Campania, Alleanza Contro il Tumore Ovarico, Avellino, Italy
| | - Cristofaro De Stefano
- Department of Women's and Children's Health, "San Giuseppe Moscati" Hospital, Avellino, Italy
| | - Fedro Alessandro Peccatori
- Fertility and Procreation Unit, Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy. .,Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
58
|
Ge P, Zhang X, Yang YQ, Lv MQ, Zhang J, Han SP, Zhao WB, Zhou DX. Rno_circRNA_016194 might be involved in the testicular injury induced by long-term formaldehyde exposure via rno-miR-449a-5p mediated Atg4b activation. Food Chem Toxicol 2021; 155:112409. [PMID: 34265366 DOI: 10.1016/j.fct.2021.112409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Although circular RNAs (circRNAs) can function as microRNAs (miRNAs) sponges to participate in spermatogenesis, little is known about the functions of circRNAs in testis exposed to formaldehyde. In this study, twenty-four male SD rats (6-8 weeks) were randomly assigned to four groups, including a control group, 0.5, 2.46, and 5 mg/m3 formaldehyde exposure groups, inhaling formaldehyde for eight consecutive weeks. The RT-qPCR was used to detect the expression of rno_circRNA_016194; the testicular injuries were observed by testicular histopathology. Our study illustrated up-regulated rno_circRNA_016194 was dose-dependent with formaldehyde. Simultaneously, the testicular histopathology showed an obvious damages in the 2.46 and 5 mg/m3 formaldehyde exposure rats. Combined with bioinformatics analysis, the rno-miR-449a-5p was predicted and verified that its expression decreased in the testis exposed to formaldehyde. Meanwhile, the testicular morphometry changes were contrary to the expression of rno_circRNA_016194 and consistent with rno-miR-449a-5p. Moreover, bioinformatics analysis also prompted the potential downstream target gene for rno_circRNA_016194/rno-miR-449a-5p was Atg4b, and Atg4b expression was up-regulated in rats exposed to formaldehyde verifying by Western blot. Collectively, the rno_circRNA_016194 might be involved in formaldehyde-induced male reproductive toxicity and become potential therapeutic targets for male occupational exposure to formaldehyde.
Collapse
Affiliation(s)
- Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiang Zhang
- Department of Science and Education, Xi'an Children' s Hospital, Xi'an, Shaanxi, 710003, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shui-Ping Han
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen-Bao Zhao
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
59
|
Saebnia N, Neshati Z, Bahrami AR. Role of microRNAs in etiology of azoospermia and their application as non-invasive biomarkers in diagnosis of azoospermic patients. J Gynecol Obstet Hum Reprod 2021; 50:102207. [PMID: 34407467 DOI: 10.1016/j.jogoh.2021.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Azoospermia is a common cause of male infertility without any sperm in the semen and consists of ∼1% of all males and ∼15% of infertile ones. Currently, no accurate non-invasive diagnostic method exists for patients with azoospermia and testis biopsy is mandatory to determine if any spermatozoa exist in the testes. Studies have clarified that the expression of some distinct microRNAs shows alterations in azoospermic patients. MicroRNAs play critical roles during spermatogenesis and their dysregulation can defect this process. Here, we review studied microRNAs involved in the pathogenesis of azoospermia and their target genes. Moreover, we will imply the utility of seminal plasma microRNAs as non-invasive diagnostic biomarkers for azoospermia. We hope such studies could help patients with azoospermia in both diagnosis and treatment, in order that they could father their own biological children.
Collapse
Affiliation(s)
- Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
60
|
Nakane H, Higaki K, Koyama Y, Nanba E, Kaidoh T. Autophagy induction on impaired spermatogenesis of xeroderma pigmentosum group A gene-deficient mice. Biomed Res 2021; 41:237-242. [PMID: 33071259 DOI: 10.2220/biomedres.41.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Xeroderma pigmentosum (XP) involves a defect in the initial step of nucleotide excision repair (NER) and consists of eight genetic complementation groups (groups A-G and a variant). XP group A (XPA) patients have a high incidence of UV-induced skin tumors, immature testicular development, and neurological symptoms. In an earlier study, we have shown that XP group A (Xpa) gene-knockout mice (Xpa-/- mice) were highly sensitive to UV-induced skin carcinogenesis with a defect in NER and were highly susceptibility to spontaneous tumorigenesis with impaired spermatogenesis. However, the pathology of impaired spermatogenesis in Xpa-/- mice is unknown. To unravel the underlying pathology, we made a concerted effort using the testis of 3-month-old Xpa-/- mice. We found many large vacuoles in the seminiferous tubules of 3-month old Xpa-/- mice, while there were no large vacuoles in that of Xpa+/+ mice. Immunohistochemistry of microtubule-associated protein 1 light chain 3 (LC3), an autophagosome marker, showed degenerating cells with intense signal of LC3 in the seminiferous tubules, and immunoblotting revealed induction of LC3-II in the 3-month-old Xpa-/- mice. The results of the present study suggest autophagy induction as the possible mechanism underlying the impaired spermatogenesis in Xpa-/- mice. Therefore, Xpa-/- mice could be a useful model for investigating aging and male infertility with low expression of XPA.
Collapse
Affiliation(s)
- Hironobu Nakane
- Department of Anatomy, Faculty of Medicine, Tottori University
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University
| | - Yuka Koyama
- Department of Anatomy, Faculty of Medicine, Tottori University
| | - Eiji Nanba
- Research Strategy Division, Organization for Research Initiative and Promotion, Tottori University
| | | |
Collapse
|
61
|
Wang C, Lv H, Ling X, Li H, Diao F, Dai J, Du J, Chen T, Xi Q, Zhao Y, Zhou K, Xu B, Han X, Liu X, Peng M, Chen C, Tao S, Huang L, Liu C, Wen M, Jiang Y, Jiang T, Lu C, Wu W, Wu D, Chen M, Lin Y, Guo X, Huo R, Liu J, Ma H, Jin G, Xia Y, Sha J, Shen H, Hu Z. Association of assisted reproductive technology, germline de novo mutations and congenital heart defects in a prospective birth cohort study. Cell Res 2021; 31:919-928. [PMID: 34108666 PMCID: PMC8324888 DOI: 10.1038/s41422-021-00521-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Emerging evidence suggests that children conceived through assisted reproductive technology (ART) have a higher risk of congenital heart defects (CHDs) even when there is no family history. De novo mutation (DNM) is a well-known cause of sporadic congenital diseases; however, whether ART procedures increase the number of germline DNM (gDNM) has not yet been well studied. Here, we performed whole-genome sequencing of 1137 individuals from 160 families conceived through ART and 205 families conceived spontaneously. Children conceived via ART carried 4.59 more gDNMs than children conceived spontaneously, including 3.32 paternal and 1.26 maternal DNMs, after correcting for parental age at conception, cigarette smoking, alcohol drinking, and exercise behaviors. Paternal DNMs in offspring conceived via ART are characterized by C>T substitutions at CpG sites, which potentially affect protein-coding genes and are significantly associated with the increased risk of CHD. In addition, the accumulation of non-coding functional mutations was independently associated with CHD and 87.9% of the mutations were originated from the father. Among ART offspring, infertility of the father was associated with elevated paternal DNMs; usage of both recombinant and urinary follicle-stimulating hormone and high-dosage human chorionic gonadotropin trigger was associated with an increase of maternal DNMs. In sum, the increased gDNMs in offspring conceived by ART were primarily originated from fathers, indicating that ART itself may not be a major reason for the accumulation of gDNMs. Our findings emphasize the importance of evaluating the germline status of the fathers in families with the use of ART.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing, Jiangsu, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Chen
