51
|
Valle A, Hervis Y, Socas L, Canet L, Faheem M, Barbosa J, Lanio M, Pazos I. The multigene families of actinoporins (part II): Strategies for heterologous production in Escherichia coli. Toxicon 2016; 118:64-81. [DOI: 10.1016/j.toxicon.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 11/26/2022]
|
52
|
Morante K, Bellomio A, Gil-Cartón D, Redondo-Morata L, Sot J, Scheuring S, Valle M, González-Mañas JM, Tsumoto K, Caaveiro JMM. Identification of a Membrane-bound Prepore Species Clarifies the Lytic Mechanism of Actinoporins. J Biol Chem 2016; 291:19210-19219. [PMID: 27445331 PMCID: PMC5016661 DOI: 10.1074/jbc.m116.734053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/06/2022] Open
Abstract
Pore-forming toxins (PFTs) are cytolytic proteins belonging to the molecular warfare apparatus of living organisms. The assembly of the functional transmembrane pore requires several intermediate steps ranging from a water-soluble monomeric species to the multimeric ensemble inserted in the cell membrane. The non-lytic oligomeric intermediate known as prepore plays an essential role in the mechanism of insertion of the class of β-PFTs. However, in the class of α-PFTs, like the actinoporins produced by sea anemones, evidence of membrane-bound prepores is still lacking. We have employed single-particle cryo-electron microscopy (cryo-EM) and atomic force microscopy to identify, for the first time, a prepore species of the actinoporin fragaceatoxin C bound to lipid vesicles. The size of the prepore coincides with that of the functional pore, except for the transmembrane region, which is absent in the prepore. Biochemical assays indicated that, in the prepore species, the N terminus is not inserted in the bilayer but is exposed to the aqueous solution. Our study reveals the structure of the prepore in actinoporins and highlights the role of structural intermediates for the formation of cytolytic pores by an α-PFT.
Collapse
Affiliation(s)
- Koldo Morante
- From the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,the Department of Biochemistry and Molecular Biology and.,Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain
| | - Augusto Bellomio
- the Department of Biochemistry and Molecular Biology and.,Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain
| | - David Gil-Cartón
- the Structural Biology Unit, Center for Cooperative Research in Biosciences, CICbiogune, 48160 Derio, Spain
| | - Lorena Redondo-Morata
- the U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France, and
| | - Jesús Sot
- the Department of Biochemistry and Molecular Biology and.,Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain
| | - Simon Scheuring
- the U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France, and
| | - Mikel Valle
- the Structural Biology Unit, Center for Cooperative Research in Biosciences, CICbiogune, 48160 Derio, Spain
| | | | - Kouhei Tsumoto
- From the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, .,the Institute of Medical Science, University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| | - Jose M M Caaveiro
- From the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan,
| |
Collapse
|
53
|
Rivera-de-Torre E, García-Linares S, Alegre-Cebollada J, Lacadena J, Gavilanes JG, Martínez-Del-Pozo Á. Synergistic Action of Actinoporin Isoforms from the Same Sea Anemone Species Assembled into Functionally Active Heteropores. J Biol Chem 2016; 291:14109-14119. [PMID: 27129251 DOI: 10.1074/jbc.m115.710491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are the pore-forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families that give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here, using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other's activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores because (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help us understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid
| | | | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid.
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid.
