51
|
Effects of the lipid environment, cholesterol and bile acids on the function of the purified and reconstituted human ABCG2 protein. Biochem J 2013. [DOI: 10.1042/bj20121485] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human ABCG2 multidrug transporter actively extrudes a wide range of hydrophobic drugs and xenobiotics recognized by the transporter in the membrane phase. In order to examine the molecular nature of the transporter and its effects on the lipid environment, we have established an efficient protocol for the purification and reconstitution of the functional protein. We found that the drug-stimulated ATPase and the transport activity of ABCG2 are fully preserved by applying excess lipids and mild detergents during solubilization, whereas a detergent-induced dissociation of the ABCG2 dimer causes an irreversible inactivation. By using the purified and reconstituted protein we demonstrate that cholesterol is an essential activator, whereas bile acids are important modulators of ABCG2 activity. Both wild-type ABCG2 and its R482G mutant variant require cholesterol for full activity, although they exhibit different cholesterol sensitivities. Bile acids strongly decrease the basal ABCG2-ATPase activity both in the wild-type ABCG2 and in the mutant variant. These data reinforce the results for the modulatory effects of cholesterol and bile acids of ABCG2 investigated in a complex cell membrane environment. Moreover, these experiments open the possibility to perform functional and structural studies with a purified, reconstituted and highly active ABCG2 multidrug transporter.
Collapse
|
52
|
|
53
|
Eibauer M, Hoffmann C, Plitzko JM, Baumeister W, Nickell S, Engelhardt H. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. J Struct Biol 2012; 180:488-96. [PMID: 23000705 DOI: 10.1016/j.jsb.2012.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 01/05/2023]
Abstract
Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å.
Collapse
|
54
|
Biedrzycki ML, L V, Bais HP. The role of ABC transporters in kin recognition in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:1154-61. [PMID: 21758011 PMCID: PMC3260713 DOI: 10.4161/psb.6.8.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability to sense and respond to the surrounding rhizosphere including communications with neighboring plants and microbes is essential for plant survival. Recently, it has been established that several plant species including Arabidopsis thaliana have the ability to recognize rhizospheric neighbors based or their genetic identity. This study investigated the role of ABC transporters in kin recognition in A. thaliana based on previous evidence that root secretions are involved in the kin recognition response and that ABC transporters are responsible for secretion of a number of compounds. Three genes, AtPGP1, ATATH1 and ATATH10, are all implicated to be partially involved in the complex kin recognition response in A. thaliana based on this report. These findings highlight the importance of ABC transporters in understanding root secretions and plant-plant community interactions.
Collapse
Affiliation(s)
- Meredith L Biedrzycki
- Department of Plant and Soil Sciences, University of Delaware, Delaware Biotechnology Institute, Newark, DE, USA
| | | | | |
Collapse
|
55
|
Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011; 6:e20081. [PMID: 21673794 PMCID: PMC3105977 DOI: 10.1371/journal.pone.0020081] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
56
|
Abstract
CFTR is a member of the ATP-binding cassette family of membrane proteins. This is one of the best characterised membrane protein families in terms of structure and function. CFTR operates as an ion channel, unlike nearly all other family members which are active transporters. Here, we discuss methods that have allowed such data to be obtained for CFTR.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
57
|
Bailly A, Yang H, Martinoia E, Geisler M, Murphy AS. Plant Lessons: Exploring ABCB Functionality Through Structural Modeling. FRONTIERS IN PLANT SCIENCE 2011; 2:108. [PMID: 22639627 PMCID: PMC3355715 DOI: 10.3389/fpls.2011.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/17/2011] [Indexed: 05/18/2023]
Abstract
In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality.
Collapse
Affiliation(s)
- Aurélien Bailly
- Plant Biology, Department of Biology, University of FribourgFribourg, Switzerland
- Institute of Plant Biology, Zurich–Basel Plant Science Center, University of ZurichZurich, Switzerland
| | - Haibing Yang
- Department of Horticulture and Landscape Architecture, Purdue UniversityWest Lafayette, IN, USA
| | - Enrico Martinoia
- Institute of Plant Biology, Zurich–Basel Plant Science Center, University of ZurichZurich, Switzerland
| | - Markus Geisler
- Plant Biology, Department of Biology, University of FribourgFribourg, Switzerland
- Institute of Plant Biology, Zurich–Basel Plant Science Center, University of ZurichZurich, Switzerland
- *Correspondence: Markus Geisler, Plant Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. e-mail:
| | - Angus S. Murphy
- Department of Horticulture and Landscape Architecture, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
58
|
Soriani M, Petit P, Grifantini R, Petracca R, Gancitano G, Frigimelica E, Nardelli F, Garcia C, Spinelli S, Scarabelli G, Fiorucci S, Affentranger R, Ferrer-Navarro M, Zacharias M, Colombo G, Vuillard L, Daura X, Grandi G. Exploiting antigenic diversity for vaccine design: the chlamydia ArtJ paradigm. J Biol Chem 2010; 285:30126-38. [PMID: 20592031 PMCID: PMC2943275 DOI: 10.1074/jbc.m110.118513] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/18/2010] [Indexed: 11/06/2022] Open
Abstract
We present an interdisciplinary approach that, by incorporating a range of experimental and computational techniques, allows the identification and characterization of functional/immunogenic domains. This approach has been applied to ArtJ, an arginine-binding protein whose orthologs in Chlamydiae trachomatis (CT ArtJ) and pneumoniae (CPn ArtJ) are shown to have different immunogenic properties despite a high sequence similarity (60% identity). We have solved the crystallographic structures of CT ArtJ and CPn ArtJ, which are found to display a type II transporter fold organized in two α-β domains with the arginine-binding region at their interface. Although ArtJ is considered to belong to the periplasm, we found that both domains contain regions exposed on the bacterial surface. Moreover, we show that recombinant ArtJ binds to epithelial cells in vitro, suggesting a role for ArtJ in host-cell adhesion during Chlamydia infection. Experimental epitope mapping and computational analysis of physicochemical determinants of antibody recognition revealed that immunogenic epitopes reside mainly in the terminal (D1) domain of both CPn and CT ArtJ, whereas the surface properties of the respective binding-prone regions appear sufficiently different to assume divergent immunogenic behavior. Neutralization assays revealed that sera raised against CPn ArtJ D1 partially reduce both CPn and CT infectivity in vitro, suggesting that functional antibodies directed against this domain may potentially impair chlamydial infectivity. These findings suggest that the approach presented here, combining functional and structure-based analyses of evolutionary-related antigens can be a valuable tool for the identification of cross-species immunogenic epitopes for vaccine development.