- Scientific Education Section, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing, Jiangsu, China
| | - Qi Xi
- Department of Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yang Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyu Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meijuan Peng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyang Wen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
62
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
Affiliation(s)
- John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
63
|
Genotypic analysis of the female BPH/5 mouse, a model of superimposed preeclampsia. PLoS One 2021; 16:e0253453. [PMID: 34270549 PMCID: PMC8284809 DOI: 10.1371/journal.pone.0253453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Animal models that recapitulate human diseases and disorders are widely used to investigate etiology, diagnosis, and treatment of those conditions in people. Disorders during pregnancy are particularly difficult to explore as interventions in pregnant women are not easily performed. Therefore, models that allow for pre-conception investigations are advantageous for elucidating the mechanisms involved in adverse pregnancy outcomes that are responsible for both maternal and fetal morbidity, such as preeclampsia. The Blood Pressure High (BPH)/5 mouse model has been used extensively to study the pathogenesis of preeclampsia. The female BPH/5 mouse is obese with increased adiposity and borderline hypertension, both of which are exacerbated with pregnancy making it a model of superimposed preeclampsia. Thus, the BPH/5 model shares traits with a large majority of women with pre-existing conditions that predisposes them to preeclampsia. We sought to explore the genome of the BPH/5 female mouse and determine the genetic underpinnings that may contribute to preeclampsia-associated phenotypes in this model. Using a whole genome sequencing approach, we are the first to characterize the genetic mutations in BPH/5 female mice that make it unique from the closely related BPH/2 model and the normotensive background strain, C57Bl/6. We found the BPH/5 female mouse to be uniquely different from BPH/2 and C57Bl/6 mice with a genetically complex landscape. The majority of non-synonymous consequences within the coding region of BPH/5 females were missense mutations found most abundant on chromosome X when comparing BPH/5 and BPH/2, and on chromosome 8 when comparing BPH/5 to C57Bl/6. Genetic mutations in BPH/5 females largely belong to immune system-related processes, with overlap between BPH/5 and BPH/2 models. Further studies examining each gene mutation during pregnancy are warranted to determine key contributors to the BPH/5 preeclamptic-like phenotype and to identify genetic similarities to women that develop preeclampsia.
Collapse
|
64
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
65
|
Kohzaki M, Ootsuyama A, Umata T, Okazaki R. Comparison of the fertility of tumor suppressor gene-deficient C57BL/6 mouse strains reveals stable reproductive aging and novel pleiotropic gene. Sci Rep 2021; 11:12357. [PMID: 34117297 PMCID: PMC8195996 DOI: 10.1038/s41598-021-91342-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor genes are involved in maintaining genome integrity during reproduction (e.g., meiosis). Thus, deleterious alleles in tumor suppressor-deficient mice would exhibit higher mortality during the perinatal period. A recent aging model proposes that perinatal mortality and age-related deleterious changes might define lifespan. This study aimed to quantitatively understand the relationship between reproduction and lifespan using three established tumor suppressor gene (p53, APC, and RECQL4)-deficient mouse strains with the same C57BL/6 background. Transgenic mice delivered slightly reduced numbers of 1st pups than wild-type mice [ratio: 0.81–0.93 (p = 0.1–0.61)] during a similar delivery period, which suggest that the tumor suppressor gene-deficient mice undergo relatively stable reproduction. However, the transgenic 1st pups died within a few days after birth, resulting in a further reduction in litter size at 3 weeks after delivery compared with that of wild-type mice [ratio: 0.35–0.68 (p = 0.034–0.24)] without sex differences, although the lifespan was variable. Unexpectedly, the significance of reproductive reduction in transgenic mice was decreased at the 2nd or later delivery. Because mice are easily affected by environmental factors, our data underscore the importance of defining reproductive ability through experiments on aging-related reproduction that can reveal a trade-off between fecundity and aging and identify RECQL4 as a novel pleiotropic gene.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Umata
- Radioisotope Research Center, Facility for Education and Research Support, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
66
|
Raz AA, Yamashita YM. Molding immortality from a plastic germline. Curr Opin Cell Biol 2021; 73:1-8. [PMID: 34091218 PMCID: PMC9255434 DOI: 10.1016/j.ceb.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Germ cells are uniquely capable of maintaining cellular immortality, allowing them to give rise to new individuals in generation after generation. Recent studies have identified that the germline state is plastic, with frequent interconversion between germline differentiation states and across the germline/soma border. Therefore, features that grant germline immortality must be inducible, with other cells undergoing some form of rejuvenation to a germline state. In this review, we summarize the breadth of our current interpretations of germline plasticity and the ways in which these fate conversion events can aid our understanding of the underlying hallmarks of germline immortality.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
67
|
Kim SW, Kim B, Mok J, Kim ES, Park J. Dysregulation of the Acrosome Formation Network by 8-oxoguanine (8-oxoG) in Infertile Sperm: A Case Report with Advanced Techniques. Int J Mol Sci 2021; 22:5857. [PMID: 34070710 PMCID: PMC8199233 DOI: 10.3390/ijms22115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
8-Hydroxyguanine (8-oxoG) is the most common oxidative DNA lesion and unrepaired 8-oxoG is associated with DNA fragmentation in sperm. However, the molecular effects of 8-oxoG on spermatogenesis are not entirely understood. Here, we identified one infertile bull (C14) due to asthenoteratozoospermia. We compared the global concentration of 8-oxoG by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), the genomic distribution of 8-oxoG by next-generation sequencing (OG-seq), and the expression of sperm proteins by 2-dimensional polyacrylamide gel electrophoresis followed by peptide mass fingerprinting (2D-PAGE/PMF) in the sperm of C14 with those of a fertile bull (C13). We found that the average levels of 8-oxoG in C13 and C14 sperm were 0.027% and 0.044% of the total dG and it was significantly greater in infertile sperm DNA (p = 0.0028). Over 81% of the 8-oxoG loci were distributed around the transcription start site (TSS) and 165 genes harboring 8-oxoG were exclusive to infertile sperm. Functional enrichment and network analysis revealed that the Golgi apparatus was significantly enriched with the products from 8-oxoG genes of infertile sperm (q = 2.2 × 10-7). Proteomic analysis verified that acrosome-related proteins, including acrosin-binding protein (ACRBP), were downregulated in infertile sperm. These preliminary results suggest that 8-oxoG formation during spermatogenesis dysregulated the acrosome-related gene network, causing structural and functional defects of sperm and leading to infertility.
Collapse
Affiliation(s)
- Sung Woo Kim
- Animal Genetic Resources Research Center, National Institute of Animal Science (NIAS), Rural Development Administration (RDA), Hamyang 500000, Korea;
| | - Bongki Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32588, Korea;
| | - Jongsoo Mok
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea; (J.M.); (E.S.K.)
| | - Eun Seo Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea; (J.M.); (E.S.K.)
| | - Joonghoon Park
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea; (J.M.); (E.S.K.)
