51
|
Sultanov DC, Gerasimova NS, Kudryashova KS, Maluchenko NV, Kotova EY, Langelier MF, Pascal JM, Kirpichnikov MP, Feofanov AV, Studitsky VM. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy. AIMS GENETICS 2017; 4:21-31. [PMID: 28804761 PMCID: PMC5552189 DOI: 10.3934/genet.2017.1.21] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose) polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.
Collapse
Affiliation(s)
- Daniel C Sultanov
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.,Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
| | | | - Kseniya S Kudryashova
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Elena Y Kotova
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | | | - Alexey V Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.,Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
| |
Collapse
|
52
|
Rychkov GN, Ilatovskiy AV, Nazarov IB, Shvetsov AV, Lebedev DV, Konev AY, Isaev-Ivanov VV, Onufriev AV. Partially Assembled Nucleosome Structures at Atomic Detail. Biophys J 2016; 112:460-472. [PMID: 28038734 DOI: 10.1016/j.bpj.2016.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022] Open
Abstract
The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4)2, the tetrasome (H3·H4)2, and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Förster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.
Collapse
Affiliation(s)
- Georgy N Rychkov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Igor B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey V Shvetsov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Applied Mathematics and Mechanics, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Dmitry V Lebedev
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Alexander Y Konev
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Vladimir V Isaev-Ivanov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Alexey V Onufriev
- Departments of Computer Science and Physics, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
53
|
Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core. Proc Natl Acad Sci U S A 2016; 114:334-339. [PMID: 28028239 DOI: 10.1073/pnas.1611118114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nucleosome core particle (NCP) is the basic structural unit for genome packaging in eukaryotic cells and consists of DNA wound around a core of eight histone proteins. DNA access is modulated through dynamic processes of NCP disassembly. Partly disassembled structures, such as the hexasome (containing six histones) and the tetrasome (four histones), are important for transcription regulation in vivo. However, the pathways for their formation have been difficult to characterize. We combine time-resolved (TR) small-angle X-ray scattering and TR-FRET to correlate changes in the DNA conformations with composition of the histone core during salt-induced disassembly of canonical NCPs. We find that H2A-H2B histone dimers are released sequentially, with the first dimer being released after the DNA has formed an asymmetrically unwrapped, teardrop-shape DNA structure. This finding suggests that the octasome-to-hexasome transition is guided by the asymmetric unwrapping of the DNA. The link between DNA structure and histone composition suggests a potential mechanism for the action of proteins that alter nucleosome configurations such as histone chaperones and chromatin remodeling complexes.
Collapse
|
54
|
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
|
55
|
Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 2016; 23:1111-1116. [PMID: 27820806 DOI: 10.1038/nsmb.3321] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.
Collapse
|
56
|
Ordu O, Lusser A, Dekker NH. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 2016; 8:33-49. [PMID: 28058066 PMCID: PMC5167136 DOI: 10.1007/s12551-016-0212-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic DNA is tightly packed into a hierarchically ordered structure called chromatin in order to fit into the micron-scaled nucleus. The basic unit of chromatin is the nucleosome, which consists of a short piece of DNA wrapped around a core of eight histone proteins. In addition to their role in packaging DNA, nucleosomes impact the regulation of essential nuclear processes such as replication, transcription, and repair by controlling the accessibility of DNA. Thus, knowledge of this fundamental DNA-protein complex is crucial for understanding the mechanisms of gene control. While structural and biochemical studies over the past few decades have provided key insights into both the molecular composition and functional aspects of nucleosomes, these approaches necessarily average over large populations and times. In contrast, single-molecule methods are capable of revealing features of subpopulations and dynamic changes in the structure or function of biomolecules, rendering them a powerful complementary tool for probing mechanistic aspects of DNA-protein interactions. In this review, we highlight how these single-molecule approaches have recently yielded new insights into nucleosomal and subnucleosomal structures and dynamics.
Collapse
Affiliation(s)
- Orkide Ordu
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nynke H. Dekker
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| |
Collapse
|
57
|
Hazan NP, Tomov TE, Tsukanov R, Liber M, Berger Y, Masoud R, Toth K, Langowski J, Nir E. Nucleosome Core Particle Disassembly and Assembly Kinetics Studied Using Single-Molecule Fluorescence. Biophys J 2016; 109:1676-85. [PMID: 26488658 DOI: 10.1016/j.bpj.2015.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 10/22/2022] Open
Abstract
The stability of the nucleosome core particle (NCP) is believed to play a major role in regulation of gene expression. To understand the mechanisms that influence NCP stability, we studied stability and dissociation and association kinetics under different histone protein (NCP) and NaCl concentrations using single-pair Förster resonance energy transfer and alternating laser excitation techniques. The method enables distinction between folded, unfolded, and intermediate NCP states and enables measurements at picomolar to nanomolar NCP concentrations where dissociation and association reactions can be directly observed. We reproduced the previously observed nonmonotonic dependence of NCP stability on NaCl concentration, and we suggest that this rather unexpected behavior is a result of interplay between repulsive and attractive forces within positively charged histones and between the histones and the negatively charged DNA. Higher NaCl concentrations decrease the attractive force between the histone proteins and the DNA but also stabilize H2A/H2B histone dimers, and possibly (H3/H4)2 tetramers. An intermediate state in which one DNA arm is unwrapped, previously observed at high NaCl concentrations, is also explained by this salt-induced stabilization. The strong dependence of NCP stability on ion and histone concentrations, and possibly on other charged macromolecules, may play a role in chromosomal morphology.
