51
|
Abstract
Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKGI is plasma membrane associated whereas PKGII is cytosolic in Toxoplasma gondii. To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii. By combining AID regulation with genome editing strategies, we determined that PKGI is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKGII is functionally insufficient and dispensable in the presence of PKGI. The difference in functionality mapped to the first 15 residues of PKGI, containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondii. Toxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii. We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii.
Collapse
|
52
|
Kováčiková M, Simdyanov TG, Diakin A, Valigurová A. Structures related to attachment and motility in the marine eugregarine Cephaloidophora cf. communis (Apicomplexa). Eur J Protistol 2017; 59:1-13. [PMID: 28363137 DOI: 10.1016/j.ejop.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022]
Abstract
Gregarines represent a highly diversified group of ancestral apicomplexans, with various modes of locomotion and host-parasite interactions. The eugregarine parasite of the barnacle Balanus balanus, Cephaloidophora cf. communis, exhibits interesting organisation of its attachment apparatus along with unique motility modes. The pellicle covered gregarine is arranged into longitudinal epicytic folds. The epimerite is separated from the protomerite by a septum consisting of tubulin-rich filamentous structures and both are packed with microneme-like structures suggestive of their function in the production of adhesives important for attachment and secreted through the abundant epimerite pores. Detached trophozoites and gamonts are capable of gliding motility, enriched by jumping and rotational movements with rapid changes in gliding direction and cell flexions. Actin in its polymerised form (F-actin) is distributed throughout the entire gregarine, while myosin, detected in the cortical region of the cell, follows the pattern of the epicytic folds. Various motility modes exhibited by individuals of C. cf. communis, together with significant changes in their cell shape during locomotion, are not concordant with the gliding mechanisms generally described in apicomplexan zoites and indicate that additional structures must be involved (e.g. two 12-nm filaments; the specific dentate appearance of internal lamina inside the epicytic folds).
Collapse
Affiliation(s)
- Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Timur G Simdyanov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow 119234, Russian Federation
| | - Andrei Diakin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
53
|
Stewart RJ, Whitehead L, Nijagal B, Sleebs BE, Lessene G, McConville MJ, Rogers KL, Tonkin CJ. Analysis of Ca 2+ mediated signaling regulating Toxoplasma infectivity reveals complex relationships between key molecules. Cell Microbiol 2017; 19. [PMID: 27781359 DOI: 10.1111/cmi.12685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022]
Abstract
Host cell invasion, exit and parasite dissemination is critical to the pathogenesis of apicomplexan parasites such as Toxoplasma gondii and Plasmodium spp. These processes are regulated by intracellular Ca2+ signaling although the temporal dynamics of Ca2+ fluxes and down-stream second messenger pathways are poorly understood. Here, we use a genetically encoded biosensor, GFP-Calmodulin-M13-6 (GCaMP6), to capture Ca2+ flux in live Toxoplasma and investigate the role of Ca2+ signaling in egress and motility. Our analysis determines how environmental cues and signal activation influence intracellular Ca2+ flux, allowing placement of effector molecules within this pathway. Importantly, we have identified key interrelationships between cGMP and Ca2+ signaling that are required for activation of egress and motility. Furthermore, we extend this analysis to show that the Ca2+ Dependent Protein Kinases-TgCDPK1 and TgCDPK3-play a role in signal quenching before egress. This work highlights the interrelationships of second messenger pathways of Toxoplasma in space and time, which is likely required for pathogenesis of all apicomplexan species.