| |
Collapse
|
54
|
Wacklin HP, Bremec BB, Moulin M, Rojko N, Haertlein M, Forsyth T, Anderluh G, Norton RS. Neutron reflection study of the interaction of the eukaryotic pore-forming actinoporin equinatoxin II with lipid membranes reveals intermediate states in pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:640-52. [DOI: 10.1016/j.bbamem.2015.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/02/2015] [Accepted: 12/15/2015] [Indexed: 01/07/2023]
|
55
|
Weber DK, Yao S, Rojko N, Anderluh G, Lybrand TP, Downton MT, Wagner J, Separovic F. Characterization of the Lipid-Binding Site of Equinatoxin II by NMR and Molecular Dynamics Simulation. Biophys J 2016; 108:1987-96. [PMID: 25902438 DOI: 10.1016/j.bpj.2015.03.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022] Open
Abstract
Equinatoxin II (EqtII) is a soluble, 20 kDa pore-forming protein toxin isolated from the sea anemone Actinia equina. Although pore formation has long been known to occur in distinct stages, including monomeric attachment to phospholipid membranes followed by detachment of the N-terminal helical domain and oligomerization into the final pore assembly, atomistic-level detail of the protein-lipid interactions underlying these events remains elusive. Using high-resolution solution state NMR of uniformly-(15)N-labeled EqtII at the critical micelle concentration of dodecylphosphocholine, we have mapped the lipid-binding site through chemical shift perturbations. Subsequent docking of an EqtII monomer onto a dodecylphosphocholine micelle, followed by 400 ns of all-atom molecular dynamics simulation, saw several high-occupancy lipid-binding pockets stabilized by cation-π, hydrogen bonding, and hydrophobic interactions; and stabilization of the loop housing the conserved arginine-glycine-aspartate motif. Additional simulation of EqtII with an N-acetyl sphingomyelin micelle, for which high-resolution NMR data cannot be obtained due to aggregate formation, revealed that sphingomyelin specificity might occur via hydrogen bonding to the 3-OH and 2-NH groups unique to the ceramide backbone by side chains of D109 and Y113; and main chains of P81 and W112. Furthermore, a binding pocket formed by K30, K77, and P81, proximate to the hinge region of the N-terminal helix, was identified and may be implicated in triggering pore formation.
Collapse
Affiliation(s)
- Daniel K Weber
- School of Chemistry, University of Melbourne, Victoria, Australia; Bio21 Institute, University of Melbourne, Victoria, Australia
| | - Shenggen Yao
- Bio21 Institute, University of Melbourne, Victoria, Australia
| | - Nejc Rojko
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Terry P Lybrand
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Matthew T Downton
- IBM Research Collaboratory for Life Sciences, Victorian Life Sciences Computation Initiative, University of Melbourne, Victoria, Australia
| | - John Wagner
- IBM Research Collaboratory for Life Sciences, Victorian Life Sciences Computation Initiative, University of Melbourne, Victoria, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, Victoria, Australia; Bio21 Institute, University of Melbourne, Victoria, Australia.
| |
Collapse
|
56
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
Cosentino K, Ros U, García-Sáez AJ. Assembling the puzzle: Oligomerization of α-pore forming proteins in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:457-466. [PMID: 26375417 DOI: 10.1016/j.bbamem.2015.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Pore forming proteins (PFPs) share the ability of creating pores that allow the passage of ions, proteins or other constituents through a wide variety of target membranes, ranging from bacteria to humans. They often cause cell death, as pore formation disrupts the membrane permeability barrier required for maintaining cell homeostasis. The organization into supramolecular complexes or oligomers that pierce the membrane is a common feature of PFPs. However, the molecular pathway of self-assembly and pore opening remains unclear. Here, we review the most recent discoveries in the mechanism of membrane oligomerization and pore formation of a subset of PFPs, the α-PFPs, whose pore-forming domains are formed by helical segments. Only now we are starting to grasp the molecular details of their function, mainly thanks to the introduction of single molecule microscopy and nanoscopy techniques. This article is part of a Special Issue entitled: Pore-forming toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Katia Cosentino
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany.,Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Uris Ros
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany.,Max-Planck Institute for Intelligent Systems, Stuttgart, Germany.,Center for Protein Studies, Havana University, Havana, Cuba
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany.,Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
58
|
Rojko N, Dalla Serra M, Maček P, Anderluh G. Pore formation by actinoporins, cytolysins from sea anemones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:446-56. [PMID: 26351738 DOI: 10.1016/j.bbamem.2015.09.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Abstract
