51
|
Lai RPJ, Hock M, Radzimanowski J, Tonks P, Hulsik DL, Effantin G, Seilly DJ, Dreja H, Kliche A, Wagner R, Barnett SW, Tumba N, Morris L, LaBranche CC, Montefiori DC, Seaman MS, Heeney JL, Weissenhorn W. A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1. J Biol Chem 2014; 289:29912-26. [PMID: 25160627 PMCID: PMC4208001 DOI: 10.1074/jbc.m114.569566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41(int)-Cys) and show that it folds into an elongated ∼ 12-nm-long extended structure based on small angle x-ray scattering data. Gp41(int)-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41(int)-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140(CA018) in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140(CA018) was higher than that induced by gp41(int)-Cys, the majority of animals immunized with gp41(int)-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
Collapse
Affiliation(s)
- Rachel P J Lai
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Miriam Hock
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Jens Radzimanowski
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Paul Tonks
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - David Lutje Hulsik
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Gregory Effantin
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - David J Seilly
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Hanna Dreja
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Susan W Barnett
- Novartis Vaccines and Diagnostics Inc., Cambridge, Massachusetts 02139
| | - Nancy Tumba
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Jonathan L Heeney
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom,
| | - Winfried Weissenhorn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France,
| |
Collapse
|
52
|
Chikere K, Webb NE, Chou T, Borm K, Sterjovski J, Gorry PR, Lee B. Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies. Retrovirology 2014; 11:48. [PMID: 24957778 PMCID: PMC4230403 DOI: 10.1186/1742-4690-11-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The efficiency of CD4/CCR5 mediated HIV-1 entry has important implications for pathogenesis and transmission. The HIV-1 receptor affinity profiling (Affinofile) system analyzes and quantifies the infectivity of HIV-1 envelopes (Envs) across a spectrum of CD4/CCR5 expression levels and distills these data into a set of Affinofile metrics. The Affinofile system has shed light on how differential CD4/CCR5 usage efficiencies contributes to an array of Env phenotypes associated with cellular tropism, viral pathogenesis, and CCR5 inhibitor resistance. To facilitate more rapid, convenient, and robust analysis of HIV-1 entry phenotypes, we engineered a reporter Affinofile system containing a Tat- and Rev-dependent Gaussia luciferase-eGFP-Reporter (GGR) that is compatible with the use of pseudotyped or replication competent viruses with or without a virally encoded reporter gene. This GGR Affinofile system enabled a higher throughput characterization of CD4/CCR5 usage efficiencies associated with differential Env phenotypes. RESULTS We first validated our GGR Affinofile system on isogenic JR-CSF Env mutants that differ in their affinity for CD4 and/or CCR5. We established that their GGR Affinofile metrics reflected their differential entry phenotypes on primary PBMCs and CD4+ T-cell subsets. We then applied GGR Affinofile profiling to reveal distinct entry phenotypes associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies (BNAbs). First, we profiled a panel of reference subtype B transmitted/founder (T/F) and chronic Envs (n = 12) by analyzing the infectivity of each Env across 25 distinct combinations of CD4/CCR5 expression levels. Affinofile metrics revealed that at low CCR5 levels, our panel of subtype B T/F Envs was more dependent on high levels of CD4 for HIV-1 entry compared to chronic Envs. Next, we analyzed a reference panel of 28 acute/early subtype A-D Envs, and noted that subtype C Envs could be distinguished from the other subtypes based on their infectivity profiles and relevant Affinofile metrics. Lastly, mutations known to confer resistance to VRC01 or PG6/PG19 BNAbs, when engineered into subtypes A-D Envs, resulted in significantly decreased CD4/CCR5 usage efficiency. CONCLUSIONS GGR Affinofile profiling reveals pathophysiological phenotypes associated with varying HIV-1 entry efficiencies, and highlight the fitness costs associated with resistance to some broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Nicholas E Webb
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Tom Chou
- Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Katharina Borm
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jasminka Sterjovski
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Paul R Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, NY 10029, USA
| |
Collapse
|
53
|
Moseri A, Schnur E, Noah E, Zherdev Y, Kessler N, Singhal Sinha E, Abayev M, Naider F, Scherf T, Anglister J. NMR observation of HIV-1 gp120 conformational flexibility resulting from V3 truncation. FEBS J 2014; 281:3019-31. [PMID: 24819826 DOI: 10.1111/febs.12839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Abstract
The envelope spike of HIV-1, which consists of three external gp120 and three transmembrane gp41 glycoproteins, recognizes its target cells by successively binding to its primary CD4 receptor and a coreceptor molecule. Until recently, atomic-resolution structures were available primarily for monomeric HIV-1 gp120, in which the V1, V2 and V3 variable loops were omitted (gp120core ), in complex with soluble CD4 (sCD4). Differences between the structure of HIV gp120core in complex with sCD4 and the structure of unliganded simian immunodeficiency virus gp120core led to the hypothesis that gp120 undergoes a major conformational change upon sCD4 binding. To investigate the conformational flexibility of gp120, we generated two forms of mutated gp120 amenable for NMR studies: one with V1, V2 and V3 omitted ((mut) gp120core ) and the other containing the V3 region [(mut) gp120core (+V3)]. The TROSY-(1)H-(15)N-HSQC spectra of [(2)H, (13)C, (15)N]Arg-labeled and [(2)H, (13)C, (15)N]Ile-labeled unliganded (mut) gp120core showed many fewer crosspeaks than the expected number, and also many fewer crosspeaks in comparison with the labeled (mut) gp120core bound to the CD4-mimic peptide, CD4M33. This finding suggests that in the unliganded form, (mut) gp120core shows considerable flexibility and motions on the millisecond time scale. In contrast, most of the expected crosspeaks were observed for the unliganded (mut) gp120core (+V3), and only a few changes in chemical shift were observed upon CD4M33 binding. These results indicate that (mut) gp120core (+V3) does not show any significant conformational flexibility in its unliganded form and does not undergo any significant conformational change upon CD4M33 binding, underlining the importance of V3 in stabilizing the gp120core conformation.
