51
|
Deng Y, Wu T, Zhai SQ, Li CH. Recent progress on anti-Toxoplasma drugs discovery: Design, synthesis and screening. Eur J Med Chem 2019; 183:111711. [PMID: 31585276 DOI: 10.1016/j.ejmech.2019.111711] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii severely threaten the health of immunocompromised patients and pregnant women as this parasite can cause several disease, including brain and eye disease. Current treatment for toxoplasmosis commonly have high cytotoxic side effects on host and require long durations ranging from one week to more than one year. The regiments lack efficacy to eradicate T. gondii tissue cysts to cure chromic infection results in the needs for long treatment and relapsing disease. In addition, there has not been approved drugs for treating the pregnant women infected by T. gondii. Moreover, Toxoplasma vaccine researches face a wide variety of challenges. Developing high efficient and low toxic agents against T. gondii is urgent and important. Over the last decade, tremendous progress have been made in identifying and developing novel compounds for the treatment of toxoplasmosis. This review summarized and discussed recent advances between 2009 and 2019 in exploring effective agents against T. gondii from five aspects of drug discovery.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Shao-Qin Zhai
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
52
|
Lunde CS, Stebbins EE, Jumani RS, Hasan MM, Miller P, Barlow J, Freund YR, Berry P, Stefanakis R, Gut J, Rosenthal PJ, Love MS, McNamara CW, Easom E, Plattner JJ, Jacobs RT, Huston CD. Identification of a potent benzoxaborole drug candidate for treating cryptosporidiosis. Nat Commun 2019; 10:2816. [PMID: 31249291 PMCID: PMC6597546 DOI: 10.1038/s41467-019-10687-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children and causes chronic diarrhea in AIDS patients, but the only approved treatment is ineffective in malnourished children and immunocompromised people. We here use a drug repositioning strategy and identify a promising anticryptosporidial drug candidate. Screening a library of benzoxaboroles comprised of analogs to four antiprotozoal chemical scaffolds under pre-clinical development for neglected tropical diseases for Cryptosporidium growth inhibitors identifies the 6-carboxamide benzoxaborole AN7973. AN7973 blocks intracellular parasite development, appears to be parasiticidal, and potently inhibits the two Cryptosporidium species most relevant to human health, C. parvum and C. hominis. It is efficacious in murine models of both acute and established infection, and in a neonatal dairy calf model of cryptosporidiosis. AN7973 also possesses favorable safety, stability, and PK parameters, and therefore, is an exciting drug candidate for treating cryptosporidiosis.
Collapse
Affiliation(s)
| | - Erin E Stebbins
- Department of Medicine, University of Vermont Robert R. Larner College of Medicine, Burlington, VT, 05405, USA
| | - Rajiv S Jumani
- Department of Medicine, University of Vermont Robert R. Larner College of Medicine, Burlington, VT, 05405, USA
- Department of Microbiology and Molecular Genetics, University of Vermont College of Agriculture and Life Sciences, Burlington, VT, 05405, USA
| | - Md Mahmudul Hasan
- Department of Medicine, University of Vermont Robert R. Larner College of Medicine, Burlington, VT, 05405, USA
- Department of Microbiology and Molecular Genetics, University of Vermont College of Agriculture and Life Sciences, Burlington, VT, 05405, USA
| | - Peter Miller
- Department of Medicine, University of Vermont Robert R. Larner College of Medicine, Burlington, VT, 05405, USA
| | - John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont College of Agriculture and Life Sciences, Burlington, VT, 05405, USA
| | | | - Pamela Berry
- Anacor Pharmaceuticals, Palo Alto, CA, 4230, USA
| | | | - Jiri Gut
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | | | - Eric Easom
- Anacor Pharmaceuticals, Palo Alto, CA, 4230, USA
| | | | | | - Christopher D Huston
- Department of Medicine, University of Vermont Robert R. Larner College of Medicine, Burlington, VT, 05405, USA.
- Department of Microbiology and Molecular Genetics, University of Vermont College of Agriculture and Life Sciences, Burlington, VT, 05405, USA.
