51
|
Beaujean N. Epigenetics, embryo quality and developmental potential. Reprod Fertil Dev 2015; 27:53-62. [DOI: 10.1071/rd14309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is very important for embryologists to understand how parental inherited genomes are reprogrammed after fertilisation in order to obtain good-quality embryos that will sustain further development. In mammals, it is now well established that important epigenetic modifications occur after fertilisation. Although gametes carry special epigenetic signatures, they should attain embryo-specific signatures, some of which are crucial for the production of healthy embryos. Indeed, it appears that proper establishment of different epigenetic modifications and subsequent scaffolding of the chromatin are crucial steps during the first cleavages. This ‘reprogramming’ is promoted by the intimate contact between the parental inherited genomes and the oocyte cytoplasm after fusion of the gametes. This review introduces two main epigenetic players, namely histone post-translational modifications and DNA methylation, and highlights their importance during early embryonic development.
Collapse
|
52
|
Martins-Júnior HA, Pinaffi FLV, Simas RC, Tarouco AK, Ferreira CR, Silva LA, Nogueira GP, Meirelles FV, Eberlin MN, Perecin F. Plasma steroid dynamics in late- and near-term naturally and artificially conceived bovine pregnancies as elucidated by multihormone high-resolution LC-MS/MS. Endocrinology 2014; 155:5011-23. [PMID: 25299569 DOI: 10.1210/en.2013-2166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasma levels of corticosteroids and sex steroids during pregnancy are key indicators of mammalian placental function and the onset of parturition. Steroid hormones are believed to be disturbed in pregnancies produced using assisted reproductive technologies (ARTs) due to placental dysfunction and the frequently observed lack of parturition signals. To elucidate the plasma steroid dynamics, a liquid chromatography-tandem mass spectrometry method was developed and used to determine the levels of corticosteroids (corticosterone, 11-deoxycortisol, and cortisol) and their direct precursors (progesterone and 17α-OH-progesterone) as well as sex steroids (androstenedione, estrone, estrone sulfate, testosterone, and 17β-estradiol) in bovine plasma. The levels of these 10 steroids in recipient cows carrying naturally conceived (control), in vitro fertilized (IVF), or cloned (somatic cell nuclear transfer) conceptuses were compared during late-term pregnancy (30 days before parturition), during near-term pregnancy (1 day before parturition), and on the day of parturition (day 0). Significant differences were observed among the corticosteroid levels: higher levels of corticosterone, 11-deoxycortisol, and cortisol were detected in cloned pregnancies at day 30; lower levels of corticosterone were observed in ART-derived pregnancies at days 1 and 0; and estrone and estradiol levels were higher in IVF pregnancies throughout the final development. These results suggested an upregulation of the P450C11 and P450C21 enzymes 30 days before parturition in somatic cell nuclear transfer pregnancies and an overactivation of the aromatase enzyme in IVF pregnancies. Taken together, the monitoring of multiple steroid hormones revealed that the pregnancies obtained using ART exhibited plasma steroid concentration dynamics compatible with the dysregulation of steroidogenic tissues.
Collapse
Affiliation(s)
- Helio A Martins-Júnior
- Thomson Mass Spectrometry Laboratory (H.A.M.-J., R.C.S., C.R.F., M.N.E.), Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil 13083-970; AB SCIEX of Brazil (H.A.M.-J.), São Paulo, São Paulo, Brazil 04719-002; Laboratory of Theriogenology Dr O. J. Ginther (F.L.V.P., L.A.S.), Department of Veterinary Medicine, School of Animal Sciences and Food Engineering (FZEA), University of São Paulo, Pirassununga, São Paulo, Brazil 13635-900; Laboratory of Molecular Morphophysiology and Development (A.K.T., F.V.M., F.P.), Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil 13635-900; Department of Production and Animal Health (R.C.S., G.P.N.), School of Veterinary Medicine, São Paulo State University, Araçatuba, São Paulo, Brazil 16050-680; and State Foundation of Agricultural Research (A.K.T.), Research Center Iwar Beckman, Hulha Negra, Rio Grande do Sul, Brazil 96400-970
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB. Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2014; 2:67. [PMID: 25429365 PMCID: PMC4228919 DOI: 10.3389/fcell.2014.00067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called “cellular Rosetta stones” because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging, and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any disease.
Collapse
Affiliation(s)
- Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Evgeny Makarev
- InSilico Medicine, Emerging Technology Center, Johns Hopkins University Eastern Baltimore, MD, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| |
Collapse
|
54
|
Yu G, Tian J, Yin J, Li Q, Zhao X. Incompatibility of nucleus and mitochondria causes xenomitochondrial cybrid unviable across human, mouse, and pig cells. Anim Biotechnol 2014; 25:139-49. [PMID: 24555799 DOI: 10.1080/10495398.2013.841709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nucleus and mitochondria are on correlative dependence; they interact in the process of protein transportation and energy metabolism. The compatibility of nucleus and mitochondria is essential for interspecies somatic cell nuclear transfer (iSCNT) and xenomitochondrial cybrid. In order to test the compatibility of nucleus and mitochondria among human, mouse, and pig cells, we compared the performances of cybrids that fused inter- and intra-species. The ρ0 cells from human and pig cell lines were created as nucleus donors which were transfected with GFP-neo for cell selective system in advance, and mitochondria donor cells were labeled by Mitochondria-RFP. Human and mouse platelets were also used as a mitochondrial donor. Results indicated that all interspecies cybrids declined to die in 2-4 d after the cell fusion in the selection medium, while intraspecies cybrid cells survived and formed stable clones. As a conclusion, the incompatibility between nucleus and mitochondria is the critical factor for the formation of interspecies cybrids.
Collapse
Affiliation(s)
- Guanghui Yu
- a National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | | | | | | | | |
Collapse
|
55
|
Priya D, Selokar NL, Raja AK, Saini M, Sahare AA, Nala N, Palta P, Chauhan MS, Manik RS, Singla SK. Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell nuclear transfer using domestic buffalo (Bubalus bubalis) oocytes. Reprod Domest Anim 2014; 49:343-51. [PMID: 24494649 DOI: 10.1111/rda.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/30/2013] [Indexed: 11/29/2022]
Abstract
The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin-18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open-pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re-expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified-warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.