Collapse
Affiliation(s)
- Noa Plavner Hazan
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Toma E Tomov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Roman Tsukanov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Miran Liber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yaron Berger
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rula Masoud
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Katalin Toth
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Joerg Langowski
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Eyal Nir
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
58
|
Corless S, Gilbert N. Effects of DNA supercoiling on chromatin architecture. Biophys Rev 2016; 8:245-258. [PMID: 27738453 PMCID: PMC5039215 DOI: 10.1007/s12551-016-0210-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
Affiliation(s)
- Samuel Corless
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| |
Collapse
|
59
|
Tokuda JM, Pabit SA, Pollack L. Protein-DNA and ion-DNA interactions revealed through contrast variation SAXS. Biophys Rev 2016; 8:139-149. [PMID: 27551324 PMCID: PMC4991782 DOI: 10.1007/s12551-016-0196-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Understanding how DNA carries out its biological roles requires knowledge of its interactions with biological partners. Since DNA is a polyanionic polymer, electrostatic interactions contribute significantly. These interactions are mediated by positively charged protein residues or charge compensating cations. Direct detection of these partners and/or their effect on DNA conformation poses challenges, especially for monitoring conformational dynamics in real time. Small-angle x-ray scattering (SAXS) is uniquely sensitive to both the conformation and local environment (i.e. protein partner and associated ions) of the DNA. The primary challenge of studying multi-component systems with SAXS lies in resolving how each component contributes to the measured scattering. Here, we review two contrast variation (CV) strategies that enable targeted studies of the structures of DNA or its associated partners. First, solution contrast variation enables measurement of DNA conformation within a protein-DNA complex by masking out the protein contribution to the scattering profile. We review a specific example, in which the real-time unwrapping of DNA from a nucleosome core particle is measured during salt-induced disassembly. The second method, heavy atom isomorphous replacement, reports the spatial distribution of the cation cloud around duplex DNA by exploiting changes in the scattering strength of cations with varying atomic numbers. We demonstrate the application of this approach to provide the spatial distribution of monovalent cations (Na+, K+, Rb+, Cs+) around a standard 25-base pair DNA. The CV strategies presented here are valuable tools for understanding DNA interactions with its biological partners.
Collapse
Affiliation(s)
- Joshua M. Tokuda
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
60
|
Krajewski WA. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Biochem Biophys Rep 2016; 5:492-501. [PMID: 28955857 PMCID: PMC5600426 DOI: 10.1016/j.bbrep.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Evidence is emerging that many diseases result from defects in gene functions, which, in turn, depend on the local chromatin environment of a gene. However, it still remains not fully clear how chromatin activity code is 'translated' to the particular 'activating' or 'repressing' chromatin structural transition. Commonly, chromatin remodeling in vitro was studied using mononucleosomes as a model. However, recent data suggest that structural reorganization of a single mononucleosome is not equal to remodeling of a nucleosome particle under multinucleosomal content - such as, interaction of nucleosomes via flexible histone termini could significantly alter the mode (and the resulting products) of nucleosome structural transitions. It is becoming evident that a nucleosome array does not constitute just a 'polymer' of individual 'canonical' nucleosomes due to multiple inter-nucleosomal interactions which affect nucleosome dynamics and structure. It could be hypothesized, that inter-nucleosomal interactions could act in cooperation with nucleosome inherent dynamics to orchestrate DNA-based processes and promote formation and stabilization of highly-dynamic, accessible structure of a nucleosome array. In the proposed paper we would like to discuss the nucleosome dynamics within the chromatin fiber mainly as it pertains to the roles of the structural changes mediated by inter-nucleosomal interactions.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334 Russia
| |
Collapse
|
61
|
Shaytan AK, Armeev GA, Goncearenco A, Zhurkin VB, Landsman D, Panchenko AR. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol Biol 2015; 428:221-237. [PMID: 26699921 DOI: 10.1016/j.jmb.2015.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigoriy A Armeev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
62
|
Krajewski WA. Mobilization of hyperacetylated mononucleosomes by purified yeast ISW2 in vitro. Arch Biochem Biophys 2015; 591:1-6. [PMID: 26692330 DOI: 10.1016/j.abb.2015.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
Abstract
Catalytic activity of ISWI chromatin remodelers, which regulate nucleosome positioning on the DNA, depends on interactions of the putative acidic patch in ISWI helicase domain with the N-termini of nucleosomal H4--such, that removal of H4 termini abolishes ISWI remodeling. Acetylation of H4 termini is also known to disrupt H4 interactions with acidic protein surfaces, and thus, histone acetylation could potentially impede ISWI functions. Since active chromatin in vivo is hyperacetylated, it is important to clarify if ISWI activities can function on the in vivo hyperacetylated nucleosomes. We evaluated if purified yeast ISW2 can act on mononucleosomes in which all four core histones are highly acetylated. Mononucleosomes were assembled using purified histones from mammalian CV1 cells grown in the presence of deacetylase inhibitor Trichostatin A (TSA). The CV1 cell line is characterized by fast kinetic of accumulation of highly acetylated histone isoforms in response to TSA treatment. However, such 'native' histone hyperacetylation had no apparent effects on the nucleosome remodeling propensities, suggesting that histone hyperacetylation does not necessarily block ISWI functions and that ISWI enzymes can function on active chromatin as well.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
63
|
Nazarov I, Chekliarova I, Rychkov G, Ilatovskiy AV, Crane-Robinson C, Tomilin A. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence. Biochimie 2015; 121:5-12. [PMID: 26586109 DOI: 10.1016/j.biochi.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023]
Abstract
Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions.