Collapse
Affiliation(s)
- Marco Soriani
- From Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | - Silvia Spinelli
- AFMB, UMR 6098, CNRS-Universités Aix-Marseille I & II, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Guido Scarabelli
- the Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | | | - Roman Affentranger
- the Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain, and
| | - Mario Ferrer-Navarro
- the Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain, and
| | - Martin Zacharias
- the Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | - Giorgio Colombo
- the Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | | | - Xavier Daura
- the Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain, and
- the Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Guido Grandi
- From Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
59
|
Modulatory Effects of Natural Curcuminoids on P-Glycoprotein ATPase of Insecticide-Resistant Pest Helicoverpa armigera (Lepidopetera: Noctüidae). J Membr Biol 2010; 236:271-8. [DOI: 10.1007/s00232-010-9299-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 08/16/2010] [Indexed: 11/27/2022]
|
60
|
Lammens A, Hopfner KP. Structural basis for adenylate kinase activity in ABC ATPases. J Mol Biol 2010; 401:265-73. [PMID: 20600125 DOI: 10.1016/j.jmb.2010.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/31/2010] [Accepted: 06/15/2010] [Indexed: 01/24/2023]
Abstract
ATP-binding cassette (ABC) enzymes are involved in diverse biological processes ranging from transmembrane transport to chromosome cohesion and DNA repair. They typically use ATP hydrolysis to conduct energy-dependent biological reactions. However, the cystic fibrosis transmembrane conductance regulator and the DNA repair protein Rad50 can also catalyze the adenylate kinase reaction (ATP+AMP<-->2ADP). To clarify and provide a mechanistic basis for the adenylate kinase activity of ABC enzymes, we report the crystal structure of the nucleotide-binding domain of the Pyrococcus furiosus structural maintenance of chromosome protein (pfSMC(nbd)) in complex with the adenylate kinase inhibitor P(1),P(5)-di(adenosine-5')pentaphosphate. We show that pfSMC(nbd) possesses reverse adenylate kinase activity. Our results suggest that in adenylate kinase reactions, ATP binds to its canonical binding site while AMP binds to the Q-loop glutamine and a hydration water of the Mg(2+) ion. Furthermore, mutational analysis indicates that adenylate kinase reaction occurs in the engaged pfSMC(nbd) dimer and requires the Signature motif for phosphate transfer. Our results explain how ATP hydrolysis and adenylate kinase reactions can be catalyzed by the same functional motifs within the structural framework of ABC enzymes. Thus, adenylate kinase activity is likely to be a latent activity in many ABC enzymes.
Collapse
Affiliation(s)
- Alfred Lammens
- Center for Integrated Protein Science and Gene Center, Department of Biochemistry, Ludwig-Maximilians University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
61
|
Bahar I, Lezon TR, Bakan A, Shrivastava IH. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 2010; 110:1463-97. [PMID: 19785456 PMCID: PMC2836427 DOI: 10.1021/cr900095e] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
62
|
Rosenberg MF, Oleschuk CJ, Wu P, Mao Q, Deeley RG, Cole SPC, Ford RC. Structure of a human multidrug transporter in an inward-facing conformation. J Struct Biol 2010; 170:540-7. [PMID: 20109555 DOI: 10.1016/j.jsb.2010.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/07/2010] [Accepted: 01/20/2010] [Indexed: 11/25/2022]
Abstract
Multidrug resistance protein 1 (ABCC1) is a member of the 'C' class of ATP-binding cassette transporters, which can give rise to resistance to chemotherapy via drug export from cells. It also acts as a leukotriene C4 transporter, and hence has a role in adaptive immune response. Most C-class members have an additional NH(2)-terminal transmembrane domain versus other ATP-binding cassette transporters, but little is known about the structure and role of this domain. Using electron cryomicroscopy of 2D crystals, data at 1/6per A(-1) resolution was generated for the full-length ABCC1 protein in the absence of ATP. Analysis using homologous structures from bacteria and mammals allowed the core transmembrane domains to be localised in the map. These display an inward-facing conformation and there is a noteworthy separation of the cytoplasmic nucleotide-binding domains. Examination of non-core features in the map suggests that the additional NH(2)-terminal domain has extensive contacts on one side of both core domains, and mirrors their inward-facing configuration in the absence of nucleotide.
Collapse
Affiliation(s)
- Mark F Rosenberg
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
63
|
Chang S, Hu JP, Lin PY, Jiao X, Tian XH. Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. MOLECULAR BIOSYSTEMS 2010; 6:2430-8. [DOI: 10.1039/c005266c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Bultreys A, Trombik T, Drozak A, Boutry M. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens. MOLECULAR PLANT PATHOLOGY 2009; 10:651-63. [PMID: 19694955 PMCID: PMC6640336 DOI: 10.1111/j.1364-3703.2009.00562.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.
Collapse
Affiliation(s)
- Alain Bultreys
- Département Biotechnologie, Centre Wallon de Recherches Agronomiques, Chaussée de Charleroi 234, B-5030 Gembloux, Belgium.
| | | | | | | |
Collapse
|
65
|
Paytubi S, Wang X, Lam YW, Izquierdo L, Hunter MJ, Jan E, Hundal HS, Proud CG. ABC50 promotes translation initiation in mammalian cells. J Biol Chem 2009; 284:24061-73. [PMID: 19570978 DOI: 10.1074/jbc.m109.031625] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABC50 is an ATP-binding cassette (ABC) protein, which, unlike most ABC proteins, does not possess membrane-spanning domains. ABC50 interacts with eukaryotic initiation factor 2 (eIF2), which plays a key role in translation initiation and its control. ABC50 binds to ribosomes, and this interaction requires both the N-terminal domain and at least one ABC domain. Knockdown of ABC50 by RNA interference impaired translation of both cap-dependent and -independent reporters, consistent with a positive role for ABC50 in the function of eIF2, which is required for both types of translation initiation. Mutation of the Walker box A or B motifs in both ABC regions of ABC50 yielded a mutant protein that exerted a dominant-interfering phenotype with respect to protein synthesis and translation initiation. Importantly, although dominant-interfering mutants of ABC50 impaired cap-dependent translation, translation driven by certain internal ribosome entry segments was not inhibited. ABC50 is located in the cytoplasm and nucleoplasm but not in the nucleolus. Thus, ABC50 is not likely to be directly involved in early ribosomal biogenesis, unlike some other ABC proteins. Taken together, the present data show that ABC50 plays a key role in translation initiation and has functions that are distinct from those of other non-membrane ABC proteins.
Collapse
Affiliation(s)
- Sonia Paytubi
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1. Biophys J 2009; 96:1918-30. [PMID: 19254551 DOI: 10.1016/j.bpj.2008.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022] Open
Abstract
Putative metal-chelate-type ABC transporter HI1470/1 is homologous with vitamin B(12) importer BtuCD but exhibits a distinct inward-facing conformation in contrast to the outward-facing conformation of BtuCD. Normal-mode analysis of HI1470/1 reveals the intrinsic asymmetric conformational flexibility in this transporter and demonstrates that the transition from the inward-facing to the outward-facing conformation is realized through the asymmetric motion of individual subunits of the transporter. This analysis suggests that the asymmetric arrangement of the BtuC dimer in the crystal structure of the BtuCD-F complex represents an intermediate state relating HI1470/1 and BtuCD. Furthermore, a twisting motion between transmembrane domains and nucleotide-binding domains encoded in the lowest-frequency normal mode of this type of importer is found to contribute to the conformational transitions during the whole cycle of substrate transportation. A more complete translocation mechanism of the BtuCD type importer is proposed.