Collapse
Affiliation(s)
- Rebecca J Stewart
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
54
|
Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 2016; 20:731-743. [PMID: 27978434 DOI: 10.1016/j.chom.2016.10.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Isa Pires
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Jessica Stock
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Arnault Graindorge
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Yu-Fu Hung
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
55
|
El-Manzalawy Y, Munoz EE, Lindner SE, Honavar V. PlasmoSEP: Predicting surface-exposed proteins on the malaria parasite using semisupervised self-training and expert-annotated data. Proteomics 2016; 16:2967-2976. [PMID: 27714937 PMCID: PMC5600274 DOI: 10.1002/pmic.201600249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/31/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
Accurate and comprehensive identification of surface-exposed proteins (SEPs) in parasites is a key step in developing novel subunit vaccines. However, the reliability of MS-based high-throughput methods for proteome-wide mapping of SEPs continues to be limited due to high rates of false positives (i.e., proteins mistakenly identified as surface exposed) as well as false negatives (i.e., SEPs not detected due to low expression or other technical limitations). We propose a framework called PlasmoSEP for the reliable identification of SEPs using a novel semisupervised learning algorithm that combines SEPs identified by high-throughput experiments and expert annotation of high-throughput data to augment labeled data for training a predictive model. Our experiments using high-throughput data from the Plasmodium falciparum surface-exposed proteome provide several novel high-confidence predictions of SEPs in P. falciparum and also confirm expert annotations for several others. Furthermore, PlasmoSEP predicts that 25 of 37 experimentally identified SEPs in Plasmodium yoelii salivary gland sporozoites are likely to be SEPs. Finally, PlasmoSEP predicts several novel SEPs in P. yoelii and Plasmodium vivax malaria parasites that can be validated for further vaccine studies. Our computational framework can be easily adapted to improve the interpretation of data from high-throughput studies.
Collapse
Affiliation(s)
- Yasser El-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, PA, USA
| | - Elyse E Munoz
- Center for Malaria Research, Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, USA
| | - Scott E Lindner
- Center for Malaria Research, Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, USA
| | - Vasant Honavar
- College of Information Sciences and Technology, Pennsylvania State University, PA, USA
| |
Collapse
|
56
|
Bargieri DY, Thiberge S, Tay CL, Carey AF, Rantz A, Hischen F, Lorthiois A, Straschil U, Singh P, Singh S, Triglia T, Tsuboi T, Cowman A, Chitnis C, Alano P, Baum J, Pradel G, Lavazec C, Ménard R. Plasmodium Merozoite TRAP Family Protein Is Essential for Vacuole Membrane Disruption and Gamete Egress from Erythrocytes. Cell Host Microbe 2016; 20:618-630. [PMID: 27832590 PMCID: PMC5104695 DOI: 10.1016/j.chom.2016.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022]
Abstract
Surface-associated TRAP (thrombospondin-related anonymous protein) family proteins are conserved across the phylum of apicomplexan parasites. TRAP proteins are thought to play an integral role in parasite motility and cell invasion by linking the extracellular environment with the parasite submembrane actomyosin motor. Blood stage forms of the malaria parasite Plasmodium express a TRAP family protein called merozoite-TRAP (MTRAP) that has been implicated in erythrocyte invasion. Using MTRAP-deficient mutants of the rodent-infecting P. berghei and human-infecting P. falciparum parasites, we show that MTRAP is dispensable for erythrocyte invasion. Instead, MTRAP is essential for gamete egress from erythrocytes, where it is necessary for the disruption of the gamete-containing parasitophorous vacuole membrane, and thus for parasite transmission to mosquitoes. This indicates that motor-binding TRAP family members function not just in parasite motility and cell invasion but also in membrane disruption and cell egress.
Collapse
Affiliation(s)
- Daniel Y Bargieri
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France; Department of Parasitology, University of São Paulo-USP, São Paulo 05508-000, SP, Brazil.
| | - Sabine Thiberge
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France
| | - Chwen L Tay
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Alison F Carey
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alice Rantz
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France
| | - Florian Hischen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen 52074, Germany
| | - Audrey Lorthiois
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris 75014, France
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pallavi Singh
- Malaria Parasite Biology and Vaccines Unit, Pasteur Institute, Paris 75015, France
| | - Shailja Singh
- Malaria Parasite Biology and Vaccines Unit, Pasteur Institute, Paris 75015, France
| | - Tony Triglia
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Alan Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3052, VIC, Australia
| | - Chetan Chitnis
- Malaria Parasite Biology and Vaccines Unit, Pasteur Institute, Paris 75015, France
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen 52074, Germany
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris 75014, France
| | - Robert Ménard
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France
| |
Collapse
|
57
|
Bullen HE, Soldati-Favre D. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa. FEBS Lett 2016; 590:2469-81. [PMID: 27403735 DOI: 10.1002/1873-3468.12296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022]
Abstract
Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa.