Collapse
Affiliation(s)
- D Priya
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion. There was no significant difference in the intracellular reactive oxygen species (ROS) levels between oocytes matured with 10 or 20 mM sorbitol and control groups, but 50 and 100 mM groups had significantly higher ROS levels than other groups. The 20 mM group showed significant increases in intracellular glutathione and subsequent blastocyst formation rates following parthenogenetic activation compared with the other groups. During IVC, supplementation with sorbitol significantly reduced blastocyst formation and increased the apoptotic index compared with the control. The apoptotic index of blastocysts from the sorbitol-treated group for entire culture period was significantly higher than those of the partially sorbitol-exposed groups. Based on these findings, it can be concluded that the addition of a low concentration of sorbitol (20 mM) during IVM of porcine oocytes benefits subsequent blastocyst development and improves embryo quality, whereas sorbitol supplement during IVC has a negative effect on blastocyst formation.
Collapse
|
57
|
Mastromonaco GF, González-Grajales LA, Filice M, Comizzoli P. Somatic cells, stem cells, and induced pluripotent stem cells: how do they now contribute to conservation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:385-427. [PMID: 25091918 DOI: 10.1007/978-1-4939-0820-2_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade has now passed since the birth of the first endangered species produced from an adult somatic cell reprogrammed by somatic cell nuclear transfer. At that time, advances made in domestic and laboratory animal species provided the necessary foundation for attempting cutting-edge technologies on threatened and endangered species. In addition to nuclear transfer, spermatogonial stem cell transplantation and induction of pluripotent stem cells have also been explored. Although many basic scientific questions have been answered and more than 30 wild species have been investigated, very few successes have been reported. The majority of studies document numerous obstacles that still need to be overcome to produce viable gametes or embryos for healthy offspring production. This chapter provides an overview of somatic cell and stem cell technologies in different taxa (mammals, fishes, birds, reptiles and amphibians) and evaluates the potential and impact of these approaches for animal species conservation.
Collapse
|
58
|
Diao YF, Naruse KJ, Han RX, Li XX, Oqani RK, Lin T, Jin DI. Treatment of fetal fibroblasts with DNA methylation inhibitors and/or histone deacetylase inhibitors improves the development of porcine nuclear transfer-derived embryos. Anim Reprod Sci 2013; 141:164-71. [DOI: 10.1016/j.anireprosci.2013.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/16/2022]
|
59
|
Hirao Y, Naruse K, Kaneda M, Somfai T, Iga K, Shimizu M, Akagi S, Cao F, Kono T, Nagai T, Takenouchi N. Production of fertile offspring from oocytes grown in vitro by nuclear transfer in cattle. Biol Reprod 2013; 89:57. [PMID: 23884646 DOI: 10.1095/biolreprod.113.109439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because of recent advancements in reproductive technology, oocytes have attained an increasingly enriched value as a unique cell population in the production of offspring. The growing oocytes in the ovary are an immediate potential source that serve this need; however, complete oocyte growth before use is crucial. Our research objective was to create in vitro-grown (IVG) oocytes that would have the ability to perform specialized activities, including nuclear reprogramming, as an alternative to in vivo-grown oocytes. Bovine oocyte-granulosa cell complexes with a mean oocyte diameter of approximately 100 μm were cultured on Millicell membrane inserts, with culture medium supplemented with 4% polyvinylpyrrolidone (molecular weight, 360,000), 20 ng/ml androstenedione, 2 mM hypoxanthine, and 5 ng/ml bone morphogenetic protein 7. Oocyte viability after the 14-day culture period was 95%, and there was a 71% increase in oocyte volume. Upon induction of oocyte maturation, 61% of the IVG oocytes extruded a polar body. Eighty-four percent of the reconstructed IVG oocytes that used cumulus cells as donor cells underwent cleavage, and half of them became blastocysts. DNA methylation analyses of the satellite I and II regions of the blastocysts revealed a similar highly methylated status in the cloned embryos derived from in vivo-grown and IVG oocytes. Finally, one of the nine embryos reconstructed from the IVG oocytes developed into a living calf following embryo transfer. Fertility of the offspring was confirmed. In conclusion, the potential of a proportion of the IVG oocytes was comparable to that of in vivo-grown oocytes.
Collapse
Affiliation(s)
- Yuji Hirao
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Natural resistance-associated macrophage protein 1 (Nramp1) plays an important role in restraining the growth of intracellular pathogens within macrophages. In this study, Nramp1 cDNA was cloned from Qinchuan cattle and its anti-bacterial activity was demonstrated as being able to significantly inhibit the growth of Salmonella abortusovis and Brucella abortus in macrophages. Calf fibroblasts stably transfected with pSP-NRAMP1-HA vector were used to reconstruct bovine embryos by somatic cell nuclear transfer (SCNT). Reconstructed embryos were maturated in vitro and the blastocyst formation rate (14.0%) was similar to that of control embryos (14.5%). Transgenic blastocysts were transplanted into 43 recipient cattle, of which 14 recipients became pregnant as evidenced by non-return estrus and by rectal palpation. One fetus was aborted after 6½ months of pregnancy and transgene integration was confirmed by semi-quantitative polymerase chain reaction. Together, this study showed that bovine Nramp1 retains biological function against the growth of intracellular bacteria and can be used to reconstruct embryos and produce Nramp1 transgenic cattle, which may benefit the animal and enhance their ability to prevent attack by intracellular pathogens.