Collapse
|
67
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
68
|
Blood group antigen recognition by a solute-binding protein from a serotype 3 strain of Streptococcus pneumoniae. J Mol Biol 2009; 388:299-309. [PMID: 19285508 DOI: 10.1016/j.jmb.2009.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 11/22/2022]
Abstract
Streptococcus pneumoniae is a common bacterial pathogen that is well known for its ability to cause acute respiratory disease (pneumonia), ear infections, and other serious illnesses. This Gram-positive bacterium relies on its carbohydrate-metabolizing capabilities for full virulence in its host; however, the range of glycan targets that it can attack is presently not fully appreciated. S. pneumoniae is known to have a fucose utilization operon that in the TIGR4 strain plays a role in its virulence. Here we identify a second type of fucose utilization operon that is present in a subset of S. pneumoniae strains, including the serotype 3 strain SP3-BS71. This operon contains a transporter with a solute-binding protein, FcsSBP (fucose solute-binding protein), that interacts tightly (Ka approximately 1 x 10(6) M(-1)) and specifically with soluble A- and B-antigen trisaccharides but displays no selectivity between these two sugars. The structure of the FcsSBP in complex with the A-trisaccharide antigen, determined to 2.35 A, reveals its mode of binding to the reducing end of this sugar, thus highlighting this protein's requirement for soluble blood group antigen ligands. Overall, this report exposes a heretofore unknown capability of certain S. pneumoniae strains to transport and potentially metabolize the histo-blood group antigen carbohydrates of its host.
Collapse
|
69
|
Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 2009; 14:3-9. [PMID: 19224345 DOI: 10.1007/s10911-009-9109-9] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 02/03/2009] [Indexed: 12/28/2022] Open
Abstract
The protection of the body's stem cells from damage or death due to toxins is a critical function of an organism, as the stem cells need to remain intact for the entire life of the organism. One of the principal mechanisms for protecting stem cells is through the expression of multifunctional efflux transporters from the ATP-binding cassette (ABC) gene family. These same transporters have been known for over 25 years to also play a role in multidrug resistance of tumor cells. An exciting outcome of the concept of the cancer stem cell is that the tumor initiating cell may be innately resistant to many standard therapies. This provides one mechanism in which cancer stem cells could survive cytotoxic or targeted therapies and lead to tumor regrowth or relapse. Gaining a better insight into the mechanisms of stem cell resistance to chemotherapy might therefore lead to new therapeutic targets and better anti-cancer strategies.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
70
|
Vijayalakshmi J, Akerley BJ, Saper MA. Structure of YraM, a protein essential for growth of Haemophilus influenzae. Proteins 2009; 73:204-17. [PMID: 18412262 DOI: 10.1002/prot.22033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nontypeable Haemophilus influenzae is an obligate human parasite that often causes middle ear infections in children and exacerbates chronic obstructive pulmonary disorder, the fourth leading cause of death in the United States. There are no effective vaccines available for this strain. The lipoprotein YraM (gene HI1655) was identified as essential for the growth and viability of H. influenzae but its function is unknown. Sequence comparisons showed that YraM is a fusion of two protein modules. We grew crystals of the carboxyl-terminal module of YraM comprising residues 257-573 (YraM-C), phased the diffraction data by the multiwavelength anomalous diffraction technique, and refined the model to a crystallographic R-factor of 0.16 (R(free) = 0.19) with data to 1.35 A resolution. The two-domain structure of YraM-C adopts a fold similar to that observed for the open, unliganded forms of several periplasmic binding proteins (PBPs) involved in bacterial active transport. Sequence alignments of YraM homologues from other Gram-negative species showed that the most conserved residues of YraM-C cluster between the two domains in the location where other PBPs bind their cognate ligand. Modeling of YraM-C into a closed conformation similar to the leucine-bound form of the Leu/Ile/Val-binding protein (LIVBP) shows a putative binding pocket larger than the leucine-binding site in LIVBP. The pocket has both polar and nonpolar surfaces, with the latter located in the same area where a leucine side chain binds to LIVBP. We discuss possible biological functions of YraM considering its predicted location in the outer membrane, a novel place for such a binding protein.
Collapse
Affiliation(s)
- J Vijayalakshmi
- Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
71
|
Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R. MolAxis: efficient and accurate identification of channels in macromolecules. Proteins 2009; 73:72-86. [PMID: 18393395 DOI: 10.1002/prot.22052] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Channels and cavities play important roles in macromolecular functions, serving as access/exit routes for substrates/products, cofactor and drug binding, catalytic sites, and ligand/protein. In addition, channels formed by transmembrane (TM) proteins serve as transporters and ion channels. MolAxis is a new sensitive and fast tool for the identification and classification of channels and cavities of various sizes and shapes in macromolecules. MolAxis constructs corridors, which are pathways that represent probable routes taken by small molecules passing through channels. The outer medial axis of the molecule is the collection of points that have more than one closest atom. It is composed of two-dimensional surface patches and can be seen as a skeleton of the complement of the molecule. We have implemented in MolAxis a novel algorithm that uses state-of-the-art computational geometry techniques to approximate and scan a useful subset of the outer medial axis, thereby reducing the dimension of the problem and consequently rendering the algorithm extremely efficient. MolAxis is designed to identify channels that connect buried cavities to the outside of macromolecules and to identify TM channels in proteins. We apply MolAxis to enzyme cavities and TM proteins. We further utilize MolAxis to monitor channel dimensions along Molecular Dynamics trajectories of a human Cytochrome P450. MolAxis constructs high quality corridors for snapshots at picosecond time-scale intervals substantiating the gating mechanism in the 2e substrate access channel. We compare our results with previous tools in terms of accuracy, performance and underlying theoretical guarantees of finding the desired pathways. MolAxis is available on line as a web-server and as a stand alone easy-to-use program (http://bioinfo3d.cs.tau.ac.il/MolAxis/).