Collapse
Affiliation(s)
- Igor Nazarov
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia.
| | - Iana Chekliarova
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia
| | - Georgy Rychkov
- Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29, Saint-Petersburg, RF, 195251, Russia; Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, 188300, Russia
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, 188300, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Colyn Crane-Robinson
- Biophysics Laboratories, St. Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Alexey Tomilin
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia
| |
Collapse
|
64
|
Díaz-Ingelmo O, Martínez-García B, Segura J, Valdés A, Roca J. DNA Topology and Global Architecture of Point Centromeres. Cell Rep 2015; 13:667-677. [PMID: 26489472 DOI: 10.1016/j.celrep.2015.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/08/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
DNA is wrapped in a left-handed fashion around histone octasomes containing the centromeric histone H3 variant CENP-A. However, DNA topology studies have suggested that DNA is wrapped in a right-handed manner around the CENP-A nucleosome that occupies the yeast point centromere. Here, we determine the DNA linking number difference (ΔLk) stabilized by the yeast centromere and the contribution of the centromere determining elements (CDEI, CDEII, and CDEIII). We show that the intrinsic architecture of the yeast centromere stabilizes +0.6 units of ΔLk. This topology depends on the integrity of CDEII and CDEIII, but it is independent of cbf1 binding to CDEI and of the variable length of CDEII. These findings suggest that the interaction of the CBF3 complex with CDEIII and a distal CDEII segment configures a right-handed DNA loop that excludes CDEI. This loop is then occupied by a CENP-A histone complex, which does not have to be inherently right-handed.
Collapse
Affiliation(s)
- Ofelia Díaz-Ingelmo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain.
| |
Collapse
|
65
|
Ngo TTM, Ha T. Nucleosomes undergo slow spontaneous gaping. Nucleic Acids Res 2015; 43:3964-71. [PMID: 25824950 PMCID: PMC4417179 DOI: 10.1093/nar/gkv276] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30–60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5–10 angstroms and at minutes (1–10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.
Collapse
Affiliation(s)
- Thuy T M Ngo
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA
| | - Taekjip Ha
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA Department of Physics, Center for Physics in Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA Howard Hughes Medical Institute, University of Illinois, Urbana, IL 61801-2902, USA
| |
Collapse
|
66
|
Shaytan AK, Landsman D, Panchenko AR. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr Opin Struct Biol 2015; 32:48-57. [PMID: 25731851 DOI: 10.1016/j.sbi.2015.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
67
|
Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res 2015; 43:2489-98. [PMID: 25712102 PMCID: PMC4357700 DOI: 10.1093/nar/gkv061] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types.
Collapse
Affiliation(s)
- Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
68
|
Kato D, Osakabe A, Tachiwana H, Tanaka H, Kurumizaka H. Human tNASP Promotes in Vitro Nucleosome Assembly with Histone H3.3. Biochemistry 2015; 54:1171-9. [DOI: 10.1021/bi501307g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daiki Kato
- Laboratory of Structural
Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural
Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural
Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural
Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural
Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
69
|
Rhee HS, Bataille AR, Zhang L, Pugh BF. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 2014; 159:1377-88. [PMID: 25480300 PMCID: PMC4258235 DOI: 10.1016/j.cell.2014.10.054] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/19/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Genes are packaged into nucleosomal arrays, each nucleosome typically having two copies of histones H2A, H2B, H3, and H4. Histones have distinct posttranslational modifications, variant isoforms, and dynamics. Whether each histone copy within a nucleosome has distinct properties, particularly in relation to the direction of transcription, is unknown. Here we use chromatin immunoprecipitation-exonuclease (ChIP-exo) to resolve the organization of individual histones on a genomic scale. We detect widespread subnucleosomal structures in dynamic chromatin, including what appear to be half-nucleosomes consisting of one copy of each histone. We also detect interactions of H3 tails with linker DNA between nucleosomes, which may be negatively regulated by methylation of H3K36. Histone variant H2A.Z is enriched on the promoter-distal half of the +1 nucleosome, whereas H2BK123 ubiquitylation and H3K9 acetylation are enriched on the promoter-proximal half in a transcription-linked manner. Subnucleosome asymmetries might serve as molecular beacons that guide transcription.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
70
|
Nam GM, Arya G. Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes. Nucleic Acids Res 2014; 42:9691-9. [PMID: 25100871 PMCID: PMC4150795 DOI: 10.1093/nar/gku694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Torsionally stressed DNA plays a critical role in genome organization and regulation. While the effects of torsional stresses on naked DNA have been well studied, little is known about how these stresses propagate within chromatin and affect its organization. Here we investigate the torsional behavior of nucleosome arrays by means of Brownian dynamics simulations of a coarse-grained model of chromatin. Our simulations reveal a strong dependence of the torsional response on the rotational phase angle Ψ0 between adjacent nucleosomes. Extreme values of Ψ0 lead to asymmetric, bell-shaped extension-rotation profiles with sharp maxima shifted toward positive or negative rotations, depending on the sign of Ψ0, and to fast, irregular propagation of DNA twist. In contrast, moderate Ψ0 yield more symmetric profiles with broad maxima and slow, uniform propagation of twist. The observed behavior is shown to arise from an interplay between nucleosomal transitions into states with crossed and open linker DNAs and global supercoiling of arrays into left- and right-handed coils, where Ψ0 serves to modulate the energy landscape of nucleosomal states. Our results also explain the torsional resilience of chromatin, reconcile differences between experimentally measured extension-rotation profiles, and suggest a role of torsional stresses in regulating chromatin assembly and organization.