Collapse
|
61
|
Daneshvar N, Abdullah R, Shamsabadi FT, How CW, Mh MA, Mehrbod P. PAMAM dendrimer roles in gene delivery methods and stem cell research. Cell Biol Int 2013; 37:415-9. [PMID: 23504853 DOI: 10.1002/cbin.10051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
Abstract
Nanotechnology has provided new technological opportunities, which could help in challenges confronting stem cell research. Polyamidoamine (PAMAM) dendrimers, a new class of macromolecular polymers with high molecular uniformity, narrow molecular distribution specific size and shape and highly functionalised terminal surface have been extensively explored for biomedical application. PAMAM dendrimers are also nanospherical, hyperbranched and monodispersive molecules exhibiting exclusive properties which make them potential carriers for drug and gene delivery.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
62
|
Goissis MD, Suhr ST, Cibelli JB. Effects of Donor Fibroblasts Expressing OCT4 on Bovine Embryos Generated by Somatic Cell Nuclear Transfer. Cell Reprogram 2013; 15:24-34. [DOI: 10.1089/cell.2012.0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcelo D. Goissis
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Capes Foundation, Ministry of Education, Brasília, Brazil
| | - Steven T. Suhr
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Programa Andaluz de Terapia Celular y Medicina Regenerativa, Andalucía, Spain
| |
Collapse
|
63
|
Liu J, Luo Y, Zheng L, Liu Q, Yang Z, Wang Y, Su J, Quan F, Zhang Y. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer. Transgenic Res 2013; 22:893-903. [PMID: 23335060 DOI: 10.1007/s11248-013-9688-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 01/09/2013] [Indexed: 11/25/2022]
Abstract
This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.
Collapse
Affiliation(s)
- Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Woelders H, Windig J, Hiemstra SJ. How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals. Reprod Domest Anim 2013; 47 Suppl 4:264-73. [PMID: 22827380 DOI: 10.1111/j.1439-0531.2012.02085.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many local breeds are currently at risk because of replacement by a limited number of specialized commercial breeds. Concurrently, for many breeds, allelic diversity within breeds declines because of inbreeding. Gene banking of germplasm may serve to secure the breeds and the alleles for any future use, for instance to recover a lost breed, to address new breeding goals, to support breeding schemes in small populations to minimize inbreeding, and for conservation genetics and genomics research. Developments in cryobiology and reproductive technology have generated several possibilities for preserving germplasm in farm animals. Furthermore, in some mammalian and bird species, gene banking of material is difficult or impossible, requiring development of new alternative methods or improvement of existing methods. Depending on the species, there are interesting possibilities or research developments in the use of epididymal spermatozoa, oocytes and embryos, ovarian and testicular tissue, primordial germ cells, and somatic cells for the conservation of genetic diversity in farm- and other animal species. Rapid developments in genomics research also provide new opportunities to optimize conservation and sampling strategies and to characterize genome-wide genetic variation. With regard to gene banks for farm animals, collaboration between European countries is being developed through a number of organizations, aimed at sharing knowledge and expertise between national programmes. It would be useful to explore further collaboration between countries, within the framework of a European gene banking strategy that should minimize costs of conservation and maximize opportunities for exploitation and sustainable use of genetic diversity.
Collapse
Affiliation(s)
- H Woelders
- Wageningen UR, Centre for Genetic Resources, CGN, Wageningen, The Netherlands.
| | | | | |
Collapse
|
65
|
Pereira A, Feltrin C, Almeida K, Carneiro I, Avelar S, Neto AA, Sousa F, Melo C, Moura R, Teixeira D, Bertolini L, Freitas V, Bertolini M. Analysis of factors contributing to the efficiency of the in vitro production of transgenic goat embryos (Capra hircus) by handmade cloning (HMC). Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
66
|
Kharche SD, Birade HS. Parthenogenesis and activation of mammalian oocytes for <i>in vitro</i> embryo production: A review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.42025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Aponte PM, Schlatt S, Franca LRD. Biotechnological approaches to the treatment of aspermatogenic men. Clinics (Sao Paulo) 2013; 68 Suppl 1:157-67. [PMID: 23503966 PMCID: PMC3583150 DOI: 10.6061/clinics/2013(sup01)18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 01/15/2023] Open
Abstract
Aspermatogenesis is a severe impairment of spermatogenesis in which germ cells are completely lacking or present in an immature form, which results in sterility in approximately 25% of patients. Because assisted reproduction techniques require mature germ cells, biotechnology is a valuable tool for rescuing fertility while maintaining biological fatherhood. However, this process involves, for instance, the differentiation of preexisting immature germ cells or the production/derivation of sperm from somatic cells. This review critically addresses four potential techniques: sperm derivation in vitro, germ stem cell transplantation, xenologous systems, and haploidization. Sperm derivation in vitro is already feasible in fish and mammals through organ culture or 3D systems, and it is very useful in conditions of germ cell arrest or in type II Sertoli-cell-only syndrome. Patients afflicted by type I Sertoli-cell-only syndrome could also benefit from gamete derivation from induced pluripotent stem cells of somatic origin, and human haploid-like cells have already been obtained by using this novel methodology. In the absence of alternative strategies to generate sperm in vitro, in germ cells transplantation fertility is restored by placing donor cells in the recipient germ-cell-free seminiferous epithelium, which has proven effective in conditions of spermatogonial arrest. Grafting also provides an approach for ex-vivo generation of mature sperm, particularly using prepubertal testis tissue. Although less feasible, haploidization is an option for creating gametes based on biological cloning technology. In conclusion, the aforementioned promising techniques remain largely experimental and still require extensive research, which should address, among other concerns, ethical and biosafety issues, such as gamete epigenetic status, ploidy, and chromatin integrity.
Collapse
Affiliation(s)
- Pedro Manuel Aponte
- Department of Morphology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | |
Collapse
|
68
|
The combined treatment of calcium ionophore with strontium improves the quality of ovine SCNT embryo development. ZYGOTE 2012; 21:139-50. [DOI: 10.1017/s0967199412000470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryPoor embryo quality is a major problem that contributes to the failure of pregnancy in somatic cell nuclear transfer (SCNT). The aims of this study were to improve the quality of ovine SCNT embryos by modifying the conventional activation protocol with the addition of SrCl2. In order to achieve this objective we conducted a series of experiments with in vitro-matured oocytes to optimize conditions for oocyte activation with strontium, and subsequently applied the protocol to SCNT embryos. The results showed that in vitro-matured oocytes could be activated effectively by 10 mM SrCl2 + 5 mg/ml cytochalasin B (CB) for 5 h in the absence of Ca2+ and that the blastocyst rate on day 7 (33.2%) was similar to that in the control group (31.0%) (5 M calcium ionophore [IP] A23187 for 5 min and cultured in CB/cycloheximide [CHX] for 5 h; P > 0.05). In SCNT experiments, the total cell number/blastocyst (104.12 ± 6.86) in the IP + SrCl2/CB-treatment group was, however, significantly higher than that in the control group (81.07 ± 3.39; P < 0.05). Apoptotic index (12.29 ± 1.22%) was significantly lower than the control (17.60 ± 1.39%; P < 0.05) when a combination of IP and SrCl2/CB was applied to SCNT embryos. In addition, karyotyping of the SCNT embryos showed that the percentage of diploid blastocysts in the IP + SrCl2/CB-treatment group was slightly higher than that in the control (P > 0.05). We conclude that the modified activation protocol with IP + SrCl2/CB can improve significantly the quality of ovine SCNT embryos in terms of total cell number, apoptosis and ploidy.
