51
|
Decarli G, Paris E, Tencati C, Nardelli C, Vescovi M, Surian L, Piazza M. Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. PLoS One 2020; 15:e0244578. [PMID: 33382740 PMCID: PMC7774972 DOI: 10.1371/journal.pone.0244578] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
It is believed that the approximate estimation of large sets and the exact quantification of small sets (subitizing) are supported by two different systems, the Approximate Number System (ANS) and Object Tracking System (OTS), respectively. It is a current matter of debate whether they are both impaired in developmental dyscalculia (DD), a specific learning disability in symbolic number processing and calculation. Here we tackled this question by asking 32 DD children and 32 controls to perform a series of tasks on visually presented sets, including exact enumeration of small sets as well as comparison of large, uncountable sets. In children with DD, we found poor sensitivity in processing large numerosities, but we failed to find impairments in the exact enumeration of sets within the subitizing range. We also observed deficits in visual short-term memory skills in children with dyscalculia that, however, did not account for their low ANS acuity. Taken together, these results point to a dissociation between quantification skills in dyscalculia, they highlight a link between DD and low ANS acuity and provide support for the notion that DD is a multifaceted disability that covers multiple cognitive skills.
Collapse
Affiliation(s)
- Gisella Decarli
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Emanuela Paris
- Servizio di Logopedia, Azienda Pubblica di Servizi alla Persona “Beato de Tschiderer”, Trento, Italy
| | - Chiara Tencati
- Servizio di Logopedia, Azienda Pubblica di Servizi alla Persona “Beato de Tschiderer”, Trento, Italy
| | - Chiara Nardelli
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Massimo Vescovi
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto, Italy
| | - Luca Surian
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Manuela Piazza
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
52
|
Castaldi E, Vignaud A, Eger E. Mapping subcomponents of numerical cognition in relation to functional and anatomical landmarks of human parietal cortex. Neuroimage 2020; 221:117210. [DOI: 10.1016/j.neuroimage.2020.117210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
|
53
|
Szollosi A, Newell BR. People as Intuitive Scientists: Reconsidering Statistical Explanations of Decision Making. Trends Cogn Sci 2020; 24:1008-1018. [PMID: 33077380 DOI: 10.1016/j.tics.2020.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
A persistent metaphor in decision-making research casts people as intuitive statisticians. Popular explanations based on this metaphor assume that the way in which people represent the environment is specified and fixed a priori. A major flaw in this account is that it is not clear how people know what aspects of an environment are important, how to interpret those aspects, and how to make decisions based on them. We suggest a theoretical reorientation away from assuming people's representations towards a focus on explaining how people themselves specify what is important to represent. This perspective casts decision makers as intuitive scientists able to flexibly construct, modify, and replace the representations of the decision problems they face.
Collapse
Affiliation(s)
- Aba Szollosi
- School of Psychology, University of New South Wales, Sydney, Australia.
| | - Ben R Newell
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
54
|
Cross FR, Carvell GE, Jackson RR, Grace RC. Arthropod Intelligence? The Case for Portia. Front Psychol 2020; 11:568049. [PMID: 33154726 PMCID: PMC7591756 DOI: 10.3389/fpsyg.2020.568049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Macphail’s “null hypothesis,” that there are no differences in intelligence, qualitative, or quantitative, between non-human vertebrates has been controversial. This controversy can be useful if it encourages interest in acquiring a detailed understanding of how non-human animals express flexible problem-solving capacity (“intelligence”), but limiting the discussion to vertebrates is too arbitrary. As an example, we focus here on Portia, a spider with an especially intricate predatory strategy and a preference for other spiders as prey. We review research on pre-planned detours, expectancy violation, and a capacity to solve confinement problems where, in each of these three contexts, there is experimental evidence of innate cognitive capacities and reliance on internal representation. These cognitive capacities are related to, but not identical to, intelligence. When discussing intelligence, as when discussing cognition, it is more useful to envisage a continuum instead of something that is simply present or not; in other words, a continuum pertaining to flexible problem-solving capacity for “intelligence” and a continuum pertaining to reliance on internal representation for “cognition.” When envisaging a continuum pertaining to intelligence, Daniel Dennett’s notion of four Creatures (Darwinian, Skinnerian, Popperian, and Gregorian) is of interest, with the distinction between Skinnerian and Popperian Creatures being especially relevant when considering Portia. When we consider these distinctions, a case can be made for Portia being a Popperian Creature. Like Skinnerian Creatures, Popperian Creatures express flexible problem solving capacity, but the manner in which this capacity is expressed by Popperian Creatures is more distinctively cognitive.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Georgina E Carvell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Randolph C Grace
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
55
|
Castaldi E, Turi M, Gassama S, Piazza M, Eger E. Excessive visual crowding effects in developmental dyscalculia. J Vis 2020; 20:7. [PMID: 32756882 PMCID: PMC7438630 DOI: 10.1167/jov.20.8.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 01/29/2023] Open
Abstract
Visual crowding refers to the inability to identify objects when surrounded by other similar items. Crowding-like mechanisms are thought to play a key role in numerical perception by determining the sensory mechanisms through which ensembles are perceived. Enhanced visual crowding might hence prevent the normal development of a system involved in segregating and perceiving discrete numbers of items and ultimately the acquisition of more abstract numerical skills. Here, we investigated whether excessive crowding occurs in developmental dyscalculia (DD), a neurodevelopmental disorder characterized by difficulty in learning the most basic numerical and arithmetical concepts, and whether it is found independently of associated major reading and attentional difficulties. We measured spatial crowding in two groups of adult individuals with DD and control subjects. In separate experiments, participants were asked to discriminate the orientation of a Gabor patch either in isolation or under spatial crowding. Orientation discrimination thresholds were comparable across groups when stimuli were shown in isolation, yet they were much higher for the DD group with respect to the control group when the target was crowded by closely neighbouring flanking gratings. The difficulty in discriminating orientation (as reflected by the combination of accuracy and reaction times) in the DD compared to the control group persisted over several larger target flanker distances. Finally, we found that the degree of such spatial crowding correlated with impairments in mathematical abilities even when controlling for visual attention and reading skills. These results suggest that excessive crowding effects might be a characteristic of DD, independent of other associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Cognitive Neuroimaging Unit, NeuroSpin Center, CEA DRF/JOLIOT, INSERM, Université Paris-Saclay, Gif-sur-Yvette, Paris, France
| | - Marco Turi
- Fondazione Stella Maris Mediterraneo, Potenza, Italy
| | - Sahawanatou Gassama
- Paris Santé Réussite, Centre de diagnostic des troubles des apprentissages, Paris, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Italy
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, NeuroSpin Center, CEA DRF/JOLIOT, INSERM, Université Paris-Saclay, Gif-sur-Yvette, Paris, France
| |
Collapse
|
56
|
Wilkey ED, Conrad BN, Yeo DJ, Price GR. Shared Numerosity Representations Across Formats and Tasks Revealed with 7 Tesla fMRI: Decoding, Generalization, and Individual Differences in Behavior. Cereb Cortex Commun 2020; 1:tgaa038. [PMID: 34296107 PMCID: PMC8153058 DOI: 10.1093/texcom/tgaa038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 01/28/2023] Open
Abstract
Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes. Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6, and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources are shared between formats. Generalization was also successful across tasks where participants either identified or compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance on a number comparison task completed outside of the scanner, but generalization between formats and across tasks negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in representational specificity within format and task contexts relate to mathematical expertise.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain and Mind Institute, Western University, London, Ontario N6A5B7, Canada
| | - Benjamin N Conrad
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37203, USA
| | - Darren J Yeo
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37203, USA
- Division of Psychology, School of Social Sciences, Nanyang Technological University, 639818, Singapore
| | - Gavin R Price
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
57
|
Susperreguy MI, Peake C, Gómez DM. Research on numerical cognition in Chile: current status, links to education and challenges (Investigación en cognición numérica en Chile: estado actual, vínculos con la educación y desafíos). STUDIES IN PSYCHOLOGY 2020. [DOI: 10.1080/02109395.2020.1748842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | - Christian Peake
- Universidad Diego Portales
- Universidad Católica de la Santísima Concepción
| | | |
Collapse
|
58