Collapse
Affiliation(s)
- Gi-Moon Nam
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| |
Collapse
|
71
|
Chen Y, Tokuda JM, Topping T, Sutton JL, Meisburger SP, Pabit SA, Gloss LM, Pollack L. Revealing transient structures of nucleosomes as DNA unwinds. Nucleic Acids Res 2014; 42:8767-76. [PMID: 24990379 PMCID: PMC4117781 DOI: 10.1093/nar/gku562] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The modulation of DNA accessibility by nucleosomes is a fundamental mechanism of gene regulation in eukaryotes. The nucleosome core particle (NCP) consists of 147 bp of DNA wrapped around a symmetric octamer of histone proteins. The dynamics of DNA packaging and unpackaging from the NCP affect all DNA-based chemistries, but depend on many factors, including DNA positioning sequence, histone variants and modifications. Although the structure of the intact NCP has been studied by crystallography at atomic resolution, little is known about the structures of the partially unwrapped, transient intermediates relevant to nucleosome dynamics in processes such as transcription, DNA replication and repair. We apply a new experimental approach combining contrast variation with time-resolved small angle X-ray scattering (TR-SAXS) to determine transient structures of protein and DNA constituents of NCPs during salt-induced disassembly. We measure the structures of unwrapping DNA and monitor protein dissociation from Xenopus laevis histones reconstituted with two model NCP positioning constructs: the Widom 601 sequence and the sea urchin 5S ribosomal gene. Both constructs reveal asymmetric release of DNA from disrupted histone cores, but display different patterns of protein dissociation. These kinetic intermediates may be biologically important substrates for gene regulation.
Collapse
Affiliation(s)
- Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Joshua M Tokuda
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Traci Topping
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Julie L Sutton
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Steve P Meisburger
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lisa M Gloss
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
72
|
Marsh DJ, Shah JS, Cole AJ. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets. Front Oncol 2014; 4:144. [PMID: 24971229 PMCID: PMC4053763 DOI: 10.3389/fonc.2014.00144] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.
Collapse
Affiliation(s)
- Deborah J Marsh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney , Sydney, NSW , Australia
| | - Jaynish S Shah
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney , Sydney, NSW , Australia
| | - Alexander J Cole
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney , Sydney, NSW , Australia
| |
Collapse
|
73
|
Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding. Nucleic Acids Res 2014; 42:7561-76. [PMID: 24829456 PMCID: PMC4081063 DOI: 10.1093/nar/gku423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry–exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.
Collapse
Affiliation(s)
- Aaron R Hieb
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Vera Böhm
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
74
|
Towards a mechanism for histone chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:211-221. [PMID: 24459723 DOI: 10.1016/j.bbagrm.2011.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone chaperones can be broadly defined as histone-binding proteins that influence chromatin dynamics in an ATP-independent manner. Their existence reflects the importance of chromatin homeostasis and the unique and unusual biochemistry of the histone proteins. Histone supply and demand at chromatin is regulated by a network of structurally and functionally diverse histone chaperones. At the core of this network is a mechanistic variability that is only beginning to be appreciated. In this review, we highlight the challenges in determining histone chaperone mechanism and discuss possible mechanisms in the context of nucleosome thermodynamics. We discuss how histone chaperones prevent promiscuous histone interactions, and consider if this activity represents the full extent of histone chaperone function in governing chromatin dynamics. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
75
|
Arimura Y, Kimura H, Oda T, Sato K, Osakabe A, Tachiwana H, Sato Y, Kinugasa Y, Ikura T, Sugiyama M, Sato M, Kurumizaka H. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci Rep 2013; 3:3510. [PMID: 24336483 PMCID: PMC3863819 DOI: 10.1038/srep03510] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/29/2013] [Indexed: 01/26/2023] Open
Abstract
Human histone H2A.B (formerly H2A.Bbd), a non-allelic H2A variant, exchanges rapidly as compared to canonical H2A, and preferentially associates with actively transcribed genes. We found that H2A.B transiently accumulated at DNA replication and repair foci in living cells. To explore the biochemical function of H2A.B, we performed nucleosome reconstitution analyses using various lengths of DNA. Two types of H2A.B nucleosomes, octasome and hexasome, were formed with 116, 124, or 130 base pairs (bp) of DNA, and only the octasome was formed with 136 or 146 bp DNA. In contrast, only hexasome formation was observed by canonical H2A with 116 or 124 bp DNA. A small-angle X-ray scattering analysis revealed that the H2A.B octasome is more extended, due to the flexible detachment of the DNA regions at the entry/exit sites from the histone surface. These results suggested that H2A.B rapidly and transiently forms nucleosomes with short DNA segments during chromatin reorganization.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JST, CREST, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuko Sato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JST, CREST, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Ikura
- Department of Mutagenesis, Division of Chromatin Regulatory Network, Radiation Biology Center, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- RIKEN SPring-8 Center, 1-1-1 koto, Sayo, Hyogo 679-5148, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
76
|
Azegami N, Saikusa K, Todokoro Y, Nagadoi A, Kurumizaka H, Nishimura Y, Akashi S. Conclusive evidence of the reconstituted hexasome proven by native mass spectrometry. Biochemistry 2013; 52:5155-7. [PMID: 23879667 DOI: 10.1021/bi4005655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been suggested that the hexasome, in which one of the H2A/H2B dimers is depleted from the canonical nucleosome core particle (NCP), is an essential intermediate during NCP assembly and disassembly, but little structural evidence of this exists. In this study, reconstituted products in a conventional NCP preparation were analyzed by native electrospray ionization mass spectrometry, and it was found that the hexasome, which migrated in a manner almost identical to that of the octasome NCP in native polyacrylamide gel electrophoresis, was produced simultaneously with the octasome NCP. This result might contribute to understanding the assembly and disassembly mechanism of NCPs.