Collapse
|
69
|
Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E. Reprogramming mammalian somatic cells. Theriogenology 2012; 78:1869-86. [PMID: 22979962 DOI: 10.1016/j.theriogenology.2012.05.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/20/2012] [Accepted: 05/31/2012] [Indexed: 01/23/2023]
Abstract
Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation.
Collapse
|
70
|
Luo Y, Lin L, Bolund L, Jensen TG, Sørensen CB. Genetically modified pigs for biomedical research. J Inherit Metab Dis 2012; 35:695-713. [PMID: 22453682 DOI: 10.1007/s10545-012-9475-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 01/17/2023]
Abstract
During the last two decades, pigs have been used to develop some of the most important large animal models for biomedical research. Advances in pig genome research, genetic modification (GM) of primary pig cells and pig cloning by nuclear transfer, have facilitated the generation of GM pigs for xenotransplantation and various human diseases. This review summarizes the key technologies used for generating GM pigs, including pronuclear microinjection, sperm-mediated gene transfer, somatic cell nuclear transfer by traditional cloning, and somatic cell nuclear transfer by handmade cloning. Broadly used genetic engineering tools for porcine cells are also discussed. We also summarize the GM pig models that have been generated for xenotransplantation and human disease processes, including neurodegenerative diseases, cardiovascular diseases, eye diseases, bone diseases, cancers and epidermal skin diseases, diabetes mellitus, cystic fibrosis, and inherited metabolic diseases. Thus, this review provides an overview of the progress in GM pig research over the last two decades and perspectives for future development.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
71
|
Gui T, Zhang M, Chen J, Zhang Y, Zhou N, Zhang Y, Tao J, Sui L, Li Y, Liu Y, Zhang X, Zhang Y. In vitro evaluation of a mammary gland specific expression vector encoding recombinant human lysozyme for development of transgenic dairy goat embryos. Biotechnol Lett 2012; 34:1445-52. [DOI: 10.1007/s10529-012-0930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
72
|
Blash S, Schofield M, Echelard Y, Gavin W. Update on the first cloned goats. Nat Biotechnol 2012; 30:229-30. [PMID: 22398615 DOI: 10.1038/nbt.2140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Iwamoto D, Kasamatsu A, Ideta A, Urakawa M, Matsumoto K, Hosoi Y, Iritani A, Aoyagi Y, Saeki K. Donor Cells at the G1 Phase Enhance Homogeneous Gene Expression Among Blastomeres in Bovine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2012; 14:20-8. [DOI: 10.1089/cell.2011.0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daisaku Iwamoto
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Aya Kasamatsu
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Atsushi Ideta
- ZEN-NOH Embryo Transfer Center, Kamishihoro, Hokkaido, Japan
| | - Manami Urakawa
- ZEN-NOH Embryo Transfer Center, Kamishihoro, Hokkaido, Japan
| | - Kazuya Matsumoto
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Yoshihiko Hosoi
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Akira Iritani
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Yoshito Aoyagi
- ZEN-NOH Embryo Transfer Center, Kamishihoro, Hokkaido, Japan
| | - Kazuhiro Saeki
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| |
Collapse
|
74
|
NARUSE K, IGA K, SHIMIZU M, TAKENOUCHI N, AKAGI S, SOMFAI T, HIRAO Y. Milrinone Treatment of Bovine Oocytes During In Vitro Maturation Benefits Production of Nuclear Transfer Embryos by Improving Enucleation Rate and Developmental Competence. J Reprod Dev 2012; 58:476-83. [DOI: 10.1262/jrd.2012-010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kenji NARUSE
- NARO Tohoku Agricultural Research Center, Iwate 020-0198, Japan
| | - Kosuke IGA
- NARO Tohoku Agricultural Research Center, Iwate 020-0198, Japan
| | - Manabu SHIMIZU
- NARO Tohoku Agricultural Research Center, Iwate 020-0198, Japan
| | | | - Satoshi AKAGI
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Tamas SOMFAI
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Yuji HIRAO
- NARO Tohoku Agricultural Research Center, Iwate 020-0198, Japan
- Present: NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| |
Collapse
|
75
|
Maside C, Gil M, Cuello C, Sanchez-Osorio J, Parrilla I, Lucas X, Caamaño J, Vazquez J, Roca J, Martinez E. Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology 2011; 76:1667-75. [DOI: 10.1016/j.theriogenology.2011.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 12/01/2022]
|
76
|
Modeling neurological disorders by human induced pluripotent stem cells. J Biomed Biotechnol 2011; 2011:350131. [PMID: 22162635 PMCID: PMC3227533 DOI: 10.1155/2011/350131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/06/2011] [Indexed: 01/30/2023] Open
Abstract
Studies of human brain development are critical as research on neurological disorders have been progressively advanced. However, understanding the process of neurogenesis through analysis of the early embryo is complicated and limited by a number of factors, including the complexity of the embryos, availability, and ethical constrains. The emerging of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) has shed light of a new approach to study both early development and disease pathology. The cells behave as precursors of all embryonic lineages; thus, they allow tracing the history from the root to individual branches of the cell lineage tree. Systems for neural differentiation of hESCs and iPSCs have provided an experimental model that can be used to augment in vitro studies of in vivo brain development. Interestingly, iPSCs derived from patients, containing donor genetic background, have offered a breakthrough approach to study human genetics of neurodegenerative diseases. This paper summarizes the recent reports of the development of iPSCs from patients who suffer from neurological diseases and evaluates the feasibility of iPSCs as a disease model. The benefits and obstacles of iPSC technology are highlighted in order to raising the cautions of misinterpretation prior to further clinical translations.