Actinoporins (APs) from sea anemones are ~20 kDa pore forming toxins with a β-sandwich structure flanked by two α-helices. The molecular mechanism of APs pore formation is composed of several well-defined steps. APs bind to membrane by interfacial binding site composed of several aromatic amino acid residues that allow binding to phosphatidylcholine and specific recognition of sphingomyelin. Subsequently, the N-terminal α-helix from the β-sandwich has to be inserted into the lipid/water interphase in order to form a functional pore. Functional studies and single molecule imaging revealed that only several monomers, 3-4, oligomerise to form a functional pore. In this model the α-helices and surrounding lipid molecules build toroidal pore. In agreement, AP pores are transient and electrically heterogeneous. On the contrary, crystallized oligomers of actinoporin fragaceatoxin C were found to be composed of eight monomers with no lipids present between the adjacent α-helices. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Maur Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Nejc Rojko
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche & Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
59
|
Valle A, Alvarado-Mesén J, Lanio M, Álvarez C, Barbosa J, Pazos I. The multigene families of actinoporins (part I): Isoforms and genetic structure. Toxicon 2015; 103:176-87. [DOI: 10.1016/j.toxicon.2015.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/31/2015] [Accepted: 06/23/2015] [Indexed: 11/24/2022]
|
60
|
Ros U, Rodríguez-Vera W, Pedrera L, Valiente PA, Cabezas S, Lanio ME, García-Sáez AJ, Alvarez C. Differences in activity of actinoporins are related with the hydrophobicity of their N-terminus. Biochimie 2015; 116:70-8. [DOI: 10.1016/j.biochi.2015.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
61
|
Ros U, García-Sáez AJ. More Than a Pore: The Interplay of Pore-Forming Proteins and Lipid Membranes. J Membr Biol 2015; 248:545-61. [PMID: 26087906 DOI: 10.1007/s00232-015-9820-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Abstract
Pore-forming proteins (PFPs) punch holes in their target cell membrane to alter their permeability. Permeabilization of lipid membranes by PFPs has received special attention to study the basic molecular mechanisms of protein insertion into membranes and the development of biotechnological tools. PFPs act through a general multi-step mechanism that involves (i) membrane partitioning, (ii) insertion into the hydrophobic core of the bilayer, (iii) oligomerization, and (iv) pore formation. Interestingly, PFPs and membranes show a dynamic interplay. As PFPs are usually produced as soluble proteins, they require a large conformational change for membrane insertion. Moreover, membrane structure is modified upon PFPs insertion. In this context, the toroidal pore model has been proposed to describe a pore architecture in which not only protein molecules but also lipids are directly involved in the structure. Here, we discuss how PFPs and lipids cooperate and remodel each other to achieve pore formation, and explore new evidences of protein-lipid pore structures.
Collapse
Affiliation(s)
- Uris Ros
- Center for Protein Studies, Faculty of Biology, Calle 25 # 455, Plaza de la Revolución, Havana, Cuba
| | | |
Collapse
|
62
|
Morante K, Caaveiro JM, Viguera AR, Tsumoto K, González-Mañas JM. Functional characterization of Val60, a key residue involved in the membrane-oligomerization of fragaceatoxin C, an actinoporin fromActinia fragacea. FEBS Lett 2015; 589:1840-6. [DOI: 10.1016/j.febslet.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
|
63
|
Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel) 2015; 7:2251-71. [PMID: 26094698 PMCID: PMC4488701 DOI: 10.3390/toxins7062251] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.
Collapse
Affiliation(s)
- Mahdokht Jouiaei
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Angel A Yanagihara
- Pacific Cnidaria Research Lab, Department of Tropical Medicine, University of Hawaii, Honolulu, HI 96822, USA.
| | - Bruno Madio
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Timo J Nevalainen
- Department of Pathology, University of Turku, Turku FIN-20520, Finland.
| | - Paul F Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| |
Collapse
|
64
|
The effect of cholesterol on the long-range network of interactions established among sea anemone Sticholysin II residues at the water-membrane interface. Mar Drugs 2015; 13:1647-65. [PMID: 25815890 PMCID: PMC4413179 DOI: 10.3390/md13041647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022] Open
Abstract
Actinoporins are α-pore forming proteins with therapeutic potential, produced by sea anemones. Sticholysin II (StnII) from Stichodactyla helianthus is one of its most extensively characterized members. These proteins remain stably folded in water, but upon interaction with lipid bilayers, they oligomerize to form a pore. This event is triggered by the presence of sphingomyelin (SM), but cholesterol (Chol) facilitates pore formation. Membrane attachment and pore formation require changes involving long-distance rearrangements of residues located at the protein-membrane interface. The influence of Chol on membrane recognition, oligomerization, and/or pore formation is now studied using StnII variants, which are characterized in terms of their ability to interact with model membranes in the presence or absence of Chol. The results obtained frame Chol not only as an important partner for SM for functional membrane recognition but also as a molecule which significantly reduces the structural requirements for the mentioned conformational rearrangements to occur. However, given that the DOPC:SM:Chol vesicles employed display phase coexistence and have domain boundaries, the observed effects could be also due to the presence of these different phases on the membrane. In addition, it is also shown that the Arg51 guanidinium group is strictly required for membrane recognition, independently of the presence of Chol.