Collapse
|
58
|
Bane KS, Lepper S, Kehrer J, Sattler JM, Singer M, Reinig M, Klug D, Heiss K, Baum J, Mueller AK, Frischknecht F. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites. PLoS Pathog 2016; 12:e1005710. [PMID: 27409081 PMCID: PMC4943629 DOI: 10.1371/journal.ppat.1005710] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. Parasites causing malaria are transmitted by mosquitoes and need to migrate to cross tissue barriers. The form of the parasite transmitted by the mosquito, the so-called sporozoite, needs motility to enter the salivary glands, to migrate within the skin and to enter into blood capillaries and eventually hepatocytes, where the parasites differentiate into thousands of merozoites that invade red blood cells. Sporozoite motility is based on an actin-myosin motor, as is the case in many other eukaryotic cells. However, most eukaryotic cells move much slower than sporozoites. How these parasites reach their high speed is not clear but current evidence suggests that actin filaments need to be organized by either actin-binding proteins or membrane proteins that link the filaments to an extracellular substrate. The present study explores the role of the actin filament-binding protein coronin in the motility of sporozoites of the rodent model parasite Plasmodium berghei. We found that the deletion of P. berghei coronin leads to defects in parasite motility and thus lower infection of mosquito salivary glands, which translates into less efficient transmission of the parasites. Our experiments suggest that coronin organizes actin filaments to achieve rapid and directional motility. We also identify two signaling pathways that converge to regulate actin filament dynamics and suggest that they play a role in switching the parasite from its motility mode to a cell invasion mode.
Collapse
Affiliation(s)
- Kartik S. Bane
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Miriam Reinig
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Kirsten Heiss
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Malva GmbH, Heidelberg, Germany
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ann-Kristin Mueller
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
59
|
Hochstetter A, Pfohl T. Motility, Force Generation, and Energy Consumption of Unicellular Parasites. Trends Parasitol 2016; 32:531-541. [PMID: 27157805 DOI: 10.1016/j.pt.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them.
Collapse
Affiliation(s)
- Axel Hochstetter
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Thomas Pfohl
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
| |
Collapse
|
60
|
Quadt KA, Streichfuss M, Moreau CA, Spatz JP, Frischknecht F. Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration. ACS NANO 2016; 10:2091-2102. [PMID: 26792112 DOI: 10.1021/acsnano.5b06417] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Migration of malaria parasites is powered by a myosin motor that moves actin filaments, which in turn link to adhesive proteins spanning the plasma membrane. The retrograde flow of these adhesins appears to be coupled to forward locomotion. However, the contact dynamics between the parasite and the substrate as well as the generation of forces are complex and their relation to retrograde flow is unclear. Using optical tweezers we found retrograde flow rates up to 15 μm/s contrasting with parasite average speeds of 1-2 μm/s. We found that a surface protein, TLP, functions in reducing retrograde flow for the buildup of adhesive force and that actin dynamics appear optimized for the generation of force but not for maximizing the speed of retrograde flow. These data uncover that TLP acts by modulating actin dynamics or actin filament organization and couples retrograde flow to force production in malaria parasites.
Collapse
Affiliation(s)
- Katharina A Quadt
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Martin Streichfuss
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- University of Heidelberg , Department of Biophysical Chemistry and Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- University of Heidelberg , Department of Biophysical Chemistry and Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
61
|
Koch M, Baum J. The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution. Cell Microbiol 2016; 18:319-29. [PMID: 26663815 PMCID: PMC4819681 DOI: 10.1111/cmi.12557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 01/15/2023]
Abstract
Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non‐essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin–myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre‐invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite‐derived lipid material, that the merozoite may initiate cytoskeletal re‐arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms.
Collapse
Affiliation(s)
- Marion Koch
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
62
|
Islam ST, Mignot T. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus. Semin Cell Dev Biol 2015; 46:143-54. [PMID: 26520023 DOI: 10.1016/j.semcdb.2015.10.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked.
Collapse
Affiliation(s)
- Salim T Islam
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|