Collapse
Affiliation(s)
- Eitan Yaffe
- School of Computer Science, Raymond and Beverly Sackler Faculty for Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
72
|
Qin L, Zheng J, Grant CE, Jia Z, Cole SPC, Deeley RG. Residues responsible for the asymmetric function of the nucleotide binding domains of multidrug resistance protein 1. Biochemistry 2009; 47:13952-65. [PMID: 19063607 DOI: 10.1021/bi801532g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The two nucleotide binding domains (NBDs) of ATP binding cassette (ABC) transporters dimerize to form composite nucleotide binding sites (NBSs) each containing Walker A and B motifs from one domain and the ABC "C" signature from the other. In many ABC proteins, the NBSs are thought to be functionally equivalent. However, this is not the case for ABCC proteins, such as MRP1, in which NBS1 containing the Walker A and B motifs from the N-proximal NBD1 typically binds ATP with high affinity but has low hydrolytic activity, while the reverse is true of NBS2. A notable feature of NBD1 of the ABCC proteins is the lack of a catalytic Glu residue following the core Walker B motif. In multidrug resistance protein (MRP) 1, this residue is Asp (D793). Previously, we demonstrated that mutation of D793 to Glu was sufficient to increase ATP hydrolysis at NBS1, but paradoxically, transport activity decreased by 50-70% as a result of tight binding of ADP at the mutated NBS1. Here, we identify two atypical amino acids in NBD1 that contribute to the retention of ADP. We found that conversion of Trp653 to Tyr and/or Pro794 to Ala enhanced transport activity of the D793E mutant and the release of ADP from NBS1. Moreover, introduction of the P794A mutation into wild-type MRP1 increased transport of leukotriene C(4) approximately 2-fold. Molecular dynamic simulations revealed that, while the D793E mutation increased hydrolysis of ATP, the presence of the adjacent Pro794, rather than the more typical Ala, decreased flexibility of the region linking Walker B and the D-loop, markedly diminishing the rate of release of Mg(2+) and ADP. Overall, these results suggest that the rate of release of ADP by NBD1 in the D793E background may be the rate-limiting step in the transport cycle of MRP1.
Collapse
Affiliation(s)
- Lei Qin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Departments of Biochemistry, Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
73
|
Zhou SF, Lecureur V, Guillouzo A. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38:802-32. [PMID: 18668431 DOI: 10.1080/00498250701867889] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. P-glycoprotein (P-gp/MDR1), one of the most clinically important transmembrane transporters in humans, is encoded by the ABCB1/MDR1 gene. Recent insights into the structural features of P-gp/MDR1 enable a re-evaluation of the biochemical evidence on the binding and transport of drugs by P-gp/MDR1. 2. P-gp/MDR1 is found in various human tissues in addition to being expressed in tumours cells. It is located on the apical surface of intestinal epithelial cells, bile canaliculi, renal tubular cells, and placenta and the luminal surface of capillary endothelial cells in the brain and testes. 3. P-gp/MDR1 confers a multi-drug resistance (MDR) phenotype to cancer cells that have developed resistance to chemotherapy drugs. P-gp/MDR1 activity is also of great clinical importance in non-cancer-related drug therapy due to its wide-ranging effects on the absorption and excretion of a variety of drugs. 4. P-gp/MDR1 excretes xenobiotics such as cytotoxic compounds into the gastrointestinal tract, bile and urine. It also participates in the function of the blood-brain barrier. 5. One of the most interesting characteristics of P-gp/MDR1 is that its many substrates vary greatly in their structure and functionality, ranging from small molecules such as organic cations, carbohydrates, amino acids and some antibiotics to macromolecules such as polysaccharides and proteins. 6. Quite a number of single nucleotide polymorphisms have been found for the MDR1 gene. These single nucleotide polymorphisms are associated with altered oral bioavailability of P-gp/MDR1 substrates, drug resistance, and a susceptibility to some human diseases. 7. Altered P-gp/MDR1 activity due to induction and/or inhibition can cause drug-drug interactions with altered drug pharmacokinetics and response. 8. Further studies are warranted to explore the physiological function and pharmacological role of P-gp/MDR1.
Collapse
Affiliation(s)
- S-F Zhou
- Division of Chinese Medicine, School of Health Science, WHO Collaborating Centre for Traditional Medicine, RMIT University, Bundoora, Vic., Australia.
| | | | | |
Collapse
|
74
|
Yu XY, Zhou ZW, Lin SG, Chen X, Yu XQ, Liang J, Duan W, Wen JY, Li XT, Zhou SF. Role of ATP-binding cassette drug transporters in the intestinal absorption of tanshinone IIB, one of the major active diterpenoids from the root ofSalvia miltiorrhiza. Xenobiotica 2008; 37:375-415. [PMID: 17455112 DOI: 10.1080/00498250701230559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is an increasing use of herbal medicines worldwide, and the extracts from the root of Salvia miltiorrhiza are widely used in the treatment of angina and stroke. In this study, we investigated the mechanism for the intestinal absorption of tanshinone IIB (TSB), a major constituent of S. miltiorrhiza. The oral bioavailability of TSB was about 3% in rats with less proportional increase in its maximum plasma concentration (C(max)) and area under the plasma concentration-time curve (AUC) with increasing dosage. The time to C(max) (T(max)) was prolonged at higher oral dosage. In a single pass rat intestinal perfusion model, the permeability coefficients (P(app)) based on TSB disappearance from the lumen (P(lumen)) were 6.2- to 7.2-fold higher (p < 0.01) than those based on drug appearance in mesenteric venous blood (P(blood)). The uptake and efflux of TSB in Caco-2 cells were also significantly altered in the presence of an inhibitor for P-glycoprotein (PgP) or for multi-drug resistance associated protein (MRP1/2). TSB transport from the apical (AP) to basolateral (BL) side in Caco-2 monolayers was 3.3- to 5.7-fold lower than that from BL to AP side, but this polarized transport was attenuated by co-incubation of PgP or MRP1/2 inhibitors. The P(app) values of TSB in the BL-AP direction were significantly higher in MDCKII cells over-expressing MDR1 or MRP1, but not in cells over-expressing MRP2-5, as compared with the wild-type cells. The plasma AUC(0-24hr) in mdr1a and mrp1 gene-deficient mice was 10.2- to 1.7-fold higher than that in the wild-type mice. Furthermore, TSB significantly inhibited the uptake of digoxin and vinblastine in membrane vesicles containing PgP or MRP1. TSB also moderately stimulated PgP ATPase activity. Taken collectively, our findings indicate that TSB is a substrate for PgP and MRP1 and that drug resistance to TSB therapy and drug interactions may occur through PgP and MRP1 modulation.
Collapse
Affiliation(s)
- X-Y Yu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Provincial Cardiovascular Institute, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) epithelial anion channel cause cystic fibrosis (CF). The multidomain integral membrane glycoprotein, a member of the adenine nucleotide-binding cassette (ABC) transporter family, conserved in metazoan salt-transporting tissues, is required to control ion and fluid homeostasis on epithelial surfaces. This review considers different therapeutic strategies that have arisen from knowledge of CFTR structure and function as well as its biosynthetic processing, intracellular trafficking, and turnover.
Collapse
Affiliation(s)
- John R Riordan
- Department of Biochemistry and Biophysics, Cystic Fibrosis Treatment and Research Center, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
76
|
Weiner JH, Li L. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1698-713. [PMID: 17904518 DOI: 10.1016/j.bbamem.2007.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, beta-sheet motifs and stretches of alpha-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.