Collapse
|
77
|
Kim S, Saadeldin IM, Choi WJ, Lee SJ, Lee WW, Kim BH, Han HJ, Bang DH, Lee BC, Jang G. Production of transgenic bovine cloned embryos using piggybac transposition. J Vet Med Sci 2011; 73:1453-7. [PMID: 21747215 DOI: 10.1292/jvms.11-0054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic research on cattle embryos has been developed to date using viral or plasmid DNA delivery systems. In this study, a different gene delivery system, piggybac transposition, was employed to investigate if it can be applied for producing transgenic cattle embryos. Green or red fluorescent proteins (GFP or RFP) were transfected into donor fibroblasts, and then transfected donor cells were reprogrammed in enucleated oocytes through SCNT and developed into pre-implantation stage embryos. GFP was expressed in donor cells and in cloned embryos without any mosaicism. Induction of RFP expression was regulated by doxycycline treatment in donor fibroblasts and pre-implantational stage embryos. In conclusion, this study demonstrated that piggybac transposition could be a mean to deliver genes into bovine somatic cells or embryos for transgenic research.
Collapse
Affiliation(s)
- Su Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute, Seoul National University, Seoul 151–742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Sung LY, Chen CH, Xu J, Lin TA, Su HY, Chang WF, Liu CC, Sung YS, Cheng WTK, Zhang J, Tian XC, Ju JC, Chen YE, Wu SC, Du F. Follicular oocytes better support development in rabbit cloning than oviductal oocytes. Cell Reprogram 2011; 13:503-12. [PMID: 22029417 DOI: 10.1089/cell.2011.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to determine the effect of rabbit oocytes collected from ovaries or oviducts on the developmental potential of nuclear transplant embryos. Donor nuclei were obtained from adult skin fibroblasts, cumulus cells, and embryonic blastomeres. Rabbit oocytes were flushed from the oviducts (oviductal oocytes) or aspirated from the ovaries (follicular oocytes) of superovulated does at 10, 11, or 12 h post-hCG injection. The majority of collected oocytes were still attached to the sites of ovulation on the ovaries. We found that follicular oocytes had a significantly higher rate of fusion with nuclear donor cells than oviductal oocytes. There was no difference in the cleavage rate between follicular and oviductal groups, but morula and blastocyst development was significantly higher in the follicular group than in the oviductal group. Two live clones were produced in follicular group using blastomere and cumulus nuclear donors, whereas one live clone was produced in the oviductal group using a cumulus nuclear donor. These results demonstrate that cloned rabbit embryos derived from follicular oocytes have better developmental competence than those derived from oviductal oocytes.
Collapse
Affiliation(s)
- Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
SummaryThe purpose of this study was to prepare intracellular pathogen resistance 1 (Ipr1) transgenic donor cells for somatic cell nuclear transfer (SCNT). Based on our current understanding of Ipr1, a macrophage special expression vector pSP–EGFP–Ipr1was constructed. Bovine fetal fibroblasts were transfected with pSP-EGFP-Ipr1. The green fluorescent protein (GFP)-expressing cells were selected and transferred into enucleated bovine oocytes. Then, the rates of oocyte cleavage and blastocyst formation of transgenic cells and non-transgenic cells were observed, respectively. The results showed that reconstructed embryos derived from transgenic cells could successfully develop into blastocysts, most of which were GFP-positive. This study may provide cloned embryos for the production of anti-tuberculosis transgenic animals.
Collapse
|
80
|
Liu J, Li LL, Du S, Bai XY, Zhang HD, Tang S, Zhao MT, Ma BH, Quan FS, Zhao XE, Zhang Y. Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats. Theriogenology 2011; 76:1076-83. [PMID: 21752443 DOI: 10.1016/j.theriogenology.2011.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/15/2022]
Abstract
To improve the efficiency of somatic cell nuclear transfer (SCNT) in goats, we evaluated the effects of the interval between fusion and activation (1 to 5 h), cytochalasin B (CB) treatment after electrofusion, and the number of transferred embryos on the in vivo and in vitro development of cloned caprine embryos. The majority of the reconstructed embryos had condensed chromosomes and metaphase-like chromosomes at 2 and 3 h after fusion; cleavage and blastocyst rates from those two groups were higher (P < 0.05) than those of embryos activated 1, 4, or 5 h after fusion. Treatment with CB between fusion and activation improved in vitro and in vivo development of nuclear transfer (NT) goat embryos by reducing the fragmentation rate (P < 0.05). Although there were no significant differences in NT efficiency, pregnancy rate and kids born per recipient were increased by transfer of 20 or 30 embryos per recipient compared with 10 embryos. We concluded that CB treatment for 2 to 3 h between fusion and activation was an efficient method for generating cloned goats by somatic cell NT. In addition, increasing the number of embryos transferred to each recipient resulted in more live offspring from fewer recipients.
Collapse
Affiliation(s)
- J Liu
- Key Laboratory of Animal Reproductive Physiology and Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. ZYGOTE 2011; 20:199-207. [DOI: 10.1017/s0967199411000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMelatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10−7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10−7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.
Collapse
|
82
|
Noisa P, Parnpai R. Technical challenges in the derivation of human pluripotent cells. Stem Cells Int 2011; 2011:907961. [PMID: 21776284 PMCID: PMC3138062 DOI: 10.4061/2011/907961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/25/2011] [Indexed: 01/26/2023] Open
Abstract
It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs). These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT), cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.
Collapse
Affiliation(s)
- Parinya Noisa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | | |
Collapse
|
83
|
Administration of cyclosporin A to recipients improves the potential of mouse somatic cell nuclear-transferred oocytes to develop to fetuses. ZYGOTE 2011; 20:261-7. [PMID: 21554772 DOI: 10.1017/s0967199411000189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Somatic cell nuclear-transferred (SCNT) oocytes have a high potential for development in vitro, but a large proportion of embryos that are transferred to recipients is aborted before parturition. The precise mechanism for the high abortion rate is unknown, but abnormal placenta formation is frequently observed in SCNT-cloned pregnancies. The present study examined the effects of treating the recipients with cyclosporin A (CsA), an immunoprotectant, on the proportion of fetuses resulting from SCNT-cloned pregnancies. Cloned embryos developed from enucleated oocytes and receiving cumulus cells from F1 (C57BL/6 × DBA, H-2b/d) females were transferred to outbred ICR (in which the H-2 complex was not fixed) recipient females. Each recipient received an intraperitoneal injection of CsA or vehicle. Compared with vehicle, administration of CsA to recipients on day 4.5 of pregnancy significantly increased the proportion of fetuses observed on day 10.5. The proportion of fetuses at day 18.5 of pregnancy in recipients receiving CsA treatment was slightly higher than that in controls. This study is the first to report that CsA administration increases the proportion of fetuses resulting from SCNT-cloned pregnancies.
