51
|
Abhilash PC, Srivastava S, Singh N. Comparative bioremediation potential of four rhizospheric microbial species against lindane. CHEMOSPHERE 2011; 82:56-63. [PMID: 21044795 DOI: 10.1016/j.chemosphere.2010.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/25/2010] [Accepted: 10/03/2010] [Indexed: 05/30/2023]
Abstract
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL⁻¹). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg⁻¹ of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg⁻¹) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.
Collapse
Affiliation(s)
- P C Abhilash
- National Botanical Research Institute, Lucknow, Uttar Pradesh, India.
| | | | | |
Collapse
|
52
|
Novakova M, Mackova M, Antosova Z, Viktorova J, Szekeres M, Demnerova K, Macek T. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls. Bioeng Bugs 2010; 1:419-23. [PMID: 21468210 PMCID: PMC3056093 DOI: 10.4161/bbug.1.6.12723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/04/2010] [Accepted: 06/21/2010] [Indexed: 11/19/2022] Open
Abstract
The aim of this work was to construct transgenic plants with increased capabilities to degrade organic pollutants, such as polychlorinated biphenyls. The environmentally important gene of bacterial dioxygenase, the bphC gene, was chosen to clone into a plant of Nicotiana tabacum. The chosen bphC gene encodes 2,3-dihydroxybiphenyl-1,2-dioxygenase, which cleaves the aromatic ring of dihydroxybiphenyl, and we cloned it in fusion with the gene for β-glucuronidase (GUS), luciferase (LUC) or with a histidine tail. Several genetic constructs were designed and prepared and the possible expression of desired proteins in tobacco plants was studied by transient expression. We used genetic constructs successfully expressing dioxygenase's genes we used for preparation of transgenic tobacco plants by agrobacterial infection. The presence of transgenic DNA , mRNA and protein was determined in parental and the first filial generation of transgenic plants with the bphC gene. Properties of prepared transgenic plants will be further studied.
Collapse
Affiliation(s)
- Martina Novakova
- ICT Prague; Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry; CAS; Joint Laboratory of IOCB and ICT Prague; Prague, Czech Republic
| | - Martina Mackova
- ICT Prague; Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry; CAS; Joint Laboratory of IOCB and ICT Prague; Prague, Czech Republic
| | - Zuzana Antosova
- ICT Prague; Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Prague, Czech Republic
| | - Jitka Viktorova
- ICT Prague; Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Prague, Czech Republic
| | - Miklos Szekeres
- Institute of Plant Biology; Biological Research Center of the Hungarian Academy of Sciences; Szeged, Hungary
| | - Katerina Demnerova
- ICT Prague; Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Prague, Czech Republic
| | - Tomas Macek
- ICT Prague; Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry; CAS; Joint Laboratory of IOCB and ICT Prague; Prague, Czech Republic
| |
Collapse
|
53
|
Aken BV, Correa PA, Schnoor JL. Phytoremediation of polychlorinated biphenyls: new trends and promises. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2767-76. [PMID: 20384372 PMCID: PMC3025541 DOI: 10.1021/es902514d] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environment-friendly treatment of soil and water contaminated with polychlorinated biphenyls (PCBs). This review focuses on recent advances in phytoremediation for the treatment of PCBs, including the development of transgenic plants and associated bacteria. Phytoremediation, or the use of higher plants for rehabilitation of soil and groundwater, is a promising strategy for cost-effective treatment of sites contaminated by toxic compounds, including PCBs. Plants can help mitigate environmental pollution by PCBs through a range of mechanisms: besides uptake from soil (phytoextraction), plants are capable of enzymatic transformation of PCBs (phytotransformation); by releasing a variety of secondary metabolites, plants also enhance the microbial activity in the root zone, improving biodegradation of PCBs (rhizoremediation). However, because of their hydrophobicity and chemical stability, PCBs are only slowly taken up and degraded by plants and associated bacteria, resulting in incomplete treatment and potential release of toxic metabolites into the environment. Moreover, naturally occurring plant-associated bacteria may not possess the enzymatic machinery necessary for PCB degradation. To overcome these limitations, bacterial genes involved in the metabolism of PCBs, such as biphenyl dioxygenases, have been introduced into higher plants, following a strategy similar to the development of transgenic crops. Similarly, bacteria have been genetically modified that exhibit improved biodegradation capabilities and are able to maintain stable relationships with plants. Transgenic plants and associated bacteria bring hope for a broader and more efficient application of phytoremediation for the treatment of PCBs.