Collapse
|
65
|
Morante K, Caaveiro JMM, Tanaka K, González-Mañas JM, Tsumoto K. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties. J Biol Chem 2015; 290:10850-61. [PMID: 25759390 DOI: 10.1074/jbc.m114.615211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 12/29/2022] Open
Abstract
The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.
Collapse
Affiliation(s)
- Koldo Morante
- From the Department of Bioengineering, Graduate School of Engineering and the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Jose M M Caaveiro
- From the Department of Bioengineering, Graduate School of Engineering and
| | - Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Juan Manuel González-Mañas
- the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Kouhei Tsumoto
- From the Department of Bioengineering, Graduate School of Engineering and Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, the Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| |
Collapse
|
66
|
Tanaka K, Caaveiro JMM, Morante K, González-Mañas JM, Tsumoto K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat Commun 2015; 6:6337. [PMID: 25716479 PMCID: PMC4351601 DOI: 10.1038/ncomms7337] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFT) are water-soluble proteins that possess the remarkable ability to self-assemble on the membrane of target cells, where they form pores causing cell damage. Here, we elucidate the mechanism of action of the haemolytic protein fragaceatoxin C (FraC), a α-barrel PFT, by determining the crystal structures of FraC at four different stages of the lytic mechanism, namely the water-soluble state, the monomeric lipid-bound form, an assembly intermediate and the fully assembled transmembrane pore. The structure of the transmembrane pore exhibits a unique architecture composed of both protein and lipids, with some of the lipids lining the pore wall, acting as assembly cofactors. The pore also exhibits lateral fenestrations that expose the hydrophobic core of the membrane to the aqueous environment. The incorporation of lipids from the target membrane within the structure of the pore provides a membrane-specific trigger for the activation of a haemolytic toxin. Actinoporins are water-soluble pore-forming toxins that self-assemble in the membranes of target cells. Here, the authors provide insight into the mechanism of membrane pore formation by solving the structures of several states of the hemolytic protein fragaceatoxin C, including the fully assembled pore.
Collapse
Affiliation(s)
- Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koldo Morante
- 1] Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Department of Biochemistry and Molecular Biology, University of the Basque Country, Lejona, Vizcaya 48940, Spain
| | - Juan Manuel González-Mañas
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Lejona, Vizcaya 48940, Spain
| | - Kouhei Tsumoto
- 1] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan [3] Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
67
|
Subburaj Y, Ros U, Hermann E, Tong R, García-Sáez AJ. Toxicity of an α-pore-forming toxin depends on the assembly mechanism on the target membrane as revealed by single molecule imaging. J Biol Chem 2014; 290:4856-4865. [PMID: 25525270 DOI: 10.1074/jbc.m114.600676] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity.
Collapse
Affiliation(s)
- Yamunadevi Subburaj
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Uris Ros
- Center for Protein Studies, Faculty of Biology, Calle 25 #455, Plaza de la Revolución, La Habana, Cuba
| | - Eduard Hermann
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany,; Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Rudi Tong
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Ana J García-Sáez
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany,; Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| |
Collapse
|
68
|
Rojko N, Cronin B, Danial JSH, Baker MAB, Anderluh G, Wallace MI. Imaging the lipid-phase-dependent pore formation of equinatoxin II in droplet interface bilayers. Biophys J 2014; 106:1630-7. [PMID: 24739162 DOI: 10.1016/j.bpj.2013.11.4507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 11/17/2022] Open
Abstract
Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase.