Collapse
Affiliation(s)
- Adi Moseri
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Tedbury PR, Freed EO. The role of matrix in HIV-1 envelope glycoprotein incorporation. Trends Microbiol 2014; 22:372-8. [PMID: 24933691 DOI: 10.1016/j.tim.2014.04.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022]
Abstract
Incorporation of the viral envelope (Env) glycoprotein is a critical requirement for the production of infectious HIV-1 particles. It has long been appreciated that the matrix (MA) domain of the Gag polyprotein and the cytoplasmic tail of Env are central players in the process of Env incorporation, but the precise mechanisms have been elusive. Several recent developments have thrown light on the contributions of both proteins, prompting a re-evaluation of the role of MA during Env incorporation. The two domains appear to play distinct but complementary roles, with the cytoplasmic tail of Env responsible for directing Env to the site of assembly and the matrix domain accommodating the cytoplasmic tail of Env in the Gag lattice.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
55
|
Chandramouli B, Chillemi G, Desideri A. Structural dynamics of V3 loop in a trimeric ambiance, a molecular dynamics study on gp120–CD4 trimeric mimic. J Struct Biol 2014; 186:132-40. [DOI: 10.1016/j.jsb.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/03/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
|
56
|
Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion. Proc Natl Acad Sci U S A 2014; 111:3425-30. [PMID: 24550514 DOI: 10.1073/pnas.1401397111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.
Collapse
|
57
|
Serrano S, Araujo A, Apellániz B, Bryson S, Carravilla P, de la Arada I, Huarte N, Rujas E, Pai EF, Arrondo JLR, Domene C, Jiménez MA, Nieva JL. Structure and immunogenicity of a peptide vaccine, including the complete HIV-1 gp41 2F5 epitope: implications for antibody recognition mechanism and immunogen design. J Biol Chem 2014; 289:6565-6580. [PMID: 24429284 DOI: 10.1074/jbc.m113.527747] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane-proximal external region (MPER) of gp41 harbors the epitope recognized by the broadly neutralizing anti-HIV 2F5 antibody, a research focus in HIV-1 vaccine development. In this work, we analyze the structure and immunogenic properties of MPERp, a peptide vaccine that includes the following: (i) the complete sequence protected from proteolysis by the 2F5 paratope; (ii) downstream residues postulated to establish weak contacts with the CDR-H3 loop of the antibody, which are believed to be crucial for neutralization; and (iii) an aromatic rich anchor to the membrane interface. MPERp structures solved in dodecylphosphocholine micelles and 25% 1,1,1,3,3,3-hexafluoro-2-propanol (v/v) confirmed folding of the complete 2F5 epitope within continuous kinked helices. Infrared spectroscopy (IR) measurements demonstrated the retention of main helical conformations in immunogenic formulations based on alum, Freund's adjuvant, or two different types of liposomes. Binding to membrane-inserted MPERp, IR, molecular dynamics simulations, and characterization of the immune responses further suggested that packed helical bundles partially inserted into the lipid bilayer, rather than monomeric helices adsorbed to the membrane interface, could encompass effective MPER peptide vaccines. Together, our data constitute a proof-of-concept to support MPER-based peptides in combination with liposomes as stand-alone immunogens and suggest new approaches for structure-aided MPER vaccine development.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Aitziber Araujo
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Beatriz Apellániz
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Steve Bryson
- Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Pablo Carravilla
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Igor de la Arada
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Emil F Pai
- Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - José L R Arrondo
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Carmen Domene
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom; Department of Chemistry, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain.
