51
|
Maepa SW, Ndlovu H. Advances in generating liver cells from pluripotent stem cells as a tool for modeling liver diseases. Stem Cells 2020; 38:606-612. [PMID: 32012379 PMCID: PMC7216946 DOI: 10.1002/stem.3154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Developing robust in vitro models of the liver is essential for studying the pathogenesis of liver diseases, hepatotoxicity testing, and regenerative medicine. Earlier studies were conducted using cell lines derived from hepatomas. Due to the inherent limitations of cell lines, researchers used primary human hepatocytes (PHHs), which are considered a gold standard for in vitro modeling of the liver. However, due to the high cost of PHHs and lack of donors, researchers have sought an alternative source for functional liver cells. Pluripotent stem cells (PSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This review gives an overview of the major advances that have been achieved to develop protocols to generate liver cells such as hepatocytes, cholangiocytes, and Küpffer cells from PSCs. We also discuss their application in modeling the pathogenesis of liver diseases such as drug‐induced liver injury, acute liver failure, and hepatic steatosis.
Collapse
Affiliation(s)
- Setjie W Maepa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Science, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hlumani Ndlovu
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Science, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
52
|
Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Establishment of a novel culture method for maintaining intestinal stem cells derived from human induced pluripotent stem cells. Biol Open 2020; 9:bio049064. [PMID: 31919043 PMCID: PMC6955217 DOI: 10.1242/bio.049064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The small intestine plays an important role in the pharmacokinetics of orally administered drugs due to the presence of drug transporters and drug-metabolizing enzymes. However, few appropriate methods exist to investigate intestinal pharmacokinetics. Induced pluripotent stem (iPS) cells can form various types of cells and represent a potentially useful tool for drug discovery. We previously reported that differentiated enterocytes from human iPS cells are useful for pharmacokinetic studies; however, the process is time and resource intensive. Here, we established a new two-dimensional culture method for maintaining human iPS-cell-derived intestinal stem cells (ISCs) with differentiation potency and evaluated their ability to differentiate into enterocytes exhibiting appropriate pharmacokinetic function. The culture method used several factors to activate signalling pathways required for maintaining stemness, followed by differentiation into enterocytes. Functional evaluation was carried out to verify epithelial-marker expression and inducibility and activity of metabolic enzymes and transporters. Our results confirmed the establishment of an ISC culture method for maintaining stemness and verified that the differentiated enterocytes from the maintained ISCs demonstrated proper pharmacokinetic function. Thus, our findings describe a time- and cost-effective approach that can be used as a general evaluation tool for evaluating intestinal pharmacokinetics.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
53
|
Koike H, Iwasawa K, Ouchi R, Maezawa M, Giesbrecht K, Saiki N, Ferguson A, Kimura M, Thompson WL, Wells JM, Zorn AM, Takebe T. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 2019; 574:112-116. [PMID: 31554966 PMCID: PMC7643931 DOI: 10.1038/s41586-019-1598-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Abstract
Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.
Collapse
Affiliation(s)
- Hiroyuki Koike
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rie Ouchi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mari Maezawa
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kirsten Giesbrecht
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Autumn Ferguson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wendy L Thompson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
54
|
Generation of Human iPSC-Derived Intestinal Epithelial Cell Monolayers by CDX2 Transduction. Cell Mol Gastroenterol Hepatol 2019; 8:513-526. [PMID: 31228606 PMCID: PMC6722387 DOI: 10.1016/j.jcmgh.2019.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS To develop an effective and safe orally administered drug, it is important to predict its intestinal absorption rate, intestinal first-pass effect, and drug-drug interactions of orally administered drugs. However, there is no existing model to comprehensively predict the intestinal pharmacokinetics and drug-response of orally administered drugs. In this study, we attempted to generate homogenous and functional intestinal epithelial cells from human induced pluripotent stem (iPS) cells for pharmaceutical research. METHODS We generated almost-homogenous Villin- and zonula occludens-1 (ZO1)-positive intestinal epithelial cells by caudal-related homeobox transcription factor 2 (CDX2) transduction into human iPS cell-derived intestinal progenitor cells. RESULTS The drug absorption rates in human iPS cell-derived intestinal epithelial cell monolayers (iPS-IECM) were highly correlated with those in humans (R2=0.91). The expression levels of cytochrome P450 (CYP) 3A4, a dominant drug-metabolizing enzyme in the small intestine, in human iPS-IECM were similar to those in human small intestine in vivo. In addition, intestinal availability in human iPS-IECM (the fraction passing the gut wall: Fg=0.73) was more similar to that in the human small intestine in vivo (Fg=0.57) than to that in Caco-2 cells (Fg=0.99), a human colorectal adenocarcinoma cell line. Moreover, the drug-drug interaction and drug-food interaction could be observed by using our human iPS-IECM in the presence of an inducer and inhibitor of CYP3A4, i.e., rifampicin and grape fruit juice, respectively. CONCLUSION Taking these results together, we succeeded in generating the human iPS-IECM that can be applied to various intestinal pharmacokinetics and drug-response tests of orally administered drugs.