Collapse
Affiliation(s)
- N Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - B Cronin
- Department of Chemistry, Oxford University, Oxford, UK
| | - J S H Danial
- Department of Chemistry, Oxford University, Oxford, UK
| | - M A B Baker
- Department of Chemistry, Oxford University, Oxford, UK
| | - G Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; National Institute of Chemistry, Ljubljana, Slovenia.
| | - M I Wallace
- Department of Chemistry, Oxford University, Oxford, UK.
| |
Collapse
|
69
|
Antonini V, Pérez-Barzaga V, Bampi S, Pentón D, Martínez D, Serra MD, Tejuca M. Functional characterization of sticholysin I and W111C mutant reveals the sequence of the actinoporin's pore assembly. PLoS One 2014; 9:e110824. [PMID: 25350457 PMCID: PMC4211696 DOI: 10.1371/journal.pone.0110824] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
The use of pore-forming toxins in the construction of immunotoxins against tumour cells is an alternative for cancer therapy. In this protein family one of the most potent toxins are the actinoporins, cytolysins from sea anemones. We work on the construction of tumour proteinase-activated immunotoxins using sticholysin I (StI), an actinoporin isolated from the sea anemone Stichodactyla helianthus. To accomplish this objective, recombinant StI (StIr) with a mutation in the membrane binding region has been employed. In this work, it was evaluated the impact of mutating tryptophan 111 to cysteine on the toxin pore forming capability. StI W111C is still able to permeabilize erythrocytes and liposomes, but at ten-fold higher concentration than StI. This is due to its lower affinity for the membrane, which corroborates the importance of residue 111 for the binding of actinoporins to the lipid bilayer. In agreement, other functional characteristics not directly associated to the binding, are essentially the same for both variants, that is, pores have oligomeric structures with similar radii, conductance, cation-selectivity, and instantaneous current-voltage behavior. In addition, this work provides experimental evidence sustaining the toroidal protein-lipid actinoporins lytic structures, since the toxins provoke the trans-bilayer movement (flip-flop) of a pyrene-labeled analogue of phosphatidylcholine in liposomes, indicating the existence of continuity between the outer and the inner membrane leaflet. Finally, our planar lipid membranes results have also contributed to a better understanding of the actinoporin's pore assembly mechanism. After the toxin binding and the N-terminal insertion in the lipid membrane, the pore assembly occurs by passing through different transient sub-conductance states. These states, usually 3 or 4, are due to the successive incorporation of N-terminal α-helices and lipid heads to the growing pores until a stable toroidal oligomeric structure is formed, which is mainly tetrameric.
Collapse
Affiliation(s)
- Valeria Antonini
- National Research Council of Italy - Institute of Biophysics and Bruno Kessler Foundation, Trento, Italy
| | - Victor Pérez-Barzaga
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba
| | - Silvia Bampi
- National Research Council of Italy - Institute of Biophysics and Bruno Kessler Foundation, Trento, Italy
| | - David Pentón
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba
| | - Diana Martínez
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba
| | - Mauro Dalla Serra
- National Research Council of Italy - Institute of Biophysics and Bruno Kessler Foundation, Trento, Italy
- * E-mail: (MDS); (MT)
| | - Mayra Tejuca
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba
- * E-mail: (MDS); (MT)
| |
Collapse
|
70
|
Baker MAB, Rojko N, Cronin B, Anderluh G, Wallace MI. Photobleaching Reveals Heterogeneous Stoichiometry for Equinatoxin II Oligomers. Chembiochem 2014; 15:2139-45. [DOI: 10.1002/cbic.201300799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 01/19/2023]
|
71
|
Sticholysin I–membrane interaction: An interplay between the presence of sphingomyelin and membrane fluidity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1752-9. [DOI: 10.1016/j.bbamem.2014.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
72
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
73
|
García-Linares S, Richmond R, García-Mayoral MF, Bustamante N, Bruix M, Gavilanes JG, Martínez-del-Pozo Á. The sea anemone actinoporin (Arg-Gly-Asp) conserved motif is involved in maintaining the competent oligomerization state of these pore-forming toxins. FEBS J 2014; 281:1465-1478. [DOI: 10.1111/febs.12717] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Ryan Richmond
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | | | | | - Marta Bruix
- Instituto de Química-Física Rocasolano; Madrid Spain
| | - José G. Gavilanes
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Álvaro Martínez-del-Pozo
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| |
Collapse
|
74
|
Abstract
Membrane proteins are generally divided into two classes. Integral proteins span the lipid bilayer, and peripheral proteins are located at the membrane surface. Here, we provide evidence for membrane proteins of a third class that stabilize lipid pores, most probably as toroidal structures. We examined mutants of the staphylococcal α-hemolysin pore so severely truncated that the protein cannot span a bilayer. Nonetheless, the doughnut-like structures elicited well-defined transmembrane ionic currents by inducing pore formation in the underlying lipids. The formation of lipid pores, produced here by a structurally defined protein, is supported by the lipid and voltage dependences of pore formation, and by molecular dynamics simulations. We discuss the role of stabilized lipid pores in amyloid disease, the action of antimicrobial peptides, and the assembly of the membrane-attack complexes of the immune system.