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
68
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
69
|
Matos B, Patrício D, Henriques MC, Freitas MJ, Vitorino R, Duarte IF, Howl J, Oliveira PA, Seixas F, Duarte JA, Ferreira R, Fardilha M. Chronic exercise training attenuates prostate cancer-induced molecular remodelling in the testis. Cell Oncol (Dordr) 2021; 44:311-327. [PMID: 33074478 DOI: 10.1007/s13402-020-00567-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Prostate cancer is a major cause of cancer-related death in males worldwide and, in addition to impairing prostate function, also causes testicular adaptations. In this study, we aim to investigate the preventive effect of exercise training on PCa-induced testicular dysfunction. METHODS As a model, we used fifty Wistar Unilever male rats, randomly divided in four experimental groups. Prostate cancer was chemically and hormonally induced in two groups of animals (PCa groups). One control group and one PCa group was submitted to moderate intensity treadmill exercise training. Fifty weeks after the start of the training the animals were sacrificed and sperm, prostate, testis and serum were collected and analyzed. Sperm concentration and morphology, and testosterone serum levels were determined. In addition, histological analyses of the testes were performed, and testis proteomes and metabolomes were characterized. RESULTS We found that prostate cancer negatively affected testicular function, manifested as an arrest of spermatogenesis. Oxidative stress-induced DNA damage, arising from reduced testis blood flow, may also contribute to apoptosis of germ cells and consequential spermatogenic impairment. Decreased utilization of the glycolytic pathway, increased metabolism of ketone bodies and the accumulation of branched chain amino acids were also evident in the PCa animals. Conversely, we found that the treadmill training regimen activated DNA repair mechanisms and counteracted several metabolic alterations caused by PCa without impact on oxidative stress. CONCLUSIONS These findings confirm a negative impact of prostate cancer on testis function and suggest a beneficial role for exercise training in the prevention of prostate cancer-induced testis dysfunction.
Collapse
Affiliation(s)
- Bárbara Matos
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Patrício
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Magda C Henriques
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria J Freitas
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José A Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
70
|
Selvaraju S, Ramya L, Parthipan S, Swathi D, Binsila BK, Kolte AP. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res 2021; 385:207-222. [PMID: 33783607 DOI: 10.1007/s00441-021-03443-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Deciphering sperm transcriptome is the key to understanding the molecular mechanisms governing peri-fertilization, embryonic development, and pregnancy establishment. This study aimed to profile sperm transcriptome to identify signature transcripts regulating male fertility. Semen samples were collected from 47 bulls with varied fertility rates. The sperm total RNA was isolated (n = 8) and subjected to transcriptome sequencing. Based on the expression pattern obtained from RNA profiling, the bulls were grouped (p = 0.03) into high-fertile and sub-fertile, and signature transcripts controlling sperm functions and fertility were identified. The results were validated using the OMIM database, qPCR, and sperm function tests. The sperm contains 1100 to 1700 intact transcripts, of which BCL2L11 and CAPZA3 were abundant and associated (p < 0.05) with spermatogenesis and post-embryonic organ morphogenesis. The upregulated genes in the acrosome integrity and functional membrane integrity groups had a close association with the fertility rate. The biological functions of these upregulated genes (p < 0.05) in the high-fertile bulls were associated with spermatogenesis (AFF4 and BRIP1), sperm motility (AK6 and ATP6V1G3), capacitation and zona binding (AGFG1), embryo development (TCF7 and AKIRIN2), and placental development (KRT19). The transcripts involved in pathways regulating embryonic development such as translation (EEF1B2 and MTIF3, p = 8.87E-05) and nonsense-mediated decay (RPL23 and RPL7A, p = 5.01E-27) were upregulated in high-fertile bulls. The identified transcripts may significantly impact oocyte function, embryogenesis, trophectoderm development, and pregnancy establishment. In addition, the study also reveals that the genes governing sperm functional membrane integrity and acrosome integrity have a prospective effect on male fertility.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
71
|
Shrestha KS, Tuominen MM, Kauppi L. Mlh1 heterozygosity and promoter methylation associates with microsatellite instability in mouse sperm. Mutagenesis 2021; 36:237-244. [PMID: 33740045 PMCID: PMC8262379 DOI: 10.1093/mutage/geab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
DNA mismatch repair (MMR) proteins play an important role in maintaining genome stability, both in somatic and in germline cells. Loss of MLH1, a central MMR protein, leads to infertility and to microsatellite instability (MSI) in spermatocytes, however, the effect of Mlh1 heterozygosity on germline genome stability remains unexplored. To test the effect of Mlh1 heterozygosity on MSI in mature sperm, we combined mouse genetics with single-molecule PCR that detects allelic changes at unstable microsatellites. We discovered 4.5% and 5.9% MSI in sperm of 4- and 12-month-old Mlh1+/− mice, respectively, and that Mlh1 promoter methylation in Mlh1+/− sperm correlated with higher MSI. No such elevated MSI was seen in non-proliferating somatic cells. Additionally, we show contrasting dynamics of deletions versus insertions at unstable microsatellites (mononucleotide repeats) in sperm.
Collapse
Affiliation(s)
- Kul S Shrestha
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 (PO Box 63), FI-00014 Helsinki, Finland.,Doctoral Program in Integrative Life Sciences, University of Helsinki, Viikinkaari 1 (PO Box 65), FI-00014 Helsinki, Finland
| | - Minna M Tuominen
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 (PO Box 63), FI-00014 Helsinki, Finland
| | - Liisa Kauppi
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 (PO Box 63), FI-00014 Helsinki, Finland.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 (PO Box 63), FI-00014 Helsinki, Finland
| |
Collapse
|
72
|
Loganathan C, Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Kumar SA, Anbarasu K, Prahalathan C. The possible role of sirtuins in male reproduction. Mol Cell Biochem 2021; 476:2857-2867. [PMID: 33738675 DOI: 10.1007/s11010-021-04116-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Global influence of male infertility is increasing in recent decades. Proper understanding of genetics, anatomy, physiology and the intricate interrelation of male reproductive system are much needed for explaining the etiology of male infertility; and a detailed study on the epigenetics, indeed, will reveal the molecular mechanism behind its etiology. Sirtuins, the molecular sensors, are NAD+ dependent histone deacetylases and ADP- ribosyl transferases, participate in the chief events of epigenetics. In mammals, sirtuin family comprises seven members (SIRT1-SIRT7), and they all possess a conserved NAD+ binding catalytic domain, termed the sirtuin core domain which is imperative for their activity. Sirtuins exert a pivotal role in cellular homeostasis, energy metabolism, apoptosis, age-related disorders and male reproductive system. However, their exact role in male reproduction is still obscure. This article specifically reviews the role of mammalian sirtuins in male reproductive function, thereby, prompting further research to discover the restorative methods and its implementation in reproductive medicine.