Collapse
Affiliation(s)
- Nanako Azegami
- Graduate School of Nanobioscience, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
It is argued that multiscale approaches are necessary for an explanatory modeling of biological systems. A first step, besides common to the multiscale modeling of physical and living systems, is a bottom-up integration based on the notions of effective parameters and minimal models. Top-down effects can be accounted for in terms of effective constraints and inputs. Biological systems are essentially characterized by an entanglement of bottom-up and top-down influences following from their evolutionary history. A self-consistent multiscale scheme is proposed to capture the ensuing circular causality. Its differences with standard mean-field self-consistent equations and slow-fast decompositions are discussed. As such, this scheme offers a way to unravel the multilevel architecture of living systems and their regulation. Two examples, genome functions and biofilms, are detailed.
Collapse
Affiliation(s)
- Annick Lesne
- CNRS UMR 7600, Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France.
| |
Collapse
|
78
|
Biswas M, Langowski J, Bishop TC. Atomistic simulations of nucleosomes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
Self-assembly of thin plates from micrococcal nuclease-digested chromatin of metaphase chromosomes. Biophys J 2013; 103:567-575. [PMID: 22947873 DOI: 10.1016/j.bpj.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of the enormously long DNA molecules packaged within metaphase chromosomes has been one of the most elusive problems in structural biology. Chromosomal DNA is associated with histones and different structural models consider that the resulting long chromatin fibers are folded forming loops or more irregular three-dimensional networks. Here, we report that fragments of chromatin fibers obtained from human metaphase chromosomes digested with micrococcal nuclease associate spontaneously forming multilaminar platelike structures. These self-assembled structures are identical to the thin plates found previously in partially denatured chromosomes. Under metaphase ionic conditions, the fragments that are initially folded forming the typical 30-nm chromatin fibers are untwisted and incorporated into growing plates. Large plates can be self-assembled from very short chromatin fragments, indicating that metaphase chromatin has a high tendency to generate plates even when there are many discontinuities in the DNA chain. Self-assembly at 37°C favors the formation of thick plates having many layers. All these results demonstrate conclusively that metaphase chromatin has the intrinsic capacity to self-organize as a multilayered planar structure. A chromosome structure consistent of many stacked layers of planar chromatin avoids random entanglement of DNA, and gives compactness and a high physical consistency to chromatids.
Collapse
|
80
|
Dynamics of modeled oligonucleosomes and the role of histone variant proteins in nucleosome organization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:119-49. [PMID: 23582203 DOI: 10.1016/b978-0-12-410523-2.00004-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elucidation of the structural dynamics of a nucleosome is of primary importance for understanding the molecular mechanisms that control the nucleosomal positioning. The presence of variant histone proteins in the nucleosome core raises the functional diversity of the nucleosomes in gene regulation and has the profound epigenetic consequences of great importance for understanding the fundamental issues like the assembly of variant nucleosomes, chromatin remodeling, histone posttranslational modifications, etc. Here, we report our observation of the dominant mechanisms of relaxation motions of the oligonucleosomes such as dimer, trimer, and tetramer (in the beads on a string model) with conventional core histones and role of variant histone H2A.Z in the chromatin dynamics using normal mode analysis. Analysis of the directionality of the global dynamics of the oligonucleosome reveals (i) the in-planar stretching as well as out-of-planar bending motions as the relaxation mechanisms of the oligonucleosome and (ii) the freedom of the individual nucleosome in expressing the combination of the above-mentioned motions as the global mode of dynamics. The highly dynamic N-termini of H3 and (H2A.Z-H2B) dimer evidence their participation in the transcriptionally active state. The key role of variant H2A.Z histone as a major source of vibrant motions via weaker intra- and intermolecular correlations is emphasized in this chapter.
Collapse
|
81
|
Abstract
In the eukaryotic nucleus, processes of DNA metabolism such as transcription, DNA replication, and repair occur in the context of DNA packaged into nucleosomes and higher order chromatin structures. In order to overcome the barrier presented by chromatin structures to the protein machinery carrying out these processes, the cell relies on a class of enzymes called chromatin remodeling complexes which catalyze ATP-dependent restructuring and repositioning of nucleosomes. Chromatin remodelers are large multi-subunit complexes which all share a common SF2 helicase ATPase domain in their catalytic subunit, and are classified into four different families-SWI/SNF, ISWI, CHD, INO80-based on the arrangement of other domains in their catalytic subunit as well as their non-catalytic subunit composition. A large body of structural, biochemical, and biophysical evidence suggests chromatin remodelers operate as histone octamer-anchored directional DNA translocases in order to disrupt DNA-histone interactions and catalyze nucleosome sliding. Remodeling mechanisms are family-specific and depend on factors such as how the enzyme engages with nucleosomal and linker DNA, features of DNA loop intermediates, specificity for mono- or oligonucleosomal substrates, and ability to remove histones and exchange histone variants. Ultimately, the biological function of chromatin remodelers and their genomic targeting in vivo is regulated by each complex's subunit composition, association with chromatin modifiers and histone chaperones, and affinity for chromatin signals such as histone posttranslational modifications.