Collapse
|
55
|
Wu LJ, Chen ZY, Wang Y, Zhao JG, Xie XZ, Chen G. Organoids of liver diseases: From bench to bedside. World J Gastroenterol 2019; 25:1913-1927. [PMID: 31086460 PMCID: PMC6487380 DOI: 10.3748/wjg.v25.i16.1913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Understanding the occurrence, development, and treatment of liver diseases is the main goal of hepatopathology research. Liver diseases are not only diverse but also highly heterogeneous among individuals. At present, research on liver diseases is conducted mainly through cell culture, animal models, pathological specimens, etc. However, these methods cannot fully reveal the pathogenic mechanism and therapeutic characteristics of individualized liver diseases. Recent advances in three-dimensional cell culture technology (organoid culture techniques) include pluripotent stem cells and adult stem cells that are cultured in vitro to form self-organizing properties, making it possible to achieve individualized liver disease research. This review provides a comprehensive overview of the development of liver organoids, the existing and potential applications of liver regenerative medicine, the pathogenesis of liver disease heterogeneity, and drug screening.
Collapse
Affiliation(s)
- Li-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zi-Yan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yi Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jun-Gang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiao-Zai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
56
|
Eglen RM, Reisine T. Human iPS Cell-Derived Patient Tissues and 3D Cell Culture Part 2: Spheroids, Organoids, and Disease Modeling. SLAS Technol 2019; 24:18-27. [DOI: 10.1177/2472630318803275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells (HiPSCs) provide several advantages for drug discovery, but principally they provide a source of clinically relevant tissue. Furthermore, the use of HiPSCs cultured in three-dimensional (3D) systems, as opposed to traditional two-dimensional (2D) culture approaches, better represents the complex tissue architecture in vivo. The use of HiPSCs in 3D spheroid and organoid culture is now growing, but particularly when using myocardial, intestinal enteric nervous system, and retinal cell lines. However, organoid cell culture is perhaps making the most notable impact in research and drug discovery, in which 3D neuronal cell cultures allow direct modeling of cortical cell layering and neuronal circuit activity. Given the specific degeneration seen in discrete neuronal circuitry in Alzheimer’s disease (AD) and Parkinson’s disease (PD), HiPSC culture systems are proving to be a major advance. In the present review, the second part of a two-part review, we discuss novel methods in which 3D cell culture systems (principally organoids) are now being used to provide insights into disease mechanisms. (The use of HiPSCs in target identification was reviewed in detail in Part 1.)
Collapse
|
57
|
Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol 2018; 7:30. [PMID: 30534474 PMCID: PMC6282260 DOI: 10.1186/s40164-018-0122-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Organoid technology bridges the gap between conventional two-dimensional cell line culture and in vivo models. The near-physiological technology can virtually recapitulates organ development and human diseases, such as infectious diseases, genetic abnormality and even cancers. In addition, organoids can more accurately predict drug responses, and serve as an excellent platform for drug development, including efficacy evaluation, toxicity testing and pharmacokinetics analysis. Furthermore, organoids can also be exploited to explore the possible optimized treatment strategies for each individual patient. Besides, organoid technology is a promising strategy for regeneration medicine and transplantation use, which can overcome the deficiency in the supply of healthy donor tissues and inherent immunological rejection through establishing isogenic organoids from minuscule amounts of patient biopsies. Collectively, organoids hold enormous potential for clinical applications and bring basic research closer to clinical practice. In this review, we described common organoid lines, summarized the potential clinical applications, and outlined the current limitations.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|