Collapse
Affiliation(s)
- Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | | | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India. .,Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India.
| |
Collapse
|
73
|
Ribas-Maynou J, Yeste M, Becerra-Tomás N, Aston KI, James ER, Salas-Huetos A. Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta-analysis. Biol Rev Camb Philos Soc 2021; 96:1284-1300. [PMID: 33644978 DOI: 10.1111/brv.12700] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
The clinical effect of sperm DNA damage in assisted reproduction has been a controversial topic during recent decades, leading to a variety of clinical practice recommendations. While the latest European Society of Human Reproduction and Embryology (ESHRE) position report concluded that DNA damage negatively affects assisted reproduction outcomes, the Practice Committee of the American Society for Reproductive Medicine (ASRM) does not recommend the routine testing of DNA damage for in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Herein, our aim was to perform a systematic review and meta-analysis of studies investigating whether sperm DNA damage affects clinical outcomes in IVF and ICSI, in order to contribute objectively to a consistent clinical recommendation. A comprehensive systematic search was conducted according to PRISMA guidelines from the earliest available online indexing year until March 2020, using the MEDLINE-PubMed and EMBASE databases. We included studies analysing IVF and/or ICSI treatments performed in infertile couples in which sperm DNA damage was well defined and assessed. Studies also had to include information about pregnancy, implantation or live birth rates as primary outcomes. The NHLBI-NIH quality assessment tool was used to assess the quality of each study. Meta-analyses were conducted using the Mantel-Haenszel method with random-effects models to evaluate the Risk Ratio (RR) between high-DNA-damage and control groups, taking into account the 95% confidence intervals. Heterogeneity among studies was evaluated using the I2 statistic. We also conducted sensitivity analyses and post-hoc subgroup analyses according to different DNA fragmentation assessment techniques. We identified 78 articles that met our inclusion and quality criteria and were included in the qualitative analysis, representing a total of 25639 IVF/ICSI cycles. Of these, 32 articles had sufficient data to be included in the meta-analysis, comprising 12380 IVF/ICSI cycles. Meta-analysis revealed that, considering IVF and ICSI results together, implantation rate (RR = 0.74; 95% CI = 0.61-0.91; I2 = 69) and pregnancy rate (RR = 0.83; 0.73-0.94; I2 = 58) are negatively influenced by sperm DNA damage, although after adjustment for publication bias the relationship for pregnancy rate was no longer significant. The results showed a non-significant but detrimental tendency (RR = 0.78; 0.58-1.06; I2 = 72) on live birth rate. Meta-analysis also showed that IVF outcomes are negatively influenced by sperm DNA damage, with a statistically significant impact on implantation (RR = 0.68; 0.52-0.89; I2 = 50) and pregnancy rates (RR = 0.72; 0.55-0.95; I2 = 72), although the latter was no longer significant after correction for publication bias. While it did not quite meet our threshold for significance, a negative trend was also observed for live birth rate (RR = 0.48; 0.22-1.02; I2 = 79). In the case of ICSI, non-significant trends were observed for implantation (RR = 0.79; 0.60-1.04; I2 = 72) or pregnancy rates (RR = 0.89; 0.78-1.02; I2 = 44), and live birth rate (RR = 0.92; 0.67-1.27; I2 = 70). The current review provides the largest evidence to date supporting a negative association between sperm DNA damage and conventional IVF treatments, significantly reducing implantation and pregnancy rates. The routine use of sperm DNA testing is therefore justified, since it may help improve the outcomes of IVF treatments and/or allow a given couple to be advised on the most suitable treatment. Further well-designed controlled studies on a larger number of patients are required to allow us to reach more precise conclusions, especially in the case of ICSI treatments.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Jaume Casadamont Building, Door E, 15 Pic de Peguera St, Girona, ES-17003, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Sciences Building, 69 Maria Aurèlia Capmany, Girona, ES-17003, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Jaume Casadamont Building, Door E, 15 Pic de Peguera St, Girona, ES-17003, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Sciences Building, 69 Maria Aurèlia Capmany, Girona, ES-17003, Spain
| | - Nerea Becerra-Tomás
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, St/Sant Llorenç, 21, Reus, ES-43201, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, ES-46010, Spain
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, 675 Arapeen Drive, Salt Lake City, UT, US-84108, U.S.A
| | - Emma R James
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, 675 Arapeen Drive, Salt Lake City, UT, US-84108, U.S.A.,Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT, US-84112, U.S.A
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, 675 Arapeen Drive, Salt Lake City, UT, US-84108, U.S.A
| |
Collapse
|
74
|
Peijingsu effectively improves sperm DNA integrity. ZYGOTE 2021; 29:260-263. [PMID: 33612133 DOI: 10.1017/s0967199420000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intact human sperm DNA is an essential prerequisite for successful fertilization and embryo development. Abnormal sperm DNA fragmentation is a independent factor for male infertility. The objective of this study was to investigate the effects of Peijingsu, a health product, on the DNA integrity of human sperm. Peijingsu was administered for 15 days to 22 patients who had an abnormal sperm DNA fragmentation index (DFI). The DFIs before and after treatment were compared and analyzed using paired t-test. DFIs decreased significantly (P = 0.0008) after treatment, therefore it was concluded that Peijingsu effectively improved sperm DNA integrity in infertile patients who had an abnormal sperm DFI.
Collapse
|
75
|
MicroRNA expression profiles in the seminal plasma of nonobstructive azoospermia patients with different histopathologic patterns. Fertil Steril 2021; 115:1197-1211. [PMID: 33602558 DOI: 10.1016/j.fertnstert.2020.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate microRNA (miRNA) expression profiles in the seminal plasma of nonobstructive azoospermia (NOA) patients with different histopathologic patterns and evaluate potential noninvasive diagnostic biomarkers of NOA. DESIGN Sequencing and validation using quantitative reverse transcription polymerase chain reaction (qRT-PCR). SETTING Reproductive center and research institute. PATIENT(S) Thirteen patients with NOA (7 Sertoli cell-only syndrome [SCOS] and 6 hypospermatogenesis to spermatogenesis arrest [SA]) and 7 normal fertile controls for sequencing, six samples per group for validation; 54 patients with NOA (27 SCOS and 27 SA) and 19 normal fertile controls for large-sample qRT-PCR analysis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) MicroRNA expression profiles in the seminal plasma of patients with NOA with different histopathologic patterns were assessed using high-throughput sequencing and validated using qRT-PCR. RESULT(S) There were 78 overexpressed and 132 underexpressed miRNAs in patients with SCOS and 32 up-regulated and 90 down-regulated miRNAs in patients with SA compared with fertile men with normozoospermia. Two down-regulated and one up-regulated miRNA were validated using qRT-PCR, which indicated that the qRT-PCR and sequencing results were basically consistent. Hsa-miR-34c-5p expression was significantly lower in the seminal plasma of patients with NOA than normal fertile controls. The area under the receiver operating characteristic curve(AUC) for hsa-miR-34c-5p was 0.979 and 0.987 in the seminal plasma of patients with SA and patients with SCOS, respectively, compared with normal fertile controls. The AUC was 0.799 for hsa-miR-34c-5p in the seminal plasma between patients with SA and patients with SCOS. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed miRNA target genes revealed that the Notch signaling pathway was one of the most abundant signaling pathways. The expression of Hes5, an effector of the Notch signaling pathway, was significantly higher in the seminal plasma of patients with NOA than normal fertile controls. CONCLUSION(S) MicroRNA expression profiles in seminal plasma were altered in patients with NOA compared with normal fertile controls. The profiles differed in patients with NOA with different pathologic patterns. We speculate that miR-34c-5p in seminal plasma could be a potential noninvasive biomarker to diagnose patients with NOA and distinguish different pathologic types of NOA. The Notch signaling pathway may be involved in the pathogenesis of NOA.