Collapse
|
82
|
Scorgie JK, Donham DC, Churchill MEA. Analysis of histone chaperone antisilencing function 1 interactions. Methods Enzymol 2012; 512:223-41. [PMID: 22910209 DOI: 10.1016/b978-0-12-391940-3.00010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The assembly and disassembly of chromatin impacts all DNA-dependent processes in eukaryotes. These processes are intricately regulated through stepwise mechanisms, requiring multiple proteins, posttranslational modifications, and remodeling enzymes, as well as specific proteins to chaperone the highly basic and aggregation-prone histone proteins. The histone chaperones are acidic proteins that perform the latter function by maintaining the stability of the histones when they are not associated with DNA and guiding the deposition and removal of histones from DNA. Understanding the thermodynamics of these processes provides deeper insights into the mechanisms of chromatin assembly and disassembly. Here we describe complementary thermodynamic and biochemical approaches for analysis of the interactions of a major chaperone of the H3/H4 dimer, anti-silencing function 1 (Asf1) with histones H3/H4, and DNA. Fluorescence quenching approaches are useful for measuring the binding affinity of Asf1 for histones H3/H4 under equilibrium conditions. Electrophoretic mobility shift analyses are useful for examining Asf1-mediated tetrasome (H3/H4-DNA) assembly and disassembly processes. These approaches potentially can be used more generally for the study of other histone chaperone-histone interactions and provide a means to dissect the role of posttranslational modifications and other factors that participate in chromatin dynamics.
Collapse
Affiliation(s)
- Jean K Scorgie
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
83
|
Thakar A, Sylar E, Flynn FW. Activation of tachykinin, neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation. Peptides 2012; 38:282-90. [PMID: 22985858 PMCID: PMC3513652 DOI: 10.1016/j.peptides.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/17/2023]
Abstract
The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, acetylation, and gene expression, using qRT-PCR, in a hypothalamic cell line (CLU 209) that expresses the NK3R. Senktide (1 nM, 10nM) caused a relaxation of chromatin, an increase in global acetylation of histone H3 and H4, and an increase in the expression of a common set of genes involved in cell signaling, cell growth, and synaptic plasticity. Pretreatment with histone acetyltransferase (HAT) inhibitor (garcinol and 2-methylene y-butylactone), that inhibits p300, p300/CREB binding protein (CBP) associated factor (PCAF), and GCN 5, prevented the senktide-induced increase in expression of most, but not all, of the genes upregulated in response to 1 nM and 10nM senktide. Treatment with 100 nM had the opposite effect: a reduction in chromatin relaxation and decreased acetylation. The expression of four genes was significantly decreased and the HAT inhibitor had a limited effect in blocking the upregulation of genes in response to 100 nM senktide. Activation of the NK3R appears to recruit multiple pathways, including acetylation, and possibly histone deactylases, histone methylases, or DNA methylases to affect chromatin structure and gene expression.
Collapse
Affiliation(s)
- Amit Thakar
- Graduate Neuroscience Program and Department of Zoology and Physiology University of Wyoming Laramie, WY 82072, United States
| | | | | |
Collapse
|
84
|
Barbi M, Mozziconacci J, Wong H, Victor JM. DNA topology in chromosomes: a quantitative survey and its physiological implications. J Math Biol 2012. [PMID: 23179130 DOI: 10.1007/s00285-012-0621-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a simple geometric model, we propose a general method for computing the linking number of the DNA embedded in chromatin fibers. The relevance of the method is reviewed through the single molecule experiments that have been performed in vitro with magnetic tweezers. We compute the linking number of the DNA in the manifold conformational states of the nucleosome which have been evidenced in these experiments and discuss the functional dynamics of chromosomes in the light of these manifold states.
Collapse
Affiliation(s)
- Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, and CNRS GDR 3536, Université Pierre et Marie Curie, Case courrier 121, 4 place Jussieu, 75252 , Paris, France,
| | | | | | | |
Collapse
|
85
|
White RH, Keberlein M, Jackson V. A mutational mimic analysis of histone H3 post-translational modifications: specific sites influence the conformational state of H3/H4, causing either positive or negative supercoiling of DNA. Biochemistry 2012; 51:8173-88. [PMID: 23003102 DOI: 10.1021/bi300872t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone H3 has specific sites of post-translational modifications that serve as epigenetic signals to cellular machinery to direct various processes. Mutational mimics of these modifications (glutamine for acetylation, methionine and leucine for methylation, and glutamic acid for phosphorylation) were constructed at the relevant sites of the major histone variant, H3.2, and their effects on the conformational equilibrium of the H3/H4 tetramer at physiological ionic strength were determined when bound to or free of DNA. The deposition vehicle used for this analysis was NAP1, nucleosome assembly protein 1. Acetylation mimics in the N-terminus preferentially stabilized the left-handed conformer (DNA negatively supercoiled), and mutations within the globular region preferred the right-handed conformer (DNA positively supercoiled). The methylation mimics in the N-terminus tended to maintain characteristics similar to those of wild-type H3/H4; i.e., the conformational equilibrium maintains similar levels of both left- and right-handed conformers. Phosphorylation mimics facilitated a mixed effect, i.e., when at serines, the left-handed conformer, and at threonines, a mixture of both conformers. When double mutations were present, the conformational equilibrium was shifted dramatically, either leftward or rightward depending on the specific sites. In contrast, these mutations tended not to affect the direction and extent of supercoiling for variants H3.1 and H3.3. Variant H3.3 promoted only the left-handed conformer, and H3.1 tended to maintain both conformers. Additional experiments indicate the importance of a propagation mechanism for ensuring the formation of a particular superhelical state over an extended region of the DNA. The potential relevance of these results to the maintenance of epigenetic information on a gene is discussed.
Collapse
Affiliation(s)
- Rachel H White
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
86
|
Liu WH, Roemer SC, Port AM, Churchill MEA. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res 2012; 40:11229-39. [PMID: 23034810 PMCID: PMC3526290 DOI: 10.1093/nar/gks906] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1–H3/H4 or H3/H4–DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)2 tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization.