Collapse
|
75
|
López-Castilla A, Pazos F, Schreier S, Pires JR. Solution NMR analysis of the interaction between the actinoporin sticholysin I and DHPC micelles--correlation with backbone dynamics. Proteins 2013; 82:1022-34. [PMID: 24218049 DOI: 10.1002/prot.24475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/26/2013] [Accepted: 11/04/2013] [Indexed: 11/08/2022]
Abstract
Sticholysin I (StI), an actinoporin expressed as a water-soluble protein by the sea anemone Stichodactyla helianthus, binds to natural and model membranes, forming oligomeric pores. It is proposed that the first event of a multistep pore formation mechanism consists of the monomeric protein attachment to the lipid bilayer. To date there is no high-resolution structure of the actinoporin pore or other membrane-bound form available. Here we evaluated StI:micelle complexes of variable lipid composition to look for a suitable model for NMR studies. Micelles of pure or mixed lysophospholipids and of dihexanoyl phosphatidylcholine (DHPC) were examined. The StI:DHPC micelle was found to be the best system, yielding a stable sample and good quality spectra. A comprehensive chemical shift perturbation analysis was performed to map the StI membrane recognition site in the presence of DHPC micelles. The region mapped (residues F(51), R(52), S(53) in loop 3; F(107), D(108), Y(109), W(111), Y(112), W(115) in loop 7; Q(129), Y(132), D(134), M(135), Y(136), Y(137), G(138) in helix-α2) is in agreement with previously reported data, but additional residues were found to interact, especially residues V(81), A(82), T(83), G(84) in loop 5, and A(85), A(87) in strand-β5. Backbone dynamics measurements of StI free in solution and bound to micelles highlighted the relevance of protein flexibility for membrane binding and suggested that a conformer selection process may take place during protein-membrane interaction. We conclude that the StI:DHPC micelles system is a suitable model for further characterization of an actinoporin membrane-bound form by solution NMR.
Collapse
Affiliation(s)
- Aracelys López-Castilla
- Centro de Estudio de Proteinas, Facultad de Biologia, Universidad de la Habana, Habana, Cuba; Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
76
|
Celedón G, González G, Gulppi F, Pazos F, Lanio ME, Alvarez C, Calderón C, Montecinos R, Lissi E. Effect of human serum albumin upon the permeabilizing activity of sticholysin II, a pore forming toxin from Stichodactyla heliantus. Protein J 2013; 32:593-600. [PMID: 24197505 DOI: 10.1007/s10930-013-9521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sticholysin II (St II) is a haemolytic toxin isolated from the sea anemone Stichodactyla helianthus. The high haemolytic activity of this toxin is strongly dependent on the red cell status and the macromolecule conformation. In the present communication we evaluate the effect of human serum albumin on St II haemolytic activity and its capacity to form pores in the bilayer of synthetic liposomes. St II retains its pore forming capacity in the presence of large concentrations (up to 500 μM) of human serum albumin. This effect is observed both in its capacity to produce red blood cells haemolysis and to generate functional pores in liposomes. In particular, the capacity of the toxin to lyse red blood cells increases in the presence of human serum albumin (HSA). Regarding the rate of the pore forming process, it is moderately decreased in liposomes and in red blood cells, in spite of an almost total coverage of the interface by albumin. All the data obtained in red cells and model membranes show that St II remains lytically active even in the presence of high HSA concentrations. This stubbornness can explain why the toxin is able to exert its haemolytic activity on membranes immersed in complex plasma matrixes such as those present in living organisms.