Collapse
|
76
|
Iovine C, Mottola F, Santonastaso M, Finelli R, Agarwal A, Rocco L. In vitro ameliorative effects of ellagic acid on vitality, motility and DNA quality in human spermatozoa. Mol Reprod Dev 2021; 88:167-174. [PMID: 33522057 DOI: 10.1002/mrd.23455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023]
Abstract
Oxidative stress (OS) plays a significant role in the etiology of male infertility, resulting in the impairment of male reproduction. This condition, characterized by an imbalance in the levels of oxidizing and antioxidant species in the seminal fluid, has a harmful impact on sperm functions and DNA integrity. The present study aimed to evaluate the anti-genotoxic action of ellagic acid, a polyphenolic molecule of natural origin having a powerful antigenotoxic, anti-inflammatory and antiproliferative role. An OS condition was induced in vitro by incubating normozoospermic human semen samples in benzene for 45, 60 and 90 min. DNA integrity was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay, RAPD-PCR was performed to calculate the genome template stability, while the percentage of intracellular reactive oxygen species (ROS) was assessed by the 2', 7'-dichlorofluorescein assay. Our results showed that ellagic acid has a consistent protective effect on DNA integrity, as well as on sperm vitality and motility, by counteracting generation of intracellular ROS. The results of this study suggest ellagic acid as a suitable molecule to protect sperm DNA from oxidative stress, with a potentially significant translational impact on the management of the male infertility.
Collapse
Affiliation(s)
- Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Renata Finelli
- American Center of Reproductive Medicine, Andrology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ashok Agarwal
- American Center of Reproductive Medicine, Andrology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
77
|
A loss-of-function variant in DNA mismatch repair gene MLH3 underlies severe oligozoospermia. J Hum Genet 2021; 66:725-730. [PMID: 33517345 DOI: 10.1038/s10038-021-00907-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Male infertility pertains to male's inability to cause pregnancy in a fertile female. It accounts for 40-50% of infertility in human. In the study, presented here, a large consanguineous family of Pakistani origin segregating male infertility in autosomal recessive manner was investigated. Exome sequencing revealed a homozygous frameshift variant [NM_001040108: c.3632delA, p.(Asn1211Metfs*49)] in DNA mismatch repair gene MLH3 (MutL Homolog) that segregated with male infertility within the family. This is the first loss-of-function homozygous variant in the MLH3 gene causing severe oligozoospermia leading to male infertility. Previous studies have demonstrated association of infertility with gene knockout in the mice.
Collapse
|
78
|
Finelli R, Darbandi S, Pushparaj PN, Henkel R, Ko E, Agarwal A. In Silico Sperm Proteome Analysis to Investigate DNA Repair Mechanisms in Varicocele Patients. Front Endocrinol (Lausanne) 2021; 12:757592. [PMID: 34975746 PMCID: PMC8719329 DOI: 10.3389/fendo.2021.757592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Varicocele, a condition associated with increased oxidative stress, negatively affects sperm DNA integrity and reduces pregnancy rates. However, the molecular mechanisms related to DNA integrity, damage, and repair in varicocele patients remain unclear. This study aimed to determine the role of DNA repair molecular mechanisms in varicocele-related infertility by combining an in silico proteomics approach with wet-laboratory techniques. Proteomics results previously generated from varicocele patients (n=50) and fertile controls (n=10) attending our Andrology Center were reanalyzed using bioinformatics tools, including the WEB-based Gene SeT AnaLysis Toolkit, Open Target Platform, and Ingenuity Pathway Analysis (IPA), to identify differentially expressed proteins (DEPs) involved in DNA repair. Subsequently, selected DEPs in spermatozoa were validated using western blotting in varicocele (n = 13) and fertile control (n = 5) samples. We identified 99 DEPs mainly involved in male reproductive system disease (n=66) and male infertility (n=47). IPA analysis identified five proteins [fatty acid synthase (FASN), myeloperoxidase (MPO), mitochondrial aconitate hydratase (ACO2), nucleoporin 93 (NUP93), and 26S proteasome non-ATPase regulatory subunit 14 (PSMD14)] associated with DNA repair deficiency, which showed altered expression in varicocele (P <0.03). We validated ACO2 downregulation (fold change=0.37, change%=-62.7%, P=0.0001) and FASN overexpression (fold change = 4.04, change %= 303.7%, P = 0.014) in men with varicocele compared to controls. This study combined a unique in silico approach with an in vitro validation of the molecular mechanisms that may be responsible for varicocele-associated infertility. We identified ACO2 and FASN as possible proteins involved in DNA repair, whose altered expression may contribute to DNA damage in varicocele pathophysiology.
Collapse
Affiliation(s)
- Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Reading, United Kingdom
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, United States
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Ashok Agarwal,
| |
Collapse
|
79
|
He X, Xie W, Li H, Cui Y, Wang Y, Guo X, Sha J. The testis-specifically expressed gene Trim69 is not essential for fertility in mice. J Biomed Res 2021; 35:47-60. [PMID: 33273151 PMCID: PMC7874274 DOI: 10.7555/jbr.34.20200069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein ubiquitination is essential for diverse cellular functions including spermatogenesis. The tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activity, are highly conserved in mammals. They are involved in important cellular processes such as embryonic development, immunity, and fertility. Our previous studies indicated that Trim69, a testis-specific expressed TRIM family gene, potentially participates in the spermatogenesis by mediating testicular cells apoptosis. In this study, we investigated the biological functions of Trim69 in male mice by established Trim69 knockout mice with CRISPR/Cas9 genomic editing technology. Here, we reported that the male Trim69 knockout mice had normal fertility. The adult knockout mice have shown that the appearance of testes, testis/body weight ratios, testicular histomorphology, and the number and quality of sperm were consistent with wild-type mice. These results indicated that the E3 ubiquitin ligase protein Trim69 was not essential for male mouse fertility, and it might be compensated by other TRIM family members such as Trim58 in Trim69-deficiency testis. This study would help to elucidate the functions of tripartite motif protein family and the regulation of spermatogenesis.
Collapse
Affiliation(s)
- Xi He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenxiu Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ya Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
80
|
Metin Mahmutoglu A, Gunes S, Asci R, Henkel R, Aydin O. Association of XRCC1 and ERCC2 promoters' methylation with chromatin condensation and sperm DNA fragmentation in idiopathic oligoasthenoteratozoospermic men. Andrologia 2020; 53:e13925. [PMID: 33355950 DOI: 10.1111/and.13925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to investigate whether the promoter methylation of XRCC1 and ERCC2 genes is associated with sperm DNA fragmentation and chromatin condensation in idiopathic oligoasthenoteratozoospermic men. This study involved 77 infertile men with idiopathic oligoasthenoteratozoospermia and 51 normozoospermic controls. The methylight method, TUNEL assay and aniline blue staining were used for the evaluation of XRCC1 and ERCC2 genes' methylation, SDF and sperm chromatin condensation, respectively. SDF (p = .004) and XRCC1 methylation (p = .0056) were found to be significantly higher in men with idiopathic OAT than in the controls, while mature spermatozoa frequency was higher in controls as compared to infertile men (p < .0001). No significant association was found between SDF and methylation of XRCC1 and ERCC2 genes (p = .9277 and p = .8257, respectively). However, compared to the cut-off point obtained by receiver operating characteristic analysis, a significant association was found between SDF and XRCC1 methylation, positive and negative methylation groups, generated according to the cut-off value for XRCC1. XRCC1 methylation was found to have a significant effect on chromatin condensation (p = .0017). No significant difference was detected among ERCC2 methylation, male infertility and SDF. In conclusion, XRCC1 methylation may have a role in sperm chromatin condensation and idiopathic OAT.