Collapse
Affiliation(s)
- Joel H Weiner
- Membrane Protein Research Group and The Institute for Biomolecular Design, University of Alberta, Canada.
| | | |
Collapse
|
77
|
ATP-binding cassette transporters in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1757-71. [DOI: 10.1016/j.bbamem.2008.06.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/14/2022]
|
78
|
McDevitt CA, Shintre CA, Grossmann JG, Pollock NL, Prince SM, Callaghan R, Ford RC. Structural insights into P-glycoprotein (ABCB1) by small angle X-ray scattering and electron crystallography. FEBS Lett 2008; 582:2950-6. [PMID: 18657537 DOI: 10.1016/j.febslet.2008.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/14/2008] [Indexed: 11/29/2022]
Abstract
P-glycoprotein (ABCB1) is an ATP-binding cassette protein that is associated with the acquisition of multi-drug resistance in cancer and the failure of chemotherapy in humans. Structural insights into this protein are described using a combination of small angle X-ray scattering data and cryo-electron crystallography data. We have compared the structures with bacterial homologues, and discuss the development of homology models for P-glycoprotein based on the bacterial Sav1866 structure.
Collapse
Affiliation(s)
- Christopher A McDevitt
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
79
|
Burkhard KA, Wilks A. Functional characterization of the Shigella dysenteriae heme ABC transporter. Biochemistry 2008; 47:7977-9. [PMID: 18616281 DOI: 10.1021/bi801005u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heme ATP binding cassette (ABC) transporter, ShuUV, of Shigella dysenteriae has been incorporated into proteoliposomes. Functional characterization of ShuUV revealed that ATP hydrolysis and transport of heme from the periplasmic binding protein, ShuT, to the cytoplasmic binding protein, ShuS, are coupled. Site-directed mutagenesis of ShuT residues proposed to be required for stabilization of the complex abolished heme transport. Furthermore, residues His-252 and His-262, located in the translocation channel of ShuU, were required for the release of heme from ShuT and translocation to ShuS. The initial functional characterization of an in vitro heme uptake system provides a platform for future spectroscopic studies.
Collapse
Affiliation(s)
- Kimberly A Burkhard
- Department of Pharmaceutical Sciences, School of Pharmacy, 20 Penn Street, University of Maryland, Baltimore, Maryland 21201-1140, USA
| | | |
Collapse
|
80
|
Heredi-Szabo K, Kis E, Molnar E, Gyorfi A, Krajcsi P. Characterization of 5(6)-carboxy-2,'7'-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. ACTA ACUST UNITED AC 2008; 13:295-301. [PMID: 18349419 DOI: 10.1177/1087057108316702] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MRP2 (ABCC2) is an efflux transporter expressed on the apical membrane of polarized cells. This protein has a major role in the biliary elimination of toxic compounds from the liver. As MRP2 transports many endogenous compounds, including LTC4 as well as xenobiotics and toxic phase II metabolites, blockade of this transporter may cause the accumulation of these compounds in the hepatocyte, resulting in hepatotoxicity. The vesicular transport assay is a great tool to study drug-drug and drug-endogenous compound interactions of ABC transporters. In this assay, inside-out membrane vesicles are used, so the test compound can readily access the transporter. As MRP2 transports many ionic compounds that are difficult to investigate in a whole-cell system because of permeability reasons, the vesicular transport assay is a good choice for screening MRP2-mediated interactions. LTC4 is not an optimal substrate for high-throughput screening for MRP2 interactors, even though it is an important MRP2 substrate. Therefore, the transport of a drug surrogate, 5(6)-carboxy-2,'7'-dichlorofluorescein (CDCF), by MRP2 was characterized using the vesicular transport assay. The data indicate that CDCF proves to be an ideal substrate for MRP2 vesicular transport assay with its optimal detection and transport properties.
Collapse
|
81
|
Abstract
We study gene family coevolution on a tree of life based on a large-scale ancestral gene content reconstruction, which includes gene duplication and deletion events. The insights obtained from this study are threefold: (1) Global properties, such as the distribution of coevolution partners and the formation of disconnected clusters of coevolving families, can be an inevitable consequence of evolution along a tree. (2) Concerted family expansion (gene duplication) and contraction (gene deletion) reflect functional constraints and therefore lead to better function prediction. (3) "Long-range" coevolutionary relationships, caused mostly by large family expansions or contractions, reveal high-level evolutionary organization of cellular processes in prokaryotes.
Collapse
Affiliation(s)
- Otto X Cordero
- Theoretical Biology and Bioinformatics, University of Utrecht, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
82
|
Pakotiprapha D, Inuzuka Y, Bowman BR, Moolenaar GF, Goosen N, Jeruzalmi D, Verdine GL. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol Cell 2007; 29:122-33. [PMID: 18158267 DOI: 10.1016/j.molcel.2007.10.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/05/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Karcher A, Schele A, Hopfner KP. X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi. J Biol Chem 2007; 283:7962-71. [PMID: 18160405 DOI: 10.1074/jbc.m707347200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP binding cassette enzyme ABCE1 (also known as RNase-L (ribonuclease L) inhibitor, Pixie, and HP68), one of the evolutionary most sequence-conserved enzymes, functions in translation initiation, ribosome biogenesis, and human immunodeficiency virus capsid assembly. However, its structural mechanism and biochemical role in these processes have not been revealed. We determined the crystal structure of Pyrococcus abyssi ABCE1 in complex with Mg(2+) and ADP to 2.8A resolution. ABCE1 consists of four structural domains. Two nucleotide binding domains are arranged in a head-to-tail orientation by a hinge domain, suggesting that these domains undergo the characteristic tweezers-like powerstroke of ABC enzymes. In contrast to all other known ABC enzymes, ABCE1 has a N-terminal iron-sulfur-cluster (FeS) domain. The FeS domain contains two [4Fe-4S] clusters and is structurally highly related to bacterial-type ferredoxins. However, one cluster is coordinated by an unusual CX(4)CX(3/4)C triad. Surprisingly, intimate interactions of the FeS domain with the adenine and ribose binding Y-loop on nucleotide binding domain 1 suggest a linkage between FeS domain function and ATP-induced conformational control of the ABC tandem cassette. The structure substantially expands the functional architecture of ABC enzymes and raises the possibility that ABCE1 is a chemomechanical engine linked to a redox process.
