51
|
Ochi T, Sibanda BL, Wu Q, Chirgadze DY, Bolanos-Garcia VM, Blundell TL. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining. J Nucleic Acids 2010; 2010:621695. [PMID: 20862368 PMCID: PMC2938450 DOI: 10.4061/2010/621695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 07/02/2010] [Indexed: 11/20/2022] Open
Abstract
Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere.
Collapse
Affiliation(s)
- Takashi Ochi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Bancinyane Lynn Sibanda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Qian Wu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
52
|
Schmidt-Krey I, Rubinstein JL. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Micron 2010; 42:107-16. [PMID: 20678942 DOI: 10.1016/j.micron.2010.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 01/08/2023]
Abstract
Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed.
Collapse
Affiliation(s)
- Ingeborg Schmidt-Krey
- Georgia Institute of Technology, School of Biology, School of Chemistry and Biochemistry, 310 Ferst Drive, Rm. A118, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
53
|
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79:181-211. [PMID: 20192759 DOI: 10.1146/annurev.biochem.052308.093131] [Citation(s) in RCA: 1968] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during variable (diversity) joining [V(D)J] recombination and class switch recombination (CSR). Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA.
| |
Collapse
|
54
|
Perry JJP, Cotner-Gohara E, Ellenberger T, Tainer JA. Structural dynamics in DNA damage signaling and repair. Curr Opin Struct Biol 2010; 20:283-94. [PMID: 20439160 DOI: 10.1016/j.sbi.2010.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Changing macromolecular conformations and complexes are critical features of cellular networks, typified by DNA damage response pathways that are essential to life. These fluctuations enhance the specificity of macromolecular recognition and catalysis, and enable an integrated functioning of pathway components, ensuring efficiency while reducing off pathway reactions. Such dynamic complexes challenge classical detailed structural analyses, so their characterizations demand combining methods that provide detail with those that inform dynamics in solution. Small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and computation are complementing detailed structures from crystallography and NMR to provide comprehensive models for DNA damage searching, specificity, signaling, and repair. Here, we review new approaches and results on DNA damage responses that advance structural biology in the fourth dimension, connecting proteins to pathways.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
55
|
Sibanda BL, Chirgadze DY, Blundell TL. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 2009; 463:118-21. [PMID: 20023628 PMCID: PMC2811870 DOI: 10.1038/nature08648] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 11/06/2009] [Indexed: 01/10/2023]
Abstract
Broken chromosomes arising from DNA double strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation1, 2, 3. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holo-enzyme that comprises DNA-dependent protein kinase catalytic subunit (DNA-PKcs)4, 5 and the heterodimer Ku70/Ku80, plays a major role in non-homologous end joining (NHEJ), the main pathway in mammals used to repair double strand breaks6, 7, 8. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4128 amino acids and belonging to the phosphotidyl inositol 3-kinase (PI3-K)- related protein family9. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest10, 11. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA12. Here we present the crystal structure of human DNA-PKcs at 6.6Å resolution, in which the overall fold is for the first time clearly visible. The many α-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The C-terminal kinase domain is located on top of this structure and a small HEAT repeat domain that likely binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.
Collapse
Affiliation(s)
- Bancinyane L Sibanda
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's site, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | |
Collapse
|
56
|
Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S, Abolfath RM, Chen DJ, Lees-Miller SP, Tainer JA. Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 2009; 285:1414-23. [PMID: 19893054 PMCID: PMC2801267 DOI: 10.1074/jbc.m109.065615] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.
Collapse
Affiliation(s)
- Michal Hammel
- Physical Biosciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
This essay gives the autho's personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts.
Collapse
Affiliation(s)
- Joachim Frank
- The Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
58
|
Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009; 417:639-50. [PMID: 19133841 PMCID: PMC2975036 DOI: 10.1042/bj20080413] [Citation(s) in RCA: 508] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA DSBs (double-strand breaks) are considered the most cytotoxic type of DNA lesion. They can be introduced by external sources such as IR (ionizing radiation), by chemotherapeutic drugs such as topoisomerase poisons and by normal biological processes such as V(D)J recombination. If left unrepaired, DSBs can cause cell death. If misrepaired, DSBs may lead to chromosomal translocations and genomic instability. One of the major pathways for the repair of IR-induced DSBs in mammalian cells is NHEJ (non-homologous end-joining). The main proteins required for NHEJ in mammalian cells are the Ku heterodimer (Ku70/80 heterodimer), DNA-PKcs [the catalytic subunit of DNA-PK (DNA-dependent protein kinase)], Artemis, XRCC4 (X-ray-complementing Chinese hamster gene 4), DNA ligase IV and XLF (XRCC4-like factor; also called Cernunnos). Additional proteins, including DNA polymerases mu and lambda, PNK (polynucleotide kinase) and WRN (Werner's Syndrome helicase), may also play a role. In the present review, we will discuss our current understanding of the mechanism of NHEJ in mammalian cells and discuss the roles of DNA-PKcs and DNA-PK-mediated phosphorylation in NHEJ.
Collapse
Affiliation(s)
- Brandi L. Mahaney
- Department of Biochemistry and Molecular Biology and The Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Katheryn Meek
- College of Veterinary Medicine and Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, USA
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology and The Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
59
|
Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9:616-27. [PMID: 18594563 DOI: 10.1038/nrm2450] [Citation(s) in RCA: 1301] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.
Collapse
Affiliation(s)
- Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, Stanford, California 94305-5441, USA.
| | | |
Collapse
|
60
|
Shi J, Williams DR, Stewart PL. A Script-Assisted Microscopy (SAM) package to improve data acquisition rates on FEI Tecnai electron microscopes equipped with Gatan CCD cameras. J Struct Biol 2008; 164:166-9. [PMID: 18621546 DOI: 10.1016/j.jsb.2008.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/23/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
Abstract
High throughput methods of data acquisition are advantageous for cryoelectron microscopy and single particle reconstruction as high-resolution structure determination requires thousands of particle images. We have developed a semi-automated data collection method that utilizes the scripting languages provided by FEI for their Tecnai User Interface (TUI) and by Gatan for their Digital Micrograph package. Our Script-Assisted Microscopy (SAM) method allows for the selection of multiple locations within a low magnification, search mode, micrograph and for subsequent automated imaging of these locations at a higher exposure magnification. The SAM approach permits the user to retain control over the microscope, while streamlining the most repetitive steps of collecting and evaluating micrographs. With SAM, we have found an average of 1000 micrographs can be collected per day on any grid type, either irregular homemade grids or prefabricated grids with regularly spaced holes. This rate of data collection represents a fivefold improvement over our manual collection rates. SAM provides an example of an individually tailored approach to data acquisition utilizing the scripting interfaces provided by the equipment manufacturers. The SAM method has proven valuable for determination of a subnanometer resolution cryoEM structure of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a 469kDa protein.
Collapse
Affiliation(s)
- Jian Shi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
61
|
DNA-PKcs at 7Å: Insights for DNA Repair. Structure 2008; 16:334-6. [DOI: 10.1016/j.str.2008.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|