Collapse
Affiliation(s)
- Asli Metin Mahmutoglu
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oguz Aydin
- Faculty of Medicine, Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
81
|
Yang X, Feng Y, Li Y, Chen D, Xia X, Li J, Li F. AR regulates porcine immature Sertoli cell growth via binding to RNF4 and miR-124a. Reprod Domest Anim 2020; 56:416-426. [PMID: 33305371 DOI: 10.1111/rda.13877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Sertoli cells are the only somatic cells in the seminiferous epithelium which directly contact with germ cells. Sertoli cells exhibit polarized alignment at the basal membrane of seminiferous tubules to maintain the microenvironment for growth and development of germ cells, and therefore play a crucial role in spermatogenesis. Androgens exert their action through androgen receptor (AR) and AR signalling in the testis is essential for maintenance of spermatogonial numbers, blood-testis barrier integrity, completion of meiosis, adhesion of spermatids and spermiation. In the present study, we demonstrated that AR gene could promote the proliferation of immature porcine Sertoli cells (ST cells) and the cell cycle procession, and accelerate the transition from G1 phase into S phase in ST cells. Meanwhile, miR-124a could affect the proliferation and cell cycle procession of ST cells by targeting 3'-UTR of AR gene. Furthermore, AR bound to the RNF4 via AR DNA-binding domain (DBD) and we verified that RNF4 was necessary for AR to regulate the growth of ST cells. Above all, this study suggests that AR regulates ST cell growth via binding to RNF4 and miR-124a, which may help us to further understand the function of AR in spermatogenesis.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yue Feng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yang Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Dake Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Xuanyan Xia
- College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Jialian Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
82
|
Rowlison T, Cleland TP, Ottinger MA, Comizzoli P. Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals. Mol Cell Proteomics 2020; 19:2090-2104. [PMID: 33008835 PMCID: PMC7710135 DOI: 10.1074/mcp.ra120.002251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.
Collapse
Affiliation(s)
- Tricia Rowlison
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC.
| |
Collapse
|
83
|
Abstract
Male factor infertility is a common problem. Evidence is emerging regarding the spectrum of systemic disease and illness harbored by infertile men who otherwise appear healthy. In this review, we present evidence that infertile men have poor overall health and increased morbidity and mortality, increased rates of both genitourinary and non-genitourinary malignancy, and greater risks of systemic disease. The review also highlights numerous genetic conditions associated with male infertility as well as emerging translational evidence of genitourinary birth defects and their impact on male infertility. Finally, parallels to the overall health of infertile women are presented. This review highlights the importance of a comprehensive health evaluation of men who present for an infertility assessment.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
84
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
85
|
Hekim N, Gunes S, Asci R, Henkel R, Abur U. Semiquantitative promoter methylation of MLH1 and MSH2 genes and their impact on sperm DNA fragmentation and chromatin condensation in infertile men. Andrologia 2020; 53:e13827. [PMID: 33112435 DOI: 10.1111/and.13827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
To investigate the semiquantitative methylation alterations of MLH1 and MSH2 and the possible association among methylation of MLH1 and MSH2, sperm DNA fragmentation and sperm chromatin condensation in idiopathic oligoasthenoteratozoospermic men. Seventy-five idiopathic infertile men and 52 fertile and/or normozoospermic men were included in the study. SDF was analysed using the TUNEL assay in semen samples of 100 men. Promoter methylation of MLH1 and MSH2 genes was assessed by semiquantitative methylight analysis in semen samples of 39 and 40 men respectively. Sperm chromatin condensation was evaluated using aniline blue staining in 114 men. MLH1 promoter methylation was positively correlated with the percentage of aniline blue positive spermatozoa (r = 0.401, p = 0.0188). On the other hand, MSH2 promoter methylation was negatively correlated with sperm concentration and total sperm count (r = -0.421, p = 0.0068 and r = 0.4408, p = 0.009 respectively). The percentage of aniline blue positive spermatozoa in the control group was significantly lower than in the OAT group (p < 0.0001) and negatively correlated with total sperm count (r = -0.683, p < 0.0001), progressive sperm motility (r = -0.628, p < 0.0001), total motility (r = -0.639, p < 0.0001) and normal morphology (r = -0.668, p < 0.0001). Promoter methylation profile of MLH1 and MSH2 genes may play role on sperm DNA packaging and conventional semen parameters respectively.
Collapse
Affiliation(s)
- Neslihan Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey.,Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ummet Abur
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey.,Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
86
|
Saki J, Sabaghan M, Arjmand R, Teimoori A, Rashno M, Saki G, Shojaee S. Spermatogonia apoptosis induction as a possible mechanism of Toxoplasma gondii-induced male infertility. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1164-1171. [PMID: 32963738 PMCID: PMC7491504 DOI: 10.22038/ijbms.2020.43535.10224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): The protozoan Toxoplasma gondii as an intracellular protozoan is widely prevalent in humans and animals. Infection generally occurs through consuming food contaminated with oocysts and tissue cysts from undercooked meat. The parasite is carried in sexual fluids like semen but there is little information about the effect of T. gondii on the male reproductive system. In this study, we examined the effect of T. gondii tachyzoites on apoptosis induction in type B spermatogonia (GC-1) cells. Materials and Methods: Fresh tachyzoites taken of infected BALB/c mice, GC-1 spg cells were infected with increasing concentrations of tachyzoites of T. gondii, then apoptotic cells were identified and quantified by flow cytometry. The genes associated with apoptosis were evaluated by RT2 Profiler PCR Array. Results: PCR array analysis of 84 apoptosis-related genes demonstrated that 12 genes were up-regulated at least 4-fold and that one gene was down-regulated at least 2-fold in the T. gondii infection group compared with levels in the control group. The number of genes whose expression had increased during the period of infection with T. gondii was significantly higher than those whose expressions had decreased (18 versus 1) and Tnfrsf11b had the highest rate of gene expression. Conclusion: T. gondii induce in vitro apoptosis of GC-1 spg cells. This effect shows a trend of concentration-dependent increase so that with an increase in the ratio of parasite burden to spermatogonial cells, in addition to an increase in the number of genes whose expression has changed, the fold of these changes has increased as well.
Collapse
Affiliation(s)
- Jasem Saki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohamad Sabaghan
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arjmand
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
87
|
Tatsumi K, Tatsumi T, Uchida T, Saito K, Saito H. New device for sperm preparation involving migration-gravity sedimentation without centrifugation compared with density-gradient centrifugation for normozoospermic intrauterine insemination. F S Rep 2020; 1:106-112. [PMID: 34223226 PMCID: PMC8244315 DOI: 10.1016/j.xfre.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 10/27/2022] Open
|
88
|
Charaka V, Tiwari A, Pandita RK, Hunt CR, Pandita TK. Role of HP1β during spermatogenesis and DNA replication. Chromosoma 2020; 129:215-226. [PMID: 32651609 DOI: 10.1007/s00412-020-00739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1β (HP1β), encoded by the Cbx1 gene, has been functionally linked to chromatin condensation, transcriptional regulation, and DNA damage repair. Here we report that testis-specific Cbx1 conditional knockout (Cbx1 cKO) impairs male germ cell development in mice. Depletion of HP1β negatively affected sperm maturation and increased seminiferous tubule degeneration in Cbx1 cKO mice. In addition, the spermatogonia have elevated γ-H2AX foci levels as do Cbx1 deficient mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) control MEFs. The increase in γ-H2AX foci in proliferating Cbx1 cKO cells indicates defective replication-dependent DNA damage repair. Depletion or loss of HP1β from human cells and MEFs increased DNA replication fork stalling and firing of new origins of replication, indicating defective DNA synthesis. Taken together, these results suggest that loss of HP1β in proliferating cells leads to DNA replication defects with associated DNA damage that impact spermatogenesis.