Collapse
Affiliation(s)
- Annette Karcher
- Center for Integrated Protein Science and Center for Advanced Photonics at the Gene Center, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany
| | | | | |
Collapse
|
84
|
Cuthbertson L, Kimber MS, Whitfield C. Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc Natl Acad Sci U S A 2007; 104:19529-34. [PMID: 18032609 PMCID: PMC2148323 DOI: 10.1073/pnas.0705709104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Indexed: 11/18/2022] Open
Abstract
ATP-binding-cassette (ABC) transporters are responsible for the export of a wide variety of cell-surface glycoconjugates in both Gram-positive and Gram-negative bacteria. These include the O-antigenic polysaccharide (O-PS) portion of lipopolysaccharide, a crucial virulence determinant in Gram-negative pathogens. O-PSs are synthesized by one of two fundamentally different pathways. Escherichia coli O serotypes O8 and O9a provide the prototype systems for studying O-PS export via ABC transporters. The transporter is composed of the transmembrane component Wzm and the nucleotide-binding component Wzt. Although the N-terminal domain of Wzt is a conventional ABC protein, the C-terminal domain of Wzt (C-Wzt) is a unique structural element that determines the specificity of the transporter for either the O8 or O9a O-PS. We show here that the two domains of Wzt can function when expressed as separate polypeptides; both are essential for export. In vitro, C-Wzt binds its cognate O-PS by recognizing a residue located at the nonreducing end of the polymer. The crystal structure of C-Wzt(O9a) is reported here and reveals a beta sandwich with an immunoglobulin-like topology that contains the O-PS-binding pocket. Substrate interactions with nucleotide-binding domains have been demonstrated in an ABC exporter previously. However, to our knowledge substrate binding by a discrete, cytoplasmic accessory domain in an extended nucleotide-binding domain polypeptide has not previously been demonstrated. Elucidation of the substrate-recognition system involved in O-PS export provides insight into the mechanism that coordinates polymer biosynthesis, termination, and export.
Collapse
Affiliation(s)
- Leslie Cuthbertson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Matthew S. Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
85
|
de Wet H, Rees MG, Shimomura K, Aittoniemi J, Patch AM, Flanagan SE, Ellard S, Hattersley AT, Sansom MSP, Ashcroft FM. Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. Proc Natl Acad Sci U S A 2007; 104:18988-92. [PMID: 18025464 PMCID: PMC2141895 DOI: 10.1073/pnas.0707428104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Indexed: 12/16/2022] Open
Abstract
Gain-of-function mutations in the genes encoding the ATP-sensitive potassium (K(ATP)) channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) are a common cause of neonatal diabetes mellitus. Here we investigate the molecular mechanism by which two heterozygous mutations in the second nucleotide-binding domain (NBD2) of SUR1 (R1380L and R1380C) separately cause neonatal diabetes. SUR1 is a channel regulator that modulates the gating of the pore formed by Kir6.2. K(ATP) channel activity is inhibited by ATP binding to Kir6.2 but is stimulated by MgADP binding, or by MgATP binding and hydrolysis, at the NBDs of SUR1. Functional analysis of purified NBD2 showed that each mutation enhances MgATP hydrolysis by purified isolated fusion proteins of maltose-binding protein and NBD2. Inhibition of ATP hydrolysis by MgADP was unaffected by mutation of R1380, but inhibition by beryllium fluoride (which traps the ATPase cycle in the prehydrolytic state) was reduced. MgADP-dependent activation of K(ATP) channel activity was unaffected. These data suggest that the R1380L and R1380C mutations enhance the off-rate of P(i), thereby enhancing the hydrolytic rate. Molecular modeling studies supported this idea. Because mutant channels were inhibited less strongly by MgATP, this would increase K(ATP) currents in pancreatic beta cells, thus reducing insulin secretion and producing diabetes.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Amino Acid Substitution
- Arginine/chemistry
- Beryllium/pharmacology
- Binding Sites
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/genetics
- Fluorides/pharmacology
- Humans
- Hydrolysis
- Infant, Newborn
- Insulin/metabolism
- Insulin Secretion
- Ion Channel Gating/drug effects
- Kinetics
- Models, Molecular
- Mutation, Missense
- Point Mutation
- Potassium/metabolism
- Potassium Channels/chemistry
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Protein Structure, Tertiary/genetics
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/chemistry
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Structure-Activity Relationship
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Heidi de Wet
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Mathew G. Rees
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Kenju Shimomura
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Jussi Aittoniemi
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; and
| | - Ann-Marie Patch
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; and
| | - Frances M. Ashcroft
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
86
|
Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463-76. [PMID: 17804667 PMCID: PMC2168643 DOI: 10.1128/mmbr.00001-07] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria.
Collapse
Affiliation(s)
- Jacek Lubelski
- Department of Molecular Microbiology, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
87
|
DeGorter MK, Conseil G, Deeley RG, Campbell RL, Cole SPC. Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochem Biophys Res Commun 2007; 365:29-34. [PMID: 17980150 DOI: 10.1016/j.bbrc.2007.10.141] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 01/09/2023]
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr324 in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.
Collapse
Affiliation(s)
- Marianne K DeGorter
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ont, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
88
|
Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 2007; 66:151-63. [PMID: 17725560 DOI: 10.1111/j.1365-2958.2007.05903.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In contrast to many antimicrobial peptides, members of the proline-rich group of antimicrobial peptides inactivate Gram-negative bacteria by a non-lytic mechanism. Several lines of evidence indicate that they are internalized into bacteria and their activity mediated by interaction with unknown cellular components. With the aim of identifying such interactors, we selected mutagenized Escherichia coli clones resistant to the proline-rich Bac7(1-35) peptide and analysed genes responsible for conferring resistance, whose products may thus be involved in the peptide's mode of action. We isolated a number of genomic regions bearing such genes, and one in particular coding for SbmA, an inner membrane protein predicted to be part of an ABC transporter. An E. coli strain carrying a point mutation in sbmA, as well as other sbmA-null mutants, in fact showed resistance to several proline-rich peptides but not to representative membranolytic peptides. Use of fluorescently labelled Bac7(1-35) confirmed that resistance correlated with a decreased ability to internalize the peptide, suggesting that a bacterial protein, SbmA, is necessary for the transport of, and for susceptibility to, proline-rich antimicrobial peptides of eukaryotic origin.
Collapse
Affiliation(s)
- Maura Mattiuzzo
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
89
|
Williamson P, Halleck MS, Malowitz J, Ng S, Fan X, Krahling S, Remaley AT, Schlegel RA. Transbilayer phospholipid movements in ABCA1-deficient cells. PLoS One 2007; 2:e729. [PMID: 17710129 PMCID: PMC1939730 DOI: 10.1371/journal.pone.0000729] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 07/16/2007] [Indexed: 12/02/2022] Open
Abstract
Tangier disease is an inherited disorder that results in a deficiency in circulating levels of HDL. Although the disease is known to be caused by mutations in the ABCA1 gene, the mechanism by which lesions in the ABCA1 ATPase effect this outcome is not known. The inability of ABCA1 knockout mice (ABCA1−/−) to load cholesterol and phospholipids onto apoA1 led to a proposal that ABCA1 mediates the transbilayer externalization of phospholipids, an activity integral not only to the formation of HDL particles but also to another, distinct process: the recognition and clearance of apoptotic cells by macrophages. Expression of phosphatidylserine (PS) on the surface of both macrophages and their apoptotic targets is required for efficient engulfment of the apoptotic cells, and it has been proposed that ABCA1 is required for transbilayer externalization of PS to the surface of both cell types. To determine whether ABCA1 is responsible for any of the catalytic activities known to control transbilayer phospholipid movements, these activities were measured in cells from ABCA1−/− mice and from Tangier individuals as well as ABCA1-expressing HeLa cells. Phospholipid movements in either normal or apoptotic lymphocytes or in macrophages were not inhibited when cells from knockout and wildtype mice or immortalized cells from Tangier individuals vs normal individuals were compared. Exposure of PS on the surface of normal thymocytes, apoptotic thymocytes and elicited peritoneal macrophages from wildtype and knockout mice or B lymphocytes from normal and Tangier individuals, as measured by annexin V binding, was also unchanged. No evidence was found of ABCA1-stimulated active PS export, and spontaneous PS movement to the outer leaflet in the presence or absence of apoA1 was unaffected by the presence or absence of ABCA1. Normal or Tangier B lymphocytes and macrophages were also identical in their ability to serve as targets or phagocytes, respectively, in apoptotic cell clearance assays. No evidence was found to support the suggestion that ABCA1 is involved in transport to the macrophage cell surface of annexins I and II, known to enhance phagocytosis of apoptotic cells. These results show that mutations in ABCA1 do not measurably reduce the rate of transbilayer movements of phospholipids in either the engulfing macrophage or the apoptotic target, thus discounting catalysis of transbilayer movements of phospholipids as the mechanism by which ABCA1 facilitates loading of phospholipids and cholesterol onto apoA1.