Collapse
|
84
|
Cryobanking the genetic diversity in the critically endangered Iberian lynx (Lynx pardinus) from skin biopsies. Investigating the cryopreservation and culture ability of highly valuable explants and cells. Cryobiology 2011; 62:145-51. [DOI: 10.1016/j.cryobiol.2011.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/01/2011] [Indexed: 11/20/2022]
|
85
|
Establishment of glass catfish (Kryptopterus bicirrhis) fin-derived cells. CELL BIOLOGY INTERNATIONAL REPORTS 2011; 18:e00008. [PMID: 23119145 PMCID: PMC3475438 DOI: 10.1042/cbr20110002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/17/2022]
Abstract
Genetically manipulated transparent animals were already explored in many species for in vivo study of gene expression, transplantation analysis and cancer biology. However, there are no reports about transparent animals as in vitro genetic resources. In the present study, fin-derived cells from glass catfish (Krytopterus bicirrhis), naturally transparent fish with a visible skeleton and internal organs, were isolated after culturing fin explants and characterized using cryopreservation and cell cycle analysis. The cells grew well in DMEM (Dulbecco's modified Eagle's medium) containing 1% (v/v) P/S (penicillin–streptomycin) and 10% (v/v) fetal bovine serum at 26°C and showed increased cryopreservation efficiency with the slow-freezing method in the presence of 15% dimethyl sulfoxide. In addition, cell cycle analysis was evaluated based on flow cytometric analysis, and culturing to confluence (>85%) was more effective for synchronizing cells at the G0/G1 stages than roscovitine treatment (<75%). This is the first report about cell isolation from transparent animals. The results from testing the cell's viability following cryopreservation and subjecting the cells to cycle analysis can be useful tools for genetic resource management.
Collapse
|
86
|
Imberti B, Casiraghi F, Cugini D, Azzollini N, Cassis P, Todeschini M, Solini S, Sebastiano V, Zuccotti M, Garagna S, Redi CA, Noris M, Morigi M, Remuzzi G. Embryonic stem cells, derived either after in vitro fertilization or nuclear transfer, prolong survival of semiallogeneic heart transplants. THE JOURNAL OF IMMUNOLOGY 2011; 186:4164-74. [PMID: 21389254 DOI: 10.4049/jimmunol.1000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tolerance induction toward allogeneic organ grafts represents one of the major aims of transplantation medicine. Stem cells are promising candidates for promoting donor-specific tolerance. In this study, we investigated the immunomodulatory properties of murine embryonic stem cells (ESCs), obtained either by in vitro fertilization (IVF-ESCs) or by nuclear transfer (NT-ESCs), in heart transplant mouse models. IVF-ESCs did not prolong the survival of fully allogeneic cardiac transplants but significantly prolonged the survival of semiallogeneic hearts from the same ESC donor strain for >100 d in 44% of the animals. However, 28% of transplanted animals infused with IVF-ESCs experienced development of a teratoma. NT-ESCs similarly prolonged semiallogeneic heart graft survival (>100 d in 40% of the animals) but were less teratogenic. By in vitro studies, IVF-ESC and NT-ESC immunoregulation was mediated both by cell contact-dependent mechanisms and by the release of soluble factors. By adding specific inhibitors, we identified PGE(2) as a soluble mediator of ESC immunoregulation. Expansion of regulatory T cells was found in lymphoid organs and in the grafts of IVF-ESC- and NT-ESC-tolerized mice. Our study demonstrates that both IVF-ESCs and NT-ESCs modulate recipient immune response toward tolerance to solid organ transplantation, and that NT-ESCs exhibit a lower tendency for teratoma formation. Because NT-ESCs are obtained by NT of a somatic cell from living individuals into an enucleated oocyte, they could represent a source of donor-derived stem cells to induce tolerance to solid organ allograft.
Collapse
Affiliation(s)
- Barbara Imberti
- Department of Molecular Medicine, Mario Negri Institute for Pharmacological Research, Bergamo 24125, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
WATANABE S, NAGAI T. Survival of embryos and calves derived from somatic cell nuclear transfer in cattle: a nationwide survey in Japan. Anim Sci J 2011; 82:360-5. [DOI: 10.1111/j.1740-0929.2010.00846.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Tang S, Liu J, Du S, Li L, Zheng C, Zhao M, Wang Y, Zhang Y. Optimization of embryo culture conditions in the production of cloned goat embryos, following somatic cell nuclear transfer. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2010.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Germ cell sex prior to meiosis in the rainbow trout. Protein Cell 2011; 2:48-54. [PMID: 21337009 DOI: 10.1007/s13238-011-1003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022] Open
Abstract
Germ cells make two major decisions when they move from an indeterminate state to their final stage of gamete production. One decision is sexual commitment for sperm or egg production, and the other is to maintain mitotic division or entry into meiosis. It is unclear whether the two decisions are made as a single event or separate events, because there has been no evidence for the presence of germ cell sex prior to meiosis. Here we report direct evidence in the fish rainbow trout that gonia have distinct sexuality. We show that dazl expression occurs in both male and female gonia but exhibits differential intracellular distribution. More strikingly, we show that boule is highly expressed in male gonia but absent in female gonia. Therefore, mitotic gonia possess sex, sperm/egg decision and mitosis/meiosis decision are two independent events, and sperm/egg decision precedes mitosis/meiosis decision in rainbow trout, making this organism a unique vertebrate model for mechanistic understanding of germ cell sex differentiation and relationship between the two decisions.