Collapse
Affiliation(s)
- Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
89
|
Lv MQ, Li YX, Ge P, Yang YQ, Zhang J, Han SP, Zhou DX. Association between X-ray repair cross-complementing group 1 Arg399Gln polymorphism and male infertility: An update meta-analysis. Andrologia 2020; 52:e13700. [PMID: 32535968 DOI: 10.1111/and.13700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
Numerous studies concentrate on the association between X-ray repair cross-complementing group 1 (XRCC1) gene polymorphism and male infertility; however, the results remain inconclusive and inconsistent. Hence, this meta-analysis was conducted to get a precise estimation of the correlation. PubMed, Web of Science, Embase, Scopus and China National Knowledge Infrastructure (CNKI) databases were searched to identify the all relevant studies before 3 May 2020. Summary odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to assess the strength of the association. Finally, six studies with 1,886 cases and 1,212 controls were included in our study. The result indicated that XRCC1 Arg399Gln polymorphism was significantly associated with male infertility under allelic model (A-allele vs. G-allele: OR = 1.183, p = .003), heterozygote genetic model (AA vs. GA: OR = 1.256, p = .027), recessive genetic model (AA vs. GG + GA: OR = 1.279, p = .012) and dominant genetic model (AA + GA vs. GG: OR = 1.218, p = .026). In addition, in Asian subgroup, statistic correlation remained significant in allelic model (A-allele vs. G-allele: OR = 1.145, p = .025) with rare heterogeneity (I2 = 0%). In summary, our meta-analysis suggested that XRCC1 Arg399Gln polymorphism was significantly associated with male infertility and the A-allele might be a risk factor for this disease, especially in Asians.
Collapse
Affiliation(s)
- Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Li
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China
| | - Shui-Ping Han
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
90
|
The Impact of Single- and Double-Strand DNA Breaks in Human Spermatozoa on Assisted Reproduction. Int J Mol Sci 2020; 21:ijms21113882. [PMID: 32485940 PMCID: PMC7312948 DOI: 10.3390/ijms21113882] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Several cellular insults can result in sperm DNA fragmentation either on one or both DNA strands. Oxidative damage, premature interruption of the apoptotic process and defects in DNA compaction during spermatogenesis are the main mechanisms that cause DNA breaks in sperm. The two-tailed Comet assay is the only technique that can differentiate single- (SSBs) from double- (DSBs) strand DNA breaks. Increased levels of the phosphorylated isoform of the H2AX histone are directly correlated with DSBs and proposed as a molecular biomarker of DSBs. We have carried out a narrative review on the etiologies associated with SSBs and DSBs in sperm DNA, their association with reproductive outcomes and the mechanisms involved in their repair. Evidence suggests a stronger negative impact of DSBs on reproductive outcomes (fertilization, implantation, miscarriage, pregnancy, and live birth rates) than SSBs, which can be partially overcome by using intracytoplasmic sperm injection (ICSI). In sperm, SSBs are irreversible, whereas DSBs can be repaired by homologous recombination, non-homologous end joining (NHEJ) and alternative NHEJ pathways. Although few studies have been published, further research is warranted to provide a better understanding of the differential effects of sperm SSBs and DSBs on reproductive outcomes as well as the prognostic relevance of DNA breaks discrimination in clinical practice.
Collapse
|
91
|
Barbăroșie C, Agarwal A, Henkel R. Diagnostic value of advanced semen analysis in evaluation of male infertility. Andrologia 2020; 53:e13625. [PMID: 32458468 DOI: 10.1111/and.13625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Conventional semen analysis is the standard of care to initially evaluate the fertility status of a male patient. However, it has some limitations and among these are failure to correctly identify the aetiology underlying fertility problems, intra- and inter-observer variability and incomplete information about sperm function. Considering these drawbacks, advanced semen tests have been developed to assess male infertility, including sperm function tests, oxidative stress (OS) and sperm DNA fragmentation (SDF) tests. This review illustrates the commonly utilised sperm function techniques, along with the assays used to assess SDF and OS and their diagnostic value.
Collapse
Affiliation(s)
- Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
92
|
Kuchakulla M, Narasimman M, Khodamoradi K, Khosravizadeh Z, Ramasamy R. How defective spermatogenesis affects sperm DNA integrity. Andrologia 2020; 53:e13615. [PMID: 32324913 DOI: 10.1111/and.13615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is the essential process to maintain and promote male fertility. It is extraordinarily complex with many regulatory elements and numerous steps. The process involves several cell types, regulatory molecules, repair mechanisms and epigenetic regulators. Evidence has shown that fertility can be negatively impacted by reduced sperm DNA integrity. Sources of sperm DNA damage include replication errors and causes of DNA fragmentation which include abortive apoptosis, defective maturation and oxidative stress. This review outlines the process of spermatogenesis, spermatogonial regulation and sperm differentiation; additionally, DNA damage and currently studied DNA repair mechanisms in spermatozoon are also covered.
Collapse
Affiliation(s)
- Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manish Narasimman
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
93
|
Habas K, Brinkworth MH, Anderson D. A male germ cell assay and supporting somatic cells: its application for the detection of phase specificity of genotoxins in vitro. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:91-106. [PMID: 32046612 DOI: 10.1080/10937404.2020.1724577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable in vivo studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on in vivo studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis in vitro, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity in vivo. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known in vivo phase specificities used during this test system development.
Collapse
Affiliation(s)
- Khaled Habas
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Diana Anderson
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
94
|
Rahimi-Madiseh M, Mohammadi M, Hassanvand A, Ahmadi R, Shahmohammadi M, Rostamzadeh A. Assessment of the toxicity effects of nicotine on sperm and IVF and the potential protective role of silymarin—an experimental study in mice. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2020. [DOI: 10.1186/s43043-020-00025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
Male infertility is usually caused via the inability to produce adequate quantities of healthy and active sperms. Nicotine (NIC) is an alkaloid organic compound, predominantly found in the leaves of the tobacco plant. The major part of the nicotine is not ionized, so it can easily pass through cell membranes. Meanwhile, most of the disorders are caused by oxidative stress due to oxygen free radicals and other reactive species. Antioxidant supplements and antioxidant-rich foods can reduce induced oxidative stress without becoming destabilized themselves. This study aimed to examine spermato-protective potential of silymarin (SIL), on sperm and in vitro fertility (IVF) rate in nicotine-treated mice.
Results
Our results show a significant increase in the number of abnormal sperm morphology after nicotine exposure, when compared to control groups (p < 0.05). On the other hand, SIL had a significant effect on the sperm count at each of the treated doses. Further, in the mice that received nicotine plus silymarin, the viable sperm percentage and the progressive sperm motility were significant (p < 0.05). Also, a significant reduction in the number of two-cell embryos and blastocyst-derived embryo was seen with increment in the number of dead embryos in mice receiving nicotine alone (p < 0.05).
Conclusions
In conclusion, SIL could support prevention of the adverse reproductive effects of nicotine. Moreover, SIL200 mg/kg may be therefore considered as a spermato-protective agent in dietary and herbal supplements.