Collapse
Affiliation(s)
- Gloria Celedón
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ros U, Edwards MA, Epand RF, Lanio ME, Schreier S, Yip CM, Alvarez C, Epand RM. The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2757-62. [DOI: 10.1016/j.bbamem.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022]
|
78
|
Ros U, Souto ALCF, de Oliveira FJ, Crusca E, Pazos F, Cilli EM, Lanio ME, Schreier S, Alvarez C. Functional and topological studies with Trp-containing analogs of the peptide StII1-30derived from the N-terminus of the pore forming toxin sticholysin II: contribution to understand its orientation in membrane. Biopolymers 2013; 100:337-46. [DOI: 10.1002/bip.22211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/14/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Uris Ros
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| | - Ana Lucia C. F. Souto
- Department of Biochemistry; Institute of Chemistry; University of São Paulo (USP); São Paulo; Brazil
| | - Felipe J. de Oliveira
- Department of Biochemistry; Institute of Chemistry; University of São Paulo (USP); São Paulo; Brazil
| | - Edson Crusca
- Department of Biochemistry and Chemical Technology; Institute of Chemistry; São Paulo State University (UNESP); Araraquara; São Paulo; Brazil
| | - Fabiola Pazos
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| | - Eduardo M. Cilli
- Department of Biochemistry and Chemical Technology; Institute of Chemistry; São Paulo State University (UNESP); Araraquara; São Paulo; Brazil
| | - Maria E. Lanio
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| | - Shirley Schreier
- Department of Biochemistry; Institute of Chemistry; University of São Paulo (USP); São Paulo; Brazil
| | - Carlos Alvarez
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| |
Collapse
|
79
|
Rojko N, Kristan KČ, Viero G, Žerovnik E, Maček P, Dalla Serra M, Anderluh G. Membrane damage by an α-helical pore-forming protein, Equinatoxin II, proceeds through a succession of ordered steps. J Biol Chem 2013; 288:23704-15. [PMID: 23803608 DOI: 10.1074/jbc.m113.481572] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant. The mutant was engineered to monitor the insertion of the N terminus into the lipid bilayer by labeling Cys-18 with a fluorescence probe and at the same time to control the flexibility of the N-terminal region by the disulfide bond formed between cysteines introduced at positions 8 and 69. The insertion of the N terminus into the membrane proceeded shortly after the toxin binding and was followed by oligomerization. The oxidized, non-lytic, form of the mutant was still able to bind to membranes and oligomerize at the same level as the wild-type or the reduced form. However, the kinetics of the N-terminal helix insertion, the release of calcein from erythrocyte ghosts, and hemolysis of erythrocytes was much slower when membrane-bound oxidized mutant was reduced by the addition of the reductant. Results show that the N-terminal region needs to be inserted in the lipid membrane before the oligomerization into the final pore and imply that there is no need for a stable prepore formation. This is different from β-pore-forming toxins that often form β-barrel pores via a stable prepore complex.
Collapse
Affiliation(s)
- Nejc Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
80
|
García-Linares S, Castrillo I, Bruix M, Menéndez M, Alegre-Cebollada J, Martínez-del-Pozo Á, Gavilanes JG. Three-dimensional structure of the actinoporin sticholysin I. Influence of long-distance effects on protein function. Arch Biochem Biophys 2013; 532:39-45. [PMID: 23376038 DOI: 10.1016/j.abb.2013.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
Actinoporins are water-soluble proteins with the ability to form pores upon insertion into biological membranes. They constitute a family of proteins with high degree of sequence identities but different hemolytic activities, suggesting that minor conformational arrangements result in major functional changes. A good example of this situation is the sea anemone Stichodactyla helianthus which produces two very similar actinoporins, sticholysins I (StnI) and II (StnII), but of very different hemolytic efficiency. Within this idea, given that the high resolution three-dimensional structure of StnII is already known, we have now solved that one corresponding to StnI in order to analyze the influence of particular residues on the conformation and activity of these proteins. In addition, random mutagenesis has been also used to produce five less hemolytic variants of StnI. All these mutations map to functionally relevant regions because they are probably involved in conformational changes associated with pore formation, which take place after membrane binding, and involve long-distance rearrangements of the polypeptide chain of actinoporins.
Collapse
Affiliation(s)
- Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
81
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
82
|
Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 2012; 10:1812-1851. [PMID: 23015776 PMCID: PMC3447340 DOI: 10.3390/md10081812] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 01/20/2023] Open
Abstract
The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na⁺ and K⁺ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.