Collapse
Affiliation(s)
- Patrick Williamson
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS. Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 2007; 26:579-92. [PMID: 17531815 DOI: 10.1016/j.molcel.2007.04.018] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/22/2007] [Accepted: 04/20/2007] [Indexed: 12/21/2022]
Abstract
Mismatch repair (MMR) ensures the fidelity of DNA replication, initiates the cellular response to certain classes of DNA damage, and has been implicated in the generation of immune diversity. Each of these functions depends on MutSalpha (MSH2*MSH6 heterodimer). Inactivation of this protein complex is responsible for tumor development in about half of known hereditary nonpolyposis colorectal cancer kindreds and also occurs in sporadic tumors in a variety of tissues. Here, we describe a series of crystal structures of human MutSalpha bound to different DNA substrates, each known to elicit one of the diverse biological responses of the MMR pathway. All lesions are recognized in a similar manner, indicating that diversity of MutSalpha-dependent responses to DNA lesions is generated in events downstream of this lesion recognition step. This study also allows rigorous mapping of cancer-causing mutations and furthermore suggests structural pathways for allosteric communication between different regions within the heterodimer.
Collapse
Affiliation(s)
- Joshua J Warren
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
91
|
Huang CL, Ho KC. Isolation and characterization of the ATP-binding cassette (ABC) transporter system genes from loofah witches' broom phytoplasma. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2007; 18:347-56. [PMID: 17654010 DOI: 10.1080/10425170701350784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A clone containing a 3903 bp EcoRI-restriction fragment was obtained from a lambda(ZAP) genomic library of loofah witches' broom (LfWB) phytoplasma by plaque hybridization using a PCR fragment as a probe. Sequence analysis revealed that this fragment contained three open reading frames (ORFs). The deduced amino acid sequences of ORF 1 and ORF 2 showed a high homology with the ATP-binding proteins of the ABC transporter system genes of prokaryotes and eukaryotes, and encoded proteins with a molecular mass of 36 and 30 kDa, respectively. Based on amino acid sequence similarity, secondary structure, hydrophilicity and a signal peptide sequence at the N-terminus, we predicted that ORF 3 might encode a specific solute-binding prolipoprotein of the ABC transporter system with a molecular mass of 62 kDa. The cleavage site of this prolipoprotein signal peptide was similar to those of gram-positive bacteria. In addition to nutrient uptake, ABC transporter systems of bacteria also play a role in signal transduction, drug-resistance and perhaps virulence. The possible implications of the system to the survival and the pathogenesis of phytoplasma were discussed.
Collapse
Affiliation(s)
- Chun-Lin Huang
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
92
|
Sreeramulu K, Liu R, Sharom FJ. Interaction of insecticides with mammalian P-glycoprotein and their effect on its transport function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1750-7. [PMID: 17490606 DOI: 10.1016/j.bbamem.2007.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/26/2007] [Accepted: 04/02/2007] [Indexed: 11/21/2022]
Abstract
We studied the effects of four commonly used insecticides (methylparathion, endosulfan, cypermethrin and fenvalerate) on P-glycoprotein isolated from multidrug-resistant cells. All the pesticides stimulated P-glycoprotein ATPase activity, with maximum stimulation of up to 213% in a detergent-solubilized preparation, and up to 227% in reconstituted liposomes. The ATPase stimulation profiles were biphasic, displaying lower stimulation, and in the case of methylparathion, inhibition of activity, at higher insecticide concentrations. Quenching of the intrinsic Trp fluorescence of purified P-glycoprotein was used to quantitate insecticide binding; the estimated K(d) values fell in the range 4-6 microM. Transport of the fluorescent substrate tetramethylrosamine (TMR) into proteoliposomes containing P-glycoprotein was monitored in real time. The TMR concentration gradient generated by the transporter was collapsed by the addition of insecticides, and prior addition of these compounds prevented its formation. The rate of TMR transport was inhibited in a saturable fashion by all the compounds, indicating that they compete with the substrate for membrane translocation. Taken together, these data suggest that the insecticides bind to Pgp with high affinity and effectively block drug transport. Inhibition of Pgp by pesticides may compromise its ability to clear xenobiotics from the body, leading to a higher risk of toxicity.
Collapse
Affiliation(s)
- K Sreeramulu
- Department of Biochemistry, Gulbarga University, Gulbarga-585 106, India
| | | | | |
Collapse
|
93
|
Lee JH, Harvat EM, Stevens JM, Ferguson SJ, Saier MH. Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2164-81. [PMID: 17706591 DOI: 10.1016/j.bbamem.2007.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 03/22/2007] [Accepted: 04/24/2007] [Indexed: 11/20/2022]
Abstract
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
94
|
Bryliński M, Prymula K, Jurkowski W, Kochańczyk M, Stawowczyk E, Konieczny L, Roterman I. Prediction of functional sites based on the fuzzy oil drop model. PLoS Comput Biol 2007; 3:e94. [PMID: 17530916 PMCID: PMC1876487 DOI: 10.1371/journal.pcbi.0030094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 04/11/2007] [Indexed: 11/19/2022] Open
Abstract
A description of many biological processes requires knowledge of the 3-D structure of proteins and, in particular, the defined active site responsible for biological function. Many proteins, the genes of which have been identified as the result of human genome sequencing, and which were synthesized experimentally, await identification of their biological activity. Currently used methods do not always yield satisfactory results, and new algorithms need to be developed to recognize the localization of active sites in proteins. This paper describes a computational model that can be used to identify potential areas that are able to interact with other molecules (ligands, substrates, inhibitors, etc.). The model for active site recognition is based on the analysis of hydrophobicity distribution in protein molecules. It is shown, based on the analyses of proteins with known biological activity and of proteins of unknown function, that the region of significantly irregular hydrophobicity distribution in proteins appears to be function related.