Collapse
Affiliation(s)
- Benoit Van Aken
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
54
|
Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 76:2615-22. [PMID: 20173062 DOI: 10.1128/aem.01463-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosorption of metal ions may take place by different passive metal-sequestering processes such as ion exchange, complexation, physical entrapment, and inorganic microprecipitation or by a combination of these. To improve the biosorption capacity of the potential yeast biosorbent, short metal-binding NP peptides (harboring the CXXEE metal fixation motif of the bacterial Pb(2+)-transporting P1-type ATPases) were efficiently displayed and covalently anchored to the cell wall of Saccharomyces cerevisiae. These were fusions to the carboxyl-terminal part of the sexual adhesion glycoprotein alpha-agglutinin (AGalpha1Cp). Compared to yeast cells displaying the anchoring domain only, those having a surface display of NP peptides multiplied their Pb(2+) biosorption capacity from solutions containing a 75 to 300 microM concentration of the metal ion up to 5-fold. The S-type Pb(2+) biosorption isotherms, plus the presence of electron-dense deposits (with an average size of 80 by 240 nm, observed by transmission electron microscopy) strongly suggested that the improved biosorption potential of NP-displaying cells is due to the onset of microprecipitation of Pb species on the modified cell wall. The power of an improved capacity for Pb biosorption was also retained by the isolated cell walls containing NP peptides. Their Pb(2+) biosorption property was insensitive to the presence of a 3-fold molar excess of either Cd(2+) or Zn(2+). These results suggest that the biosorption mechanism can be specifically upgraded with microprecipitation by the engineering of the biosorbent with an eligible metal-binding peptide.
Collapse
|
55
|
Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 2009; 27:799-810. [DOI: 10.1016/j.biotechadv.2009.06.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/16/2009] [Accepted: 06/20/2009] [Indexed: 11/22/2022]
|
56
|
Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T. Phyto/rhizoremediation studies using long-term PCB-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:817-29. [PMID: 19823887 DOI: 10.1007/s11356-009-0240-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/08/2009] [Indexed: 05/13/2023]
Abstract
PURPOSE Polychlorinated biphenyls (PCBs) represent a large group of recalcitrant environmental pollutants, differing in the number of chlorine atoms bound to biphenyl ring. Due to their excellent technological properties, PCBs were used as heat-transfer media, for filling transformers and condensers, as paint additives, etc. With increasing knowledge of their toxicity, transfer to food chains and accumulation in living organisms, their production ended in most countries in the 1970s and in 1984 in the former Czechoslovakia. But even a quarter of century after the PCB production ceased, from contaminated areas, the volatile PCBs evaporate and contaminate much larger areas even at very distant parts of the world. For this reason, PCBs still represent a global problem. The main method of PCB removal from contaminated environment is at present the expensive incineration at high temperatures. With the aim of finding effective alternative approaches, we are studying biological methods for PCB removal from the environment. In this paper, we summarise 10 years of studies using long-term PCB-contaminated soil from a dumpsite in South Bohemia, targeted for the use of plants (phytoremediation) and their cooperation with microorganisms in the root zone (rhizoremediation). MATERIALS AND METHODS Long-term contaminated soil from Lhenice dumpsite, more than hundred kilograms of homogenised material, was used in microcosms (pots and buckets), and field plots were established at the site. Tested plants include among others tobacco, black nightshade, horseradish, alfalfa and willow. Aseptic plant cell and tissue cultures were from the collection of the IOCB. Microorganisms were our own isolates. The paper summarises experiments done between 1998 and 2008 with real contaminated soil, both vegetated and non-vegetated. PCB analysis was performed by GC-ECD, metabolic products identified mostly using 2D-GC/MS-MS and synthetic standards, whereas molecular methods included quantitative PCR and sequencing. RESULTS The soil was used both for preparation of field plots at the site and for greenhouse and laboratory tests in microcosms. The results include analyses of changes in PCB content in untreated and vegetated soil, PCB uptake and distribution in different parts of various plant species, analysis of products formed, identification and characterisation of cultivable and non-cultivable bacteria both in