| | - José L Nieva
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
58
|
Liu W, Tan J, Mehryar MM, Teng Z, Zeng Y. Peptide HIV fusion inhibitors: modifications and conjugations. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00214h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV fusion inhibitors are a group of virus entry preventing drugs aimed at membrane fusion.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| | - Jianjun Tan
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
| | | | - Zhiping Teng
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
- Chinese Centre for Disease Control and Prevention
- Beijing 100052, China
| | - Yi Zeng
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| |
Collapse
|
59
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
60
|
Lyumkis D, Julien JP, de Val N, Cupo A, Potter CS, Klasse PJ, Burton DR, Sanders RW, Moore JP, Carragher B, Wilson IA, Ward AB. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 2013; 342:1484-90. [PMID: 24179160 PMCID: PMC3954647 DOI: 10.1126/science.1245627] [Citation(s) in RCA: 589] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo-electron microscopy reconstruction and structural model of a cleaved, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 angstrom resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1, and HR2 domains, as well as shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Per Johan Klasse
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Dennis R. Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Rogier W. Sanders
- Weill Medical College of Cornell University, New York, New York 10021, USA
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - John P. Moore
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
61
|
Gustchina E, Li M, Ghirlando R, Schuck P, Louis JM, Pierson J, Rao P, Subramaniam S, Gustchina A, Clore GM, Wlodawer A. Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41. PLoS One 2013; 8:e78187. [PMID: 24244293 PMCID: PMC3820714 DOI: 10.1371/journal.pone.0078187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022] Open
Abstract
A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.
Collapse
Affiliation(s)
- Elena Gustchina
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
- Basic Research Program, SAIC-Frederick, Frederick, Maryland, United States of America
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Pierson
- FEI Company, Hillsboro, Oregon, United States of America
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alla Gustchina
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
62
|
Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat Struct Mol Biol 2013; 20:1352-7. [PMID: 24154805 PMCID: PMC3917492 DOI: 10.1038/nsmb.2711] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022]
Abstract
The activation of trimeric HIV-1 envelope glycoprotein (Env) by its binding to the cell surface receptor CD4 and co-receptors (CCR5 or CXCR4) represents the first of a series of events that lead to fusion between viral and target cell membranes. Here, we present the cryo-electron microscopic structure, at ~ 6 Å resolution, of the closed, pre-fusion state of trimeric HIV-1 Env in complex with the broadly neutralizing antibody VRC03. We show that three gp41 helices at the core of the trimer serve as an anchor around which the rest of Env is reorganized upon activation to the open quaternary conformation. The architecture of trimeric HIV-1 Env in pre-fusion and activated intermediate states resembles the corresponding states of influenza hemagglutinin trimers, providing direct evidence for the similarity in entry mechanisms employed by HIV-1, influenza and related enveloped viruses.
Collapse
|
63
|
Davenport TM, Guttman M, Guo W, Cleveland B, Kahn M, Hu SL, Lee KK. Isolate-specific differences in the conformational dynamics and antigenicity of HIV-1 gp120. J Virol 2013; 87:10855-73. [PMID: 23903848 PMCID: PMC3807424 DOI: 10.1128/jvi.01535-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 01/06/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry into host cells and is the sole target of neutralizing antibodies. Much of the sequence diversity in the HIV-1 genome is concentrated within Env, particularly within its gp120 surface subunit. While dramatic functional diversity exists among HIV-1 Env isolates-observable even in the context of monomeric gp120 proteins as differences in antigenicity and immunogenicity-we have little understanding of the structural features that distinguish Env isolates and lead to isolate-specific functional differences, as crystal structures of truncated gp120 "core" proteins from diverse isolates reveal a high level of structural conservation. Because gp120 proteins are used as prospective vaccine immunogens, it is critical to understand the structural factors that influence their reactivity with antibodies. Here, we studied four full-length, glycosylated gp120 monomers from diverse HIV-1 isolates by using small-angle X-ray scattering (SAXS) to probe the overall subunit morphology and hydrogen/deuterium-exchange with mass spectrometry (HDX-MS) to characterize the local structural order of each gp120. We observed that while the overall subunit architecture was similar among isolates by SAXS, dramatic isolate-specific differences in the conformational stability of gp120 were evident by HDX-MS. These differences persisted even with the CD4 receptor bound. Furthermore, surface plasmon resonance (SPR) and enzyme-linked immunosorbance assays (ELISAs) showed that disorder was associated with poorer recognition by antibodies targeting conserved conformational epitopes. These data provide additional insight into the structural determinants of gp120 antigenicity and suggest that conformational dynamics should be considered in the selection and design of optimized Env immunogens.
Collapse
Affiliation(s)
| | | | - Wenjin Guo
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Brad Cleveland
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Maria Kahn
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Kelly K. Lee
- Department of Global Health
- Department of Medicinal Chemistry
| |
Collapse
|
64
|
Earl LA, Lifson JD, Subramaniam S. Catching HIV 'in the act' with 3D electron microscopy. Trends Microbiol 2013; 21:397-404. [PMID: 23850373 PMCID: PMC3773172 DOI: 10.1016/j.tim.2013.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/25/2022]
Abstract
The development of a safe, effective vaccine to prevent HIV infection is a key step for controlling the disease on a global scale. However, many aspects of HIV biology make vaccine design problematic, including the sequence diversity and structural variability of the surface envelope glycoproteins and the poor accessibility of neutralization-sensitive epitopes on the virus. In this review, we discuss recent progress in understanding HIV in a structural context using emerging tools in 3D electron microscopy, and outline how some of these advances could be important for a better understanding of mechanisms of viral entry and for vaccine design.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|