Collapse
Affiliation(s)
- Michał Bryliński
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Collegium Medicum, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Katarzyna Prymula
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Collegium Medicum, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Wiktor Jurkowski
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Collegium Medicum, Kraków, Poland
| | - Marek Kochańczyk
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Collegium Medicum, Kraków, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Ewa Stawowczyk
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Collegium Medicum, Kraków, Poland
| | - Leszek Konieczny
- Institute of Medical Biochemistry, Jagiellonian University–Collegium Medicum, Kraków, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Collegium Medicum, Kraków, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
95
|
Aurade R, Jayalakshmi SK, Sreeramulu K. Stimulatory effect of insecticides on partially purified P-glycoprotein ATPase from the resistant pest Helicoverpa armigera. Biochem Cell Biol 2007; 84:1045-50. [PMID: 17215890 DOI: 10.1139/o06-194] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A P-glycoprotein-like protein (Ha-Pgp) was detected in a membrane preparation from the insecticide-resistant pest Helicoverpa armigera (Lepidoptera: Noctüidae) using C219 antibodies that are directed towards an epitope in the nucleotide-binding domains. This protein was partially purified and found to be a glycoprotein displaying ATPase activity. SDS-PAGE confirmed that a high molecular mass glycoprotein (150 kDa) was overexpressed in resistant pests, but was not detected in susceptible pests. The partially purified Ha-Pgp ATPase was reconstituted into proteoliposomes and it was found that some insecticides, namely, monocrotophos, endosulfan, cypermethrin, fenvalerate, and methylparathion, stimulated the ATPase activity. The effect of various inhibitors on partially purified Ha-Pgp showed that orthovanadate is a potent inhibitor of its ATPase activity, inhibiting it by 90% at a concentration of 2 mmol/L. Other inhibitors, such as EDTA, sodium azide, and molybdate resulted in only a 20% decrease in activity. Details of the structure and function of Ha-Pgp will be important in the development of strategies to overcome insecticide resistance in this pest.
Collapse
Affiliation(s)
- Ravindra Aurade
- Department of Biochemistry, Gulbarga University, Gulbarga 585 106, India
| | | | | |
Collapse
|
96
|
Poysti NJ, Loewen EDM, Wang Z, Oresnik IJ. Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology (Reading) 2007; 153:727-736. [PMID: 17322193 DOI: 10.1099/mic.0.29148-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabinose is a known component of plant cell walls and is found in the rhizosphere. In this work, a previously undeleted region of the megaplasmid pSymB was identified as encoding genes necessary for arabinose catabolism, by Tn5-B20 random mutagenesis and subsequent complementation. Transcription of this region was measured by beta-galactosidase assays of Tn5-B20 fusions, and shown to be strongly inducible by arabinose, and moderately so by galactose and seed exudate. Accumulation of [(3)H]arabinose in mutants and wild-type was measured, and the results suggested that this operon is necessary for arabinose transport. Although catabolite repression of the arabinose genes by succinate or glucose was not detected at the level of transcription, both glucose and galactose were found to inhibit accumulation of arabinose when present in excess. To determine if glucose was also taken up by the arabinose transport proteins, [(14)C]glucose uptake rates were measured in wild-type and arabinose mutant strains. No differences in glucose uptake rates were detected between wild-type and arabinose catabolism mutant strains, indicating that excess glucose did not compete with arabinose for transport by the same system. Arabinose mutants were tested for the ability to form nitrogen-fixing nodules on alfalfa, and to compete with the wild-type for nodule occupancy. Strains unable to utilize arabinose did not display any symbiotic defects, and were not found to be less competitive than wild-type for nodule occupancy in co-inoculation experiments. Moreover, the results suggest that other loci are required for arabinose catabolism, including a gene encoding arabinose dehydrogenase.
Collapse
Affiliation(s)
- Nathan J Poysti
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Erin D M Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Zexi Wang
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
97
|
Guo X, Chen X, Weber IT, Harrison RW, Tai PC. Molecular basis for differential nucleotide binding of the nucleotide-binding domain of ABC-transporter CvaB. Biochemistry 2007; 45:14473-80. [PMID: 17128986 PMCID: PMC2515628 DOI: 10.1021/bi061506i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cytoplasmic membrane protein CvaB, involved in colicin V secretion in Escherichia coli, belongs to the ABC-transporter family in which ATP hydrolysis is typically the driving force for substrate transport. However, our previous studies indicated that the nucleotide-binding domain of CvaB could also bind and hydrolyze GTP and, indeed, highly preferred GTP over ATP at low temperatures. In this study, we have examined the molecular basis of this preference. Sequence alignment and homology modeling of the CvaB nucleotide-binding domain predicted that the aromatic stacking region of CvaB (Y501DSQ loop) had a role in the differential binding of nucleotides, and Ser503 and Gln504 provided potential hydrogen bonds to GTP but not to ATP. Site-directed mutagenesis of the Y501DSQ loop, mutations S503A, Q504L, and double mutation S503A/Q504L, was made to test the predicted hydrogen bonds with GTP. The double mutation S503A/Q504L increased the affinity for ATP by 6-fold, whereas the affinity for GTP was reduced slightly: the ATP/GTP-binding ratio increased about 10-fold. The temperature effect assays on nucleotide binding and hydrolysis further indicated that the double mutant protein had largely eliminated the difference for substrates ATP and GTP, and behaved more similarly to the NBD of typical ABC-transporter HlyB. Therefore, we conclude that Ser503 and Gln504 in aromatic stacking region of CvaB block the ATP binding and are important for the GTP-binding preference.
Collapse
Affiliation(s)
- Xiangxue Guo
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Xianfeng Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Irene T. Weber
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, Georgia 30303
| | - Phang C. Tai
- To whom correspondence should be addressed: Phone, 404-651-3109; fax, 404-651-2509; e-mail,
| |
Collapse
|
98
|
Sonne J, Kandt C, Peters GH, Hansen FY, Jensen MØ, Tieleman DP. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD. Biophys J 2007; 92:2727-34. [PMID: 17208973 PMCID: PMC1831707 DOI: 10.1529/biophysj.106.097972] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.
Collapse
Affiliation(s)
- Jacob Sonne
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
99
|
Wilks A, Burkhard KA. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep 2007; 24:511-22. [PMID: 17534527 DOI: 10.1039/b604193k] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
100
|
Abstract
In this critical review we discuss recent advances in understanding the modes of interaction of metal ions with membrane proteins, including channels, pumps, transporters, ATP-binding cassette proteins, G-protein coupled receptors, kinases and respiratory enzymes. Such knowledge provides a basis for elucidating the mechanism of action of some classes of metallodrugs, and a stimulus for the further exploration of the coordination chemistry of metal ions in membranes. Such research offers promise for the discovery of new drugs with unusual modes of action. The article will be of interest to bioinorganic chemists, chemical biologists, biochemists, pharmacologists and medicinal chemists. (247 references).
Collapse
Affiliation(s)
- Xiangyang Liang
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UKEH9 3JJ
| | | | | |
Collapse
|