Collapse
Affiliation(s)
- Wallace H Liu
- Department of Pharmacology, University of Colorado School of Medicine, Mail Stop 8303, PO Box 6511, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
87
|
Freiburghaus C, Lindmark-Månsson H, Paulsson M, Oredsson S. Reduction of ultraviolet light-induced DNA damage in human colon cancer cells treated with a lactoferrin-derived peptide. J Dairy Sci 2012; 95:5552-60. [DOI: 10.3168/jds.2011-5279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/20/2012] [Indexed: 11/19/2022]
|
88
|
Bönisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 2012; 40:10719-41. [PMID: 23002134 PMCID: PMC3510494 DOI: 10.1093/nar/gks865] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability.
Collapse
Affiliation(s)
- Clemens Bönisch
- Department of Molecular Biology, Center for Integrated Protein Science Munich, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | | |
Collapse
|
89
|
New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 2012; 13:436-47. [PMID: 22722606 DOI: 10.1038/nrm3382] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions.
Collapse
|
90
|
Chavez MS, Scorgie JK, Dennehey BK, Noone S, Tyler JK, Churchill ME. The conformational flexibility of the C-terminus of histone H4 promotes histone octamer and nucleosome stability and yeast viability. Epigenetics Chromatin 2012; 5:5. [PMID: 22541333 PMCID: PMC3439350 DOI: 10.1186/1756-8935-5-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 03/19/2012] [Indexed: 01/10/2023] Open
Abstract
Background The protein anti-silencing function 1 (Asf1) chaperones histones H3/H4 for assembly into nucleosomes every cell cycle as well as during DNA transcription and repair. Asf1 interacts directly with H4 through the C-terminal tail of H4, which itself interacts with the docking domain of H2A in the nucleosome. The structure of this region of the H4 C-terminus differs greatly in these two contexts. Results To investigate the functional consequence of this structural change in histone H4, we restricted the available conformations of the H4 C-terminus and analyzed its effect in vitro and in vivo in Saccharomyces cerevisiae. One such mutation, H4 G94P, had modest effects on the interaction between H4 and Asf1. However, in yeast, flexibility of the C-terminal tail of H4 has essential functions that extend beyond chromatin assembly and disassembly. The H4 G94P mutation resulted in severely sick yeast, although nucleosomes still formed in vivo albeit yielding diffuse micrococcal nuclease ladders. In vitro, H4G4P had modest effects on nucleosome stability, dramatically reduced histone octamer stability, and altered nucleosome sliding ability. Conclusions The functional consequences of altering the conformational flexibility in the C-terminal tail of H4 are severe. Interestingly, despite the detrimental effects of the histone H4 G94P mutant on viability, nucleosome formation was not markedly affected in vivo. However, histone octamer stability and nucleosome stability as well as nucleosome sliding ability were altered in vitro. These studies highlight an important role for correct interactions of the histone H4 C-terminal tail within the histone octamer and suggest that maintenance of a stable histone octamer in vivo is an essential feature of chromatin dynamics.
Collapse
Affiliation(s)
- Myrriah S Chavez
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jean K Scorgie
- Department of Pharmacology and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO, 80045-0511, USA
| | - Briana K Dennehey
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth Noone
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mair Ea Churchill
- Department of Pharmacology and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO, 80045-0511, USA
| |
Collapse
|
91
|
Vermeulen M, Timmers HTM. Grasping trimethylation of histone H3 at lysine 4. Epigenomics 2012; 2:395-406. [PMID: 22121900 DOI: 10.2217/epi.10.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Post-translational modifications of chromatin have become a 'booming' area of biomedical research. One particularly interesting modification that is important for eukaryotic gene expression is trimethylation of histone H3 lysine 4 (H3K4me3), which is almost exclusively associated with active promoters of RNA polymerase II. In this article, we highlight the recent progress related to the biochemistry and biology of this histone mark, including its relevant 'writers' and 'readers'. We also outline the complex regulatory mechanisms that are involved in establishing H3K4me3 in health and disease. Further understanding of H3K4me3 regulation will offer both more insight into chromatin-based mechanisms of gene regulation and provide opportunities for epigenetic intervention of the diseased state.
Collapse
Affiliation(s)
- Michiel Vermeulen
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
92
|
Arimura Y, Tachiwana H, Oda T, Sato M, Kurumizaka H. Structural Analysis of the Hexasome, Lacking One Histone H2A/H2B Dimer from the Conventional Nucleosome. Biochemistry 2012; 51:3302-9. [DOI: 10.1021/bi300129b] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Structural Biology,
Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology,
Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Takashi Oda
- Division
of Macromolecular Crystallography,
Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi,
Yokohama 230-0045, Japan
| | - Mamoru Sato
- Division
of Macromolecular Crystallography,
Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi,
Yokohama 230-0045, Japan
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo,
Hyogo 679-5148, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology,
Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| |
Collapse
|
93
|
Bohr J, Olsen K. Twist neutrality and the diameter of the nucleosome core particle. PHYSICAL REVIEW LETTERS 2012; 108:098101. [PMID: 22463669 DOI: 10.1103/physrevlett.108.098101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Indexed: 05/31/2023]
Abstract
The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement for the amount of bending. For the diameter of the coiled DNA we obtain the relatively accurate numerical estimate of 2R=82 Å.