Collapse
|
90
|
MIYASHITA N, KUBO Y, YONAI M, KANEYAMA K, SAITO N, SAWAI K, MINAMIHASHI A, SUZUKI T, KOJIMA T, NAGAI T. Cloned Cows with Short Telomeres Deliver Healthy Offspring with Normal-length Telomeres. J Reprod Dev 2011; 57:636-42. [DOI: 10.1262/jrd.11-017a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Norikazu MIYASHITA
- Laboratory of Reproduction and Development, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | - Yasuaki KUBO
- Livestock Research Support Center, National Institute of Livestock and Grassland Sciences, Ibaraki 305-0901, Japan
| | - Miharu YONAI
- Grazing and Meat Production Research Team, National Agricultural Research Center for Tohoku Region, Iwate 020-0198, Japan
| | - Kanako KANEYAMA
- Department of Technology, National Livestock Breeding Center, Fukushima 961-8511, Japan
| | - Norio SAITO
- Department of Technology, National Livestock Breeding Center, Fukushima 961-8511, Japan
| | - Ken SAWAI
- Department of Animal Science, Iwate University, Iwate 020-8550, Japan
| | - Akira MINAMIHASHI
- Reproductive Biotechnology Laboratory, Hokkaido Animal Research Center, Hokkaido 081-0038, Japan
| | - Toshiyuki SUZUKI
- Animal Industry Research Institute, Iwate Prefectural Agriculture Research Center, Iwate 020-0173, Japan
| | - Toshiyuki KOJIMA
- Veterinary Theriogenology Laboratory, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takashi NAGAI
- Research Manager, National Institute of Livestock and Grassland Sciences, Ibaraki 305-0901, Japan
| |
Collapse
|
91
|
Patel M, Yang S. Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev Rep 2010; 6:367-80. [PMID: 20336395 DOI: 10.1007/s12015-010-9123-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.
Collapse
Affiliation(s)
- Minal Patel
- Department of Oral Biology, School of Dental Medicine, The State University of New York at Buffalo, 36 Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|
92
|
Kuetemeyer K, Lucas-Hahn A, Petersen B, Lemme E, Hassel P, Niemann H, Heisterkamp A. Combined multiphoton imaging and automated functional enucleation of porcine oocytes using femtosecond laser pulses. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:046006. [PMID: 20799808 DOI: 10.1117/1.3463012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since the birth of "Dolly" as the first mammal cloned from a differentiated cell, somatic cell cloning has been successful in several mammalian species, albeit at low success rates. The highly invasive mechanical enucleation step of a cloning protocol requires sophisticated, expensive equipment and considerable micromanipulation skill. We present a novel noninvasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically identified the metaphase plate. Subsequent irradiation of the metaphase chromosomes with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation (functional enucleation). We show that fs laser-based functional enucleation of porcine oocytes completely inhibited the parthenogenetic development without affecting the oocyte morphology. In contrast, nonirradiated oocytes were able to develop parthenogenetically to the blastocyst stage without significant differences to controls. Our results indicate that fs laser systems have great potential for oocyte imaging and functional enucleation and may improve the efficiency of somatic cell cloning.
Collapse
|
93
|
Short-term treatment with 6-DMAP and demecolcine improves developmental competence of electrically or Thi/DTT-activated porcine parthenogenetic embryos. ZYGOTE 2010; 19:1-8. [DOI: 10.1017/s0967199410000134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryTreatment with 6-dimethylaminopurine (6-DMAP) or demecolcine (DE) for several (at least 2) hours after artificial activation is known to improvein vitrodevelopment of porcine embryos. However, several reports have also shown that treatments with these chemicals induce apoptosis. The aim of this study was to find out whether short-term treatment with 6-DMAP and DE combined with electrical or thimerosal/dithiothreitol (Thi/DTT) activation had a beneficial effect on development of parthenogenetically activated porcine oocytes. We additionally treated embryos with 6-DMAP (2 mM) and/or DE (0.4 μg/ml) for a short time (40 min) after an electrical pulse (EP) or Thi/DTT. As a result, short-term treatment with 6-DMAP and DE successfully induced development of electrically or Thi/DTT-activated porcine parthenogenetic embryos with no significant difference in cleavage rate, blastocyst formation rate and total cell number compared with long-term treatment. To find optimal activation protocol, cleavage rate, blastocyst formation rate and total cell number were compared between EP and Thi/DTT treatments. Thi/DTT + 6-DMAP + DE showed significantly higher blastocyst formation rate (36.1 ± 3.5%) and total cell number (46.9 ± 1.0) than other groups (EP + 6-DMAP + DE, EP + Thi/DTT + 6-DMAP + DE: 23.3 ± 3.0%, 42.2 ± 1.1 and 17.2 ± 2.7%, 36.7 ± 1.5, respectively). In conclusion, this study demonstrates that short-term treatment with 6-DMAP and DE is as effective as the standard long-term treatment and Thi/DTT + 6-DMAP + DE exerts a synergistic effect.
Collapse
|
94
|
Dai X, Hao J, Hou XJ, Hai T, Fan Y, Yu Y, Jouneau A, Wang L, Zhou Q. Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. J Biol Chem 2010; 285:31002-10. [PMID: 20566633 DOI: 10.1074/jbc.m110.136085] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has shown tremendous potential for understanding the mechanisms of reprogramming and creating applications in the realms of agriculture, therapeutics, and regenerative medicine, although the efficiency of reprogramming is still low. Somatic nucleus reprogramming is triggered in the short time after transfer into recipient cytoplasm, and therefore, this period is regarded as a key stage for optimizing SCNT. Here we report that CBHA, a histone deacetylase inhibitor, modifies the acetylation status of somatic nuclei and increases the developmental potential of mouse cloned embryos to reach pre- and post-implantation stages. Furthermore, the cloned embryos treated by CBHA displayed higher efficiency in the derivation of nuclear transfer embryonic stem cell lines by promoting outgrowths. More importantly, CBHA increased blastocyst quality compared with trichostatin A, another prevalent histone deacetylase inhibitor reported previously. Use of CBHA should improve the productivity of SCNT for a variety of research and clinical applications, and comparisons of cells with different levels of pluripotency and treated with CBHA versus trichostatin A will facilitate studies of the mechanisms of reprogramming.