rhizosphere and in bulk soil. Different treatments and amendments were also tested. Experiments in real contaminated soil were accompanied by in vitro experiments using aseptic cultures of plant biomass, genetically modified (GM) plants and bacteria, to allow identification of players responsible for PCB metabolisation in soil. The time-span of the experiments allows extrapolating some of the results and drawing conclusions concerning the effectivity of exploitation of various plant species and treatments to remove PCBs from soils. DISCUSSION The approach using plants proved to represent a viable alternative to costly incineration of PCB-contaminated soils. The recent studies using molecular methods show that plants are responsible for the composition of consortia of microorganisms present in their root zone, including those with ability to degrade the chlorinated aromatic compounds. CONCLUSIONS In addition to uptake, accumulation and partial metabolisation of PCBs by plants, compounds produced by plants allow survival of microorganisms even in poor soils, serve as carbon and energy source, and can even induce the degradation pathways of different xenobiotics. Thus, the choice of proper plant species is crucial for effective cleaning of different polluted sites. Our study shows how the efficiency of PCB removal is dependent on the plant used. RECOMMENDATIONS AND PERSPECTIVES The use of plants in biological remediation of different organic xenobiotics proved to be a useful approach. Further improvement can be expected by application of specifically tailored GM plants and use of selective conditions ensuring high remediation potential based on optimal composition of the soil microbial consortia designed for the needs of given site.
Collapse
Affiliation(s)
- Martina Mackova
- Faculty of Food and Biochemical Technology, ICT Prague, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol 2009; 75:6471-7. [PMID: 19700551 DOI: 10.1128/aem.00466-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.
Collapse
|
58
|
Abhilash P, Jamil S, Singh N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 2009; 27:474-88. [DOI: 10.1016/j.biotechadv.2009.04.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/26/2009] [Accepted: 04/03/2009] [Indexed: 11/28/2022]
|
59
|
|
60
|
Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. SENSORS 2009; 9:5040-58. [PMID: 22346686 PMCID: PMC3274165 DOI: 10.3390/s90705040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 11/17/2022]
Abstract
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.
Collapse
|
61
|
Uhlík O, Jecná K, Leigh MB, Macková M, Macek T. DNA-based stable isotope probing: a link between community structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3611-3619. [PMID: 18573518 DOI: 10.1016/j.scitotenv.2008.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/25/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing (13)C-labeled substrate to a microbial community and subsequent analyses of the (13)C-DNA isolated from the community. Isopycnic centrifugation permits separating (13)C-labeled DNA of organisms that utilized the substrate from (12)C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.
Collapse
Affiliation(s)
- Ondrej Uhlík
- Institute of Chemical Technology Prague, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
62
|
Doran PM. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotechnol Bioeng 2009; 103:60-76. [DOI: 10.1002/bit.22280] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Van Aken B. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 2009; 20:231-6. [DOI: 10.1016/j.copbio.2009.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
64
|
James CA, Strand SE. Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 2009; 20:237-41. [PMID: 19342219 PMCID: PMC2857588 DOI: 10.1016/j.copbio.2009.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/19/2009] [Accepted: 02/26/2009] [Indexed: 11/18/2022]
Abstract
The efficacy of transgenic plants in the phytoremediation of small organic contaminants has been investigated. Two principal strategies have been pursued (1) the manipulation of phase I metabolic activity to enhance in planta degradation rates, or to impart novel metabolic activity, and (2) the enhanced secretion of reactive enzymes from roots leading to accelerated ex planta degradation of organic contaminants. A pair of dehalogenase genes from Xanthobacter autotrophicus was expressed in tobacco resulting in the dehalogenation of 1,2-dichloroethane, which was otherwise recalcitrant. A laccase gene from cotton was overexpressed in Arabidopsis thaliana resulting in increased secretory laccase activity and the enhanced resistance to trichlorophenol in soils. Although the results to date are promising, much of the work has been limited to laboratory settings; field demonstrations are needed.