Collapse
Affiliation(s)
- Jakob Bohr
- DTU Nanotech, Building 345B Ørsteds Plads, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | | |
Collapse
|
94
|
González-Romero R, Rivera-Casas C, Fernández-Tajes J, Ausió J, Méndez J, Eirín-López JM. Chromatin specialization in bivalve molluscs: a leap forward for the evaluation of Okadaic Acid genotoxicity in the marine environment. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:175-81. [PMID: 21946397 DOI: 10.1016/j.cbpc.2011.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
Abstract
Marine biotoxins synthesized by Harmful Algal Blooms (HABs) represent one of the most important sources of contamination in marine environments as well as a serious threat to fisheries and aquaculture-based industries in coastal areas. Among these biotoxins Okadaic Acid (OA) is of critical interest as it represents the most predominant Diarrhetic Shellfish Poisoning biotoxin in the European coasts. Furthermore, OA is a potent tumor promoter with aneugenic and clastogenic effects on the hereditary material, most notably DNA breaks and alterations in DNA repair mechanisms. Therefore, a great effort has been devoted to the biomonitoring of OA in the marine environment during the last two decades, mainly based on physicochemical and physiological parameters using mussels as sentinel organisms. However, the molecular genotoxic effects of this biotoxin make chromatin structure a good candidate for an alternative strategy for toxicity assessment with faster and more sensitive evaluation. To date, the development of chromatin-based studies to this purpose has been hampered by the complete lack of information on chromatin of invertebrate marine organisms, especially in bivalve molluscs. Our preliminary results have revealed the presence of histone variants involved in DNA repair and chromatin specialization in mussels and clams. In this work we use this information to put forward a proposal focused on the development of chromatin-based tests for OA genotoxicity in the marine environment. The implementation of such tests in natural populations has the potential to provide an important leap in the biomonitoring of this biotoxin. The outcome of such monitoring may have critical implications for the evaluation of DNA damage in these marine organisms. They will provide as well important tools for the optimization of their harvesting and for the elaboration of additional tests designed to evaluate the safety of their consumption and potential implications for consumer's health.
Collapse
Affiliation(s)
- Rodrigo González-Romero
- CHROMEVOL-XENOMAR Group, Departamento de Biología Celular y Molecular, Universidade da Coruña, E15071 A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
95
|
Teif VB, Shkrabkou AV, Egorova VP, Krot VI. Nucleosomes in gene regulation: Theoretical approaches. Mol Biol 2012. [DOI: 10.1134/s002689331106015x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Histone H2A (H2A.X and H2A.Z) variants in molluscs: molecular characterization and potential implications for chromatin dynamics. PLoS One 2012; 7:e30006. [PMID: 22253857 PMCID: PMC3256202 DOI: 10.1371/journal.pone.0030006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022] Open
Abstract
Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs.
Collapse
|
97
|
Georgieva M, Roguev A, Balashev K, Zlatanova J, Miloshev G. Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:366-74. [PMID: 22200500 DOI: 10.1016/j.bbagrm.2011.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/08/2011] [Accepted: 12/11/2011] [Indexed: 01/17/2023]
Abstract
Despite the existence of certain differences between yeast and higher eukaryotic cells a considerable part of our knowledge on chromatin structure and function has been obtained by experimenting on Saccharomyces cerevisiae. One of the peculiarities of S. cerevisiae cells is the unusual and less abundant linker histone, Hho1p. Sparse is the information about Hho1p involvement in yeast higher-order chromatin organization. In an attempt to search for possible effects of Hho1p on the global organization of chromatin, we have applied Chromatin Comet Assay (ChCA) on HHO1 knock-out yeast cells. The results showed that the mutant cells exhibited highly distorted higher-order chromatin organization. Characteristically, linker histone depleted chromatin generally exhibited longer chromatin loops than the wild-type. According to the Atomic force microscopy data the wild-type chromatin appeared well organized in structures resembling quite a lot the "30-nm" fiber in contrast to HHO1 knock-out yeast.
Collapse
Affiliation(s)
- Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
98
|
Recouvreux P, Lavelle C, Barbi M, Conde E Silva N, Le Cam E, Victor JM, Viovy JL. Linker histones incorporation maintains chromatin fiber plasticity. Biophys J 2011; 100:2726-35. [PMID: 21641318 DOI: 10.1016/j.bpj.2011.03.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 11/18/2022] Open
Abstract
Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo. We had previously shown that under positive torsional constraints, nucleosomes can undergo a reversible chiral transition toward a state of positive topology. We demonstrate here that chromatin fibers comprising linker histones present a torsional plasticity similar to that of naked nucleosome arrays. Chromatosomes can undergo a reversible chiral transition toward a state of positive torsion (reverse chromatosome) without loss of linker histones.
Collapse
Affiliation(s)
- Pierre Recouvreux
- Institut Curie, Centre National de la Recherche Scientifique UMR 168, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Chromatin is a highly regulated, modular nucleoprotein complex that is central to many processes in eukaryotes. The organization of DNA into nucleosomes and higher-order structures has profound implications for DNA accessibility. Alternative structural states of the nucleosome, and the thermodynamic parameters governing its assembly and disassembly, need to be considered in order to understand how access to nucleosomal DNA is regulated. In this review, we provide a brief historical account of how the overriding perception regarding aspects of nucleosome structure has changed over the past thirty years. We discuss recent technical advances regarding nucleosome structure and its physical characterization and review the evidence for alternative nucleosome conformations and their implications for nucleosome and chromatin dynamics.
Collapse
Affiliation(s)
- Andrew J Andrews
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | |
Collapse
|
100
|
Donham DC, Scorgie JK, Churchill MEA. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucleic Acids Res 2011; 39:5449-58. [PMID: 21447559 PMCID: PMC3141235 DOI: 10.1093/nar/gkr097] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone–histone interactions or the direct role of Asf1 in the formation or disassembly of histone–DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone–DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin.
Collapse
Affiliation(s)
- Douglas C Donham
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|