Collapse
Affiliation(s)
- Bárbara Frazão
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
83
|
Pores of the toxin FraC assemble into 2D hexagonal clusters in both crystal structures and model membranes. J Struct Biol 2012; 180:312-7. [PMID: 22728830 DOI: 10.1016/j.jsb.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/06/2012] [Accepted: 06/10/2012] [Indexed: 11/24/2022]
Abstract
The recent high-resolution structure of the toxin FraC derived from the sea anemone Actinia fragacea has provided new insight into the mechanism of pore formation by actinoporins. In this work, we report two new crystal forms of FraC in its oligomeric prepore conformation. Together with the previously reported structure, these two new structures reveal that ring-like nonamers of the toxin assemble into compact two-dimensional hexagonal arrays. This supramolecular organization is maintained in different relative orientations adopted by the oligomers within the crystal layers. Analyses of the aggregation of FraC pores in both planar and curved (vesicles) model membranes show similar 2D hexagonal arrangements. Our observations support a model in which hexagonal pore-packing is a clustering mechanism that maximizes toxin-driven membrane damage in the target cell.
Collapse
|
84
|
García-Sáez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille P. Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 2011; 286:37768-77. [PMID: 21885440 DOI: 10.1074/jbc.m111.281592] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pore-forming toxins have evolved to induce membrane injury by formation of pores in the target cell that alter ion homeostasis and lead to cell death. Many pore-forming toxins use cholesterol, sphingolipids, or other raft components as receptors. However, the role of plasma membrane organization for toxin action is not well understood. In this study, we have investigated cellular dynamics during the attack of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina, by combining time lapse three-dimensional live cell imaging, fluorescence recovery after photobleaching, FRET, and fluorescence cross-correlation spectroscopy. Our results show that membrane binding by equinatoxin II is accompanied by extensive plasma membrane reorganization into microscopic domains that resemble coalesced lipid rafts. Pore formation by the toxin induces Ca(2+) entry into the cytosol, which is accompanied by hydrolysis of phosphatidylinositol 4,5-bisphosphate, plasma membrane blebbing, actin cytoskeleton reorganization, and inhibition of endocytosis. We propose that plasma membrane reorganization into stabilized raft domains is part of the killing strategy of equinatoxin II.
Collapse
|
85
|
García-Ortega L, Alegre-Cebollada J, García-Linares S, Bruix M, Martínez-Del-Pozo A, Gavilanes JG. The behavior of sea anemone actinoporins at the water-membrane interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2275-88. [PMID: 21621507 DOI: 10.1016/j.bbamem.2011.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 01/13/2023]
Abstract
Actinoporins constitute a group of small and basic α-pore forming toxins produced by sea anemones. They display high sequence identity and appear as multigene families. They show a singular behaviour at the water-membrane interface: In aqueous solution, actinoporins remain stably folded but, upon interaction with lipid bilayers, become integral membrane structures. These membranes contain sphingomyelin, display phase coexistence, or both. The water soluble structures of the actinoporins equinatoxin II (EqtII) and sticholysin II (StnII) are known in detail. The crystalline structure of a fragaceatoxin C (FraC) nonamer has been also determined. The three proteins fold as a β-sandwich motif flanked by two α-helices, one of them at the N-terminal end. Four regions seem to be especially important: A cluster of aromatic residues, a phosphocholine binding site, an array of basic amino acids, and the N-terminal α-helix. Initial binding of the soluble monomers to the membrane is accomplished by the cluster of aromatic amino acids, the array of basic residues, and the phosphocholine binding site. Then, the N-terminal α-helix detaches from the β-sandwich, extends, and lies parallel to the membrane. Simultaneously, oligomerization occurs. Finally, the extended N-terminal α-helix penetrates the membrane to build a toroidal pore. This model has been however recently challenged by the cryo-EM reconstruction of FraC bound to phospholipid vesicles. Actinoporins structural fold appears across all eukaryotic kingdoms in other functionally unrelated proteins. Many of these proteins neither bind to lipid membranes nor induce cell lysis. Finally, studies focusing on the therapeutic potential of actinoporins also abound.
Collapse
Affiliation(s)
- Lucía García-Ortega
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
86
|
Pardo-Cea MA, Castrillo I, Alegre-Cebollada J, Martínez-del-Pozo Á, Gavilanes JG, Bruix M. Intrinsic local disorder and a network of charge-charge interactions are key to actinoporin membrane disruption and cytotoxicity. FEBS J 2011; 278:2080-9. [DOI: 10.1111/j.1742-4658.2011.08123.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|