Collapse
Affiliation(s)
- C Andrew James
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
65
|
Sylvestre M, Macek T, Mackova M. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 2009; 20:242-7. [PMID: 19250817 DOI: 10.1016/j.copbio.2009.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Recent investigations have shown that the three components of the biphenyl dioxygenase and the 2,3-dihydroxybiphenyl dioxygenase can be produced actively in transgenic plants. Both enzymes catalyze critical steps of the bacterial polychlorinated biphenyl (PCB) degrading pathway. On the basis of these observations, optimized plant-microbe bioremediation processes in which transgenic plants would initiate PCB metabolism and release the metabolites for further degradation by rhizobacteria has been proposed. Since this is still a relatively new approach for PCB remediation, its successful application will require efforts first, to engineer improved PCB-degrading enzymes; second, to co-ordinately express these enzymes' components in plants; and third, to better understand the mechanisms by which plants and rhizobacteria interact to degrade organic pollutants.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| | | | | |
Collapse
|
66
|
Biological Remediation of Soil: An Overview of Global Market and Available Technologies. SOIL BIOLOGY 2009. [DOI: 10.1007/978-3-540-89621-0_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
67
|
Aken BV, Doty SL. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol Genet Eng Rev 2009; 26:43-64. [DOI: 10.5661/bger-26-43] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Uncommon Heavy Metals, Metalloids and Their Plant Toxicity: A Review. SUSTAINABLE AGRICULTURE REVIEWS 2009. [DOI: 10.1007/978-1-4020-9654-9_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
69
|
Novakova M, Mackova M, Chrastilova Z, Viktorova J, Szekeres M, Demnerova K, Macek T. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol Bioeng 2009; 102:29-37. [PMID: 18683252 DOI: 10.1002/bit.22038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this work is to increase the efficiency of the biodegradation of polychlorinated biphenyls (PCBs) by the introduction of bacterial genes into the plant genome. For this purpose, we selected the bphC gene encoding 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas testosteroni B-356 to be cloned into tobacco plants. The dihydroxybiphenyldioxygenase enzyme is the third enzyme in the biphenyl degradation pathway, and its unique function is the cleavage of biphenyl. Three different constructs were designed and prepared in E. coli: the bphC gene being fused with the beta-glucuronidase (GUS) gene, with the luciferase (LUC) gene, and with histidine tail in three separate plant cloning vectors. The GUS and LUC genes were chosen because they can be used as markers for the easy detection of transgenic plants, while histidine tail better enables the isolation of protein expressed in plant tissue. The prepared vectors were then introduced into cells of Agrobacterium tumefaciens. The transient expression of the prepared genes was first studied in cells of Nicotiana tabacum. Once this ability had been established, model tobacco plants were transformed by agrobacterial infection with the bphC/GUS, bphC/LUC, and bphC/His genes. The transformed regenerants were selected on media using a selective antibiotic, and the presence of transgenes and mRNA was determined by PCR and RT-PCR. The expression of the fused proteins BphC/GUS and BphC/LUC was confirmed histochemically by analysis of the expression of their detection markers. Western blot analysis was performed to detect the presence of the BphC/His protein immunochemically using a mouse anti-His antibody. Growth and viability of transgenic plants in the presence of PCBs was compared with control plants.
Collapse
Affiliation(s)
- M Novakova
- ICT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 16628 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
70
|
|
71
|
Kožíšek M, Svatoš A, Buděšínský M, Muck A, Bauer M, Kotrba P, Ruml T, Havlas Z, Linse S, Rulíšek L. Molecular Design of Specific Metal-Binding Peptide Sequences from Protein Fragments: Theory and Experiment. Chemistry 2008; 14:7836-46. [DOI: 10.1002/chem.200800178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
72
|
Novák J, Tykva R, Wimmer Z, Pavlík M, Prouza M, Hlavsová K, Zarevúcka M. Enantiomeric purity of biodegradation products of juvenogens by newly isolated soil bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6604-6608. [PMID: 18597472 DOI: 10.1021/jf800526a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two bacteria were isolated from sand RQ30, characterized as Bacillus simplex and Bacillus sp. strain 05 (GenBank EU399813 ), and were used as biocatalysts for a hydrolytic assay of stability of the cis or trans isomers of ethyl N-{2-{4-{[2-(butanoyl)oxycyclohexyl]methyl}phenoxy}ethyl}carbamate, which are among insect hormonogen substances (juvenogens). The stability tests were performed using simple modeling under laboratory conditions. The structures of the products were assigned as ethyl (1 R,2 R)- N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate and ethyl (1 S,2 R)- N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate on the basis of (1)H and (13)C NMR, IR, and FAB-MS analyses.
Collapse
Affiliation(s)
- Jaroslav Novák
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|