Collapse
Affiliation(s)
- Xiangpeng Dai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 2010; 12:75-83. [PMID: 20132015 DOI: 10.1089/cell.2009.0038] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Faulty epigenetic reprogramming of somatic nuclei is likely to be a major cause of low success observed in all mammals produced through somatic cell nuclear transfer (SCNT). It has been demonstrated that the developmental competence of SCNT embryos in several species were significantly enhanced via treatment of histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) to increase histone acetylation. Here we report that 50 nM TSA for 10 h after activation increased the developmental competence of porcine SCNT embryos constructed from Landrace fetal fibroblast cells (FFCs) in vitro and in vivo, but not at higher concentrations. Therefore, we optimized the application of another novel HDACi, Scriptaid, for development of porcine SCNT embryos. We found that treatment with 500 nM Scriptaid significantly enhanced the development SCNT embryos to the blastocyst stage when outbred Landrace FFCs and ear fibroblast cells (EFCs) were used as donors compared to the untreated group. Scriptaid increased the overall cloning efficiency from 0.4% (untreated group) to 1.6% for Landrace FFCs and 0 to 3.7% for Landrace EFCs. Moreover, treatment of SCNT embryos with Scriptaid improved the histone acetylation on Histone H4 at lysine 8 (AcH4K8) in a pattern similar to that of the in vitro fertilized (IVF) embryos.
Collapse
Affiliation(s)
- Jianguo Zhao
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Gerger R, Ribeiro E, Forell F, Bertolini L, Rodrigues J, Ambrsio C, Miglino M, Mezzalira A, Bertolini M. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence. GENETICS AND MOLECULAR RESEARCH 2010; 9:295-302. [DOI: 10.4238/vol9-1gmr690] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
97
|
Stambrook PJ, Tichy ED. Preservation of genomic integrity in mouse embryonic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:59-75. [PMID: 21222199 DOI: 10.1007/978-1-4419-7037-4_5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Embryonic stem (ES) cells and germ cells have the potential to give rise to an entire organism. A common requirement is that both must have very robust mechanisms to preserve the integrity of their genomes. This is particularly true since somatic cells have very high mutation frequencies approaching 10-4 in vivo that would lead to unacceptable levels of fetal lethality and congenital defects. Notably, between 70% and 80% of mutational events monitored at a heterozygous endogenous selectable marker were loss of heterozygosity due to mitotic recombination, a mechanism that affects multiple heterozygous loci between the reporter gene and the site of crossing over. This chapter examines three mechanisms by which mouse embryonic stem cells preserve their genomic integrity. The first entails suppression of mutation and recombination between chromosome homologues by two orders of magnitude when compared with isogenic mouse embryo fibroblasts which had a mutation frequency similar to that seen in adult somatic cells. The second renders mouse ES cells hypersensitive to environmental challenge and eliminates damaged cells from the self-renewing population. Mouse ES cells lack a G1 checkpoint so that cells damaged by exogenous insult such as ionizing radiation do not arrest at the G1/S phase checkpoint but progress into the S phase where the damaged DNA is replicated, the damage exacerbated and the cells driven to apoptosis. The third mechanism examines how mouse ES cells repair double strand DNA breaks. Somatic cells predominantly utilize error prone nonhomologous end joining which, from a teleological perspective, would be disadvantageous for ES cells since it would promote accumulation of mutations. When ES cells were tested for the preferred pathway of double strand DNA break repair, they predominantly utilized the high fidelity homology-mediated repair pathway, thereby minimizing the incurrence of mutations during the repair process. When mouse ES cells are induced to differentiate, the predominant repair pathway switches from homology-mediated repair to nonhomologous end joining that is characteristic of somatic cells.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio, 45267-0524, USA,
| | | |
Collapse
|
98
|
Page RL, Ambady S, Holmes WF, Vilner L, Kole D, Kashpur O, Huntress V, Vojtic I, Whitton H, Dominko T. Induction of stem cell gene expression in adult human fibroblasts without transgenes. CLONING AND STEM CELLS 2009; 11:417-26. [PMID: 19622035 DOI: 10.1089/clo.2009.0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of mutagenic effects due to genetic manipulation.
Collapse
|
99
|
Srirattana K, Lorthongpanich C, Laowtammathron C, Imsoonthornruksa S, Ketudat-Cairns M, Phermthai T, Nagai T, Parnpai R. Effect of donor cell types on developmental potential of cattle (Bos taurus) and swamp buffalo (Bubalus bubalis) cloned embryos. J Reprod Dev 2009; 56:49-54. [PMID: 19815984 DOI: 10.1262/jrd.09-135a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the effect of donor cell types on the developmental potential and quality of cloned swamp buffalo embryos in comparison with cloned cattle embryos. Fetal fibroblasts (FFs), ear fibroblasts (EFs), granulosa cells (GCs) and cumulus cells (CCs) were used as the donor cells in both buffalo and cattle. The cloned cattle or buffalo embryos were produced by fusion of the individual donor cells with enucleated cattle or buffalo oocytes, respectively. The reconstructed (cloned) embryos and in vitro matured oocytes without enucleation were parthenogenetically activated (PA) and cultured for 7 days. Their developmental ability to the blastocyst stage was evaluated. The total number of trophectoderm (TE) and inner cell mass (ICM) cells and the ICM ratio in each blastocyst was determined by differential staining as an indicator of embryo quality. The fusion rate of CCs with enucleated oocytes was significantly lower than for those of other donor cell types both in cattle and buffalo. The rates of cleavage and development to the 8-cell, morula and blastocyst stages of cloned embryos derived from all donor cell types did not significantly differ within the same species. However, the cleavage rate of cloned cattle embryos derived from FFs was significantly higher than those of cattle PA and cloned buffalo embryos. The blastocyst rates of cloned cattle embryos, except for the ones derived from CCs, were significantly higher than those of cloned buffalo embryos. In buffalo, only cloned embryos derived from CCs showed a significantly higher blastocyst rate than that of PA embryos. In contrast, all the cloned cattle embryos showed significantly higher blastocyst rates than that of PA embryos. There was no difference in ICM ratio among any of the blastocysts derived from any of the donor cell types and PA embryos in both species. FFs, EFs, GCs and CCs had similar potentials to support development of cloned cattle and buffalo embryos to the blastocyst stage with the same quality.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Early alteration of the self-renewal/differentiation threshold in trophoblast stem cells derived from mouse embryos after nuclear transfer. Dev Biol 2009; 334:325-34. [DOI: 10.1016/j.ydbio.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 02/04/2023]
|