Collapse
|
95
|
Nazari M, Babakhanzadeh E, Mohsen Aghaei Zarch S, Talebi M, Narimani N, Dargahi M, Sabbaghian M, Ghasemi N. Upregulation of the RNF8 gene can predict the presence of sperm in azoospermic individuals. Clin Exp Reprod Med 2020; 47:61-67. [PMID: 32146775 PMCID: PMC7127899 DOI: 10.5653/cerm.2019.03111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022] Open
Abstract
Objective In this study, specimens from testicular biopsies of men with nonobstructive azoospermia (NOA) were used to investigate whether RNF8 gene could serve as a biomarker to predict the presence of sperm in these patients. Methods Testicular biopsy specimens from 47 patients were classified according to the presence of sperm (positive vs. negative groups) and investigated for the expression of RNF8. The level of RNF8 gene expression in the testes was compared between these groups using reverse-transcription polymerase chain reaction. Results The expression level of RNF8 was significantly higher in testicular samples from the positive group than in those from the negative group. Moreover, the area under the curve of RNF8 expression for the entire study population was 0.84, showing the discriminatory power of RNF8 expression in differentiating between the positive and negative groups of men with NOA. A receiver operating characteristic curve analysis showed that RNF8 expression had a sensitivity of 81% and a specificity of 84%, with a cutoff level of 1.76. Conclusion This study points out a significant association between the expression of RNF8 and the presence of sperm in NOA patients, which suggests that quantified RNF8 expression in testicular biopsy samples may be a valuable biomarker for predicting the presence of spermatozoa in biopsy samples.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Yazd Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - S Mohsen Aghaei Zarch
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Narimani
- Department of Urology, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mandana Dargahi
- Department of Pathology, Azad University of Medical Science, Yazd, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Nasrin Ghasemi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
96
|
Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int J Gen Med 2020; 13:29-41. [PMID: 32104049 PMCID: PMC7008178 DOI: 10.2147/ijgm.s241099] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Infertility is defined as the inability of couples to have a baby after one year of regular unprotected intercourse, affecting 10 to 15% of couples. According to the latest WHO statistics, approximately 50-80 million people worldwide sufer from infertility, and male factors are responsible for approximately 20-30% of all infertility cases. The diagnosis of infertility in men is mainly based on semen analysis. The main parameters of semen include: concentration, appearance and motility of sperm. Causes of infertility in men include a variety of things including hormonal disorders, physical problems, lifestyle problems, psychological issues, sex problems, chromosomal abnormalities and single-gene defects. Despite numerous efforts by researchers to identify the underlying causes of male infertility, about 70% of cases remain unknown. These statistics show a lack of understanding of the mechanisms involved in male infertility. This article focuses on the histology of testicular tissue samples, the male reproductive structure, factors affecting male infertility, strategies available to find genes involved in infertility, existing therapeutic methods for male infertility, and sperm recovery in infertile men.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Ghasemifar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
97
|
Hu M, Li L, Liu S, Lou Y, Wang L, Le F, Li H, Wang Q, Lou H, Wang N, Jin F. Decreased expression of MRE11 and RAD50 in testes from humans with spermatogenic failure. J Assist Reprod Genet 2020; 37:331-340. [PMID: 31983050 PMCID: PMC7056783 DOI: 10.1007/s10815-019-01686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To assess testicular mRNA and protein expression levels of MRE11 and RAD50 in human azoospermia patients. METHODS Patients diagnosed with maturation arrest at the spermatocyte stage (MA) and Sertoli cell-only syndrome (SCOS) were recruited through diagnostic testicular biopsy. Patients with normal spermatogenesis were studied as controls. In addition, knockdown of MRE11 and RAD50 was performed in GC-2spd(ts) cells to investigate their roles in cellular proliferation and apoptosis. RESULTS mRNA and protein expression levels of MRE11 and RAD50 were measured using quantitative polymerase chain reaction, western blotting, and immunohistochemistry, respectively. Knockdown of both MRE11 and RAD50 utilized transfection with small interfering RNAs. CONCLUSION Our findings demonstrated altered expression levels of MRE11 and RAD50 in human testes with MA and SCOS, and showed that these alterations might be associated with impaired spermatogenesis. These results offer valuable new perspectives into the molecular mechanisms of male infertility.
Collapse
Affiliation(s)
- Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Shuyuan Liu
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, 261000, China
| | - Yiyun Lou
- Department of Gynecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, 310006, China.
| |
Collapse
|
98
|
Cerván-Martín M, Castilla JA, Palomino-Morales RJ, Carmona FD. Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. J Clin Med 2020; 9:jcm9020300. [PMID: 31973052 PMCID: PMC7074441 DOI: 10.3390/jcm9020300] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonobstructive azoospermia (NOA) represents the most severe expression of male infertility, involving around 1% of the male population and 10% of infertile men. This condition is characterised by the inability of the testis to produce sperm cells, and it is considered to have an important genetic component. During the last two decades, different genetic anomalies, including microdeletions of the Y chromosome, karyotype defects, and missense mutations in genes involved in the reproductive function, have been described as the primary cause of NOA in many infertile men. However, these alterations only explain around 25% of azoospermic cases, with the remaining patients showing an idiopathic origin. Recent studies clearly suggest that the so-called idiopathic NOA has a complex aetiology with a polygenic inheritance, which may alter the spermatogenic process. Although we are far from a complete understanding of the molecular mechanisms underlying NOA, the use of the new technologies for genetic analysis has enabled a considerable increase in knowledge during the last years. In this review, we will provide a comprehensive and updated overview of the genetic basis of NOA, with a special focus on the possible application of the recent insights in clinical practice.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, Calle Maestro Bretón 1, 18004 Granada, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Facultad de Ciencias, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Correspondence: ; Tel.: +34-958-241-000 (ext 20170)
| |
Collapse
|
99
|
|
100
|
The potential impact of tumor suppressor genes on human gametogenesis: a case-control study. J Assist Reprod Genet 2019; 37:341-346. [PMID: 31792669 DOI: 10.1007/s10815-019-01634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To study the incidence of tumor suppressor gene (TSG) mutations in men and women with impaired gametogenesis. METHODS Gene association analyses were performed on blood samples in two distinct patient populations: males with idiopathic male infertility and females with unexplained diminished ovarian reserve (DOR). The male study group consisted of men with idiopathic azoospermia, oligozoospermia, asthenozoospermia, or teratozoospermia. Age-matched controls were men with normal semen analyses. The female study group consisted of women with unexplained DOR with anti-Müllerian hormone levels ≤ 1.1 ng/mL. Controls were age-matched women with normal ovarian reserve (> 1.1 ng/mL). RESULTS Fifty-seven male cases (mean age = 38.4; mean sperm count = 15.7 ± 12.1; mean motility = 38.2 ± 24.7) and 37 age-matched controls (mean age = 38.0; mean sperm count = 89.6 ± 37.5; mean motility = 56.2 ± 14.3) were compared. Variants observed in CHD5 were found to be enriched in the study group (p = 0.000107). The incidence of CHD5 mutation c.*3198_*3199insT in the 3'UTR (rs538186680) was significantly higher in cases compared to controls (p = 0.0255). 72 DOR cases (mean age = 38.7; mean AMH = 0.5 ± 0.3; mean FSH = 11.7 ± 12.5) and 48 age-matched controls (mean age = 37.6; mean AMH = 4.1 ± 3.0; mean FSH = 7.1 ± 2.2) were compared. Mutations in CHD5 (c.-140A>C), RB1 (c.1422-18delT, rs70651121), and TP53 (c.376-161A>G, rs75821853) were found at significantly higher frequencies in DOR cases compared to controls (p ≤ 0.05). In addition, 363 variants detected in the DOR patients were not present in the control group. CONCLUSION Unexplained impaired gametogenesis in both males and females may be associated with genetic variation in TSGs. TSGs, which play cardinal roles in cell-cycle control, might also be critical for normal spermatogenesis and oogenesis. If validated in larger prospective studies, it is possible that TSGs provide an etiological basis for some patients with impaired gametogenesis.
Collapse
|