| |
Collapse
|
53
|
Chhibber‐Goel J, Sharma A. Side chain rotameric changes and backbone dynamics enable specific cladosporin binding in
Plasmodium falciparum
lysyl‐tRNA synthetase. Proteins 2019; 87:730-737. [DOI: 10.1002/prot.25699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Jyoti Chhibber‐Goel
- Structural Parasitology, Molecular Medicine GroupInternational Center for Genetic Engineering and Biotechnology New Delhi India
| | - Amit Sharma
- Structural Parasitology, Molecular Medicine GroupInternational Center for Genetic Engineering and Biotechnology New Delhi India
| |
Collapse
|
54
|
Goel P, Parvez S, Sharma A. Genomic analyses of aminoacyl tRNA synthetases from human-infecting helminths. BMC Genomics 2019; 20:333. [PMID: 31046663 PMCID: PMC6498573 DOI: 10.1186/s12864-019-5679-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminth infections affect ~ 60% of the human population that lives in tropical and subtropical regions worldwide. These infections result in diseases like schistosomiasis, lymphatic filariasis, river blindness and echinococcosis. Here we provide a comprehensive computational analysis of the aminoacyl tRNA synthetase (aaRS) enzyme family from 27 human-infecting helminths. Our analyses support the idea that several helminth aaRSs can be targeted for drug repurposing or for development of new drugs. For experimental validation, we focused on Onchocerciasis (also known as "river blindness"), a filarial vector-borne disease that is prevalent in Africa and Latin America. We show that halofuginone (HF) can act as a potent inhibitor of Onchocerca volvulus prolyl tRNA synthetase (OvPRS). RESULTS The conserved enzyme family of aaRSs has been validated as druggable targets in numerous eukaryotic parasites. We thus embarked on assessing aaRSs from the genomes of 27 helminths that cause infections in humans. In order to delineate the distribution of aaRSs per genome we utilized Hidden Markov Models of aaRS catalytic domains to identify all orthologues. We note that Fasciola hepatica genome encodes the highest number of aaRS-like proteins (69) whereas Taenia asiatica has the lowest count (32). The number of genes for any particular aaRS-like protein varies from 1 to 8 in these 27 studied helminths. Sequence alignments of helminth-encoded lysyl, prolyl, leucyl and threonyl tRNA synthetases suggest that various known aaRS inhibitors like Cladosporin, Halofuginone, Benzoborale and Borrelidin may be of utility against helminths. The recombinantly expressed Onchocerca volvulus PRS was used as proof of concept for targeting aaRS with drug-like molecules like HF. CONCLUSIONS Systematic analysis of unique subdomains within helminth aaRSs reveals the presence of a number of non-canonical domains like PAC3, Utp-14, Pex2_Pex12 fused to catalytic domains in the predicted helminth aaRSs. We have established a platform for biochemical validation of a large number of helminth aaRSs that can be targeted using available inhibitors to jump-start drug repurposing against human helminths.
Collapse
Affiliation(s)
- Preeti Goel
- 0000 0004 0498 7682grid.425195.eStructural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India ,0000 0004 0498 8167grid.411816.bDepartment of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110063 India
| | - Suhel Parvez
- 0000 0004 0498 8167grid.411816.bDepartment of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110063 India
| | - Amit Sharma
- 0000 0004 0498 7682grid.425195.eStructural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
55
|
Jumani RS, Hasan MM, Stebbins EE, Donnelly L, Miller P, Klopfer C, Bessoff K, Teixeira JE, Love MS, McNamara CW, Huston CD. A suite of phenotypic assays to ensure pipeline diversity when prioritizing drug-like Cryptosporidium growth inhibitors. Nat Commun 2019; 10:1862. [PMID: 31015448 PMCID: PMC6478823 DOI: 10.1038/s41467-019-09880-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/01/2019] [Indexed: 01/07/2023] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in children, and the only currently approved drug is ineffective in malnourished children and immunocompromised people. Large-scale phenotypic screens are ongoing to identify anticryptosporidial compounds, but optimal approaches to prioritize inhibitors and establish a mechanistically diverse drug development pipeline are unknown. Here, we present a panel of medium-throughput mode of action assays that enable testing of compounds in several stages of the Cryptosporidium life cycle. Phenotypic profiles are given for thirty-nine anticryptosporidials. Using a clustering algorithm, the compounds sort by phenotypic profile into distinct groups of inhibitors that are either chemical analogs (i.e. same molecular mechanism of action (MMOA)) or known to have similar MMOA. Furthermore, compounds belonging to multiple phenotypic clusters are efficacious in a chronic mouse model of cryptosporidiosis. This suite of phenotypic assays should ensure a drug development pipeline with diverse MMOA without the need to identify underlying mechanisms.
Collapse
Affiliation(s)
- Rajiv S Jumani
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.,Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, 05405, USA.,Novartis Institute for Tropical Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Muhammad M Hasan
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.,Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, 05405, USA
| | - Erin E Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Liam Donnelly
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Peter Miller
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Connor Klopfer
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Kovi Bessoff
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.,Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305-5101, USA
| | - Jose E Teixeira
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Melissa S Love
- Calibr at The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr at The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA. .,Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, 05405, USA. .,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
56
|
Abstract
Eukaryotic protozoan parasites, including the etiological agents of malaria, toxoplasmosis, and leishmaniasis, collectively cause significant mortality in humans. In a recent issue of Structure,Jain et al. (2017) identify a set of quinazolinone-based derivatives targeting the parasitic prolyl-tRNA synthetase enzyme as promising drugs for the clearance of diverse parasites.
Collapse
Affiliation(s)
- Wilson Wong
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
57
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
58
|
Chavez MA, White AC. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther 2018; 16:655-661. [PMID: 30003818 DOI: 10.1080/14787210.2018.1500457] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cryptosporidium is a protozoan pathogen that can cause diarrheal disease in healthy and immunosuppressed individuals, worldwide. Recent studies have highlighted the impact of cryptosporidiosis on children in resource-limited countries. Nitazoxanide is the only Food and Drug Administration approved treatment, but it is not consistently effective therapy for cryptosporidiosis in the most vulnerable populations. Areas covered: This review focused on recent published studies evaluating novel drugs and new compounds for the treatment of cryptosporidiosis. Expert commentary: Combinations of approved drugs have demonstrated some activity. Broad screens have demonstrated activity against Cryptosporidium for a number of available drugs, including statins and clofazimine, and the latter has advanced into clinical trials. Cryptosporidium calcium-dependent protein kinase 1 (CDPK1) has been identified as an attractive target for treatment, and bumped kinase inhibitors have been developed which inhibit CDPK1 and are active against Cryptosporidium growth both in vitro and in vivo. Inhibition of Plasmodium lipid kinase PI(4)K8 of Cryptosporidium by KDU731 greatly reduced oocyst shedding and improved diarrhea in calves with limited effects on the human PI(4)K. Another novel potent inhibitor MMV665917 was efficacious in mouse models with cidal activity against Cryptosporidium. Additional compounds have proved active in vitro. So far, only clofazimine has entered human trials.
Collapse
Affiliation(s)
- Miguel A Chavez
- a Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| | - A Clinton White
- b Infectious Diseases Division, Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| |
Collapse
|
59
|
Das P, Babbar P, Malhotra N, Sharma M, Jachak GR, Gonnade RG, Shanmugam D, Harlos K, Yogavel M, Sharma A, Reddy DS. Specific Stereoisomeric Conformations Determine the Drug Potency of Cladosporin Scaffold against Malarial Parasite. J Med Chem 2018; 61:5664-5678. [DOI: 10.1021/acs.jmedchem.8b00565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Pronay Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Palak Babbar
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Nipun Malhotra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Manmohan Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Goraknath R. Jachak
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Dhanasekaran Shanmugam
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Manickam Yogavel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - D. Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
60
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
61
|
Manickam Y, Chaturvedi R, Babbar P, Malhotra N, Jain V, Sharma A. Drug targeting of one or more aminoacyl-tRNA synthetase in the malaria parasite Plasmodium falciparum. Drug Discov Today 2018; 23:1233-1240. [PMID: 29408369 DOI: 10.1016/j.drudis.2018.01.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/02/2018] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
Malaria remains a major infectious disease and, despite incidence reduction, it threatens resurgence in drug-resistant forms. Antimalarial drugs remain the mainstay of therapeutic options and hence there is a constant need to identify and validate new druggable targets. Plasmodium falciparum aminoacyl-tRNA synthetases (Pf-aaRSs) drive protein translation and are potent targets for development of next-generation antimalarials. Here, we detail advances made in structural-biology-based investigations in Pf-aaRSs and discuss their distribution of druggable pockets. This review establishes a platform for systematic experimental dissection of malarial parasite aaRSs as a new focus for sustained drug development efforts against malaria.
Collapse
Affiliation(s)
- Yogavel Manickam
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Palak Babbar
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Nipun Malhotra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Vitul Jain
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India; Present address: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| |
Collapse
|
62
|
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol 2018; 111:400-414. [PMID: 29305884 DOI: 10.1016/j.ijbiomac.2017.12.157] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are the enzymes that catalyze the aminoacylation reaction by covalently linking an amino acid to its cognate tRNA in the first step of protein translation. Beyond this classical function, these enzymes are also known to have a role in several metabolic and signaling pathways that are important for cell viability. Study of these enzymes is of great interest to the researchers due to its pivotal role in the growth and survival of an organism. Further, unfolding the interesting structural and functional aspects of these enzymes in the last few years has qualified them as a potential drug target against various diseases. Here we review the classification, function, and the conserved as well the appended structural architecture of these enzymes in detail, including its association with multi-synthetase complexes. We also considered their role in human diseases in terms of mutations and autoantibodies against AARSs. Finally, we have discussed the available inhibitors against AARSs. This review offers comprehensive information on AARSs under a single canopy that would be a good inventory for researchers working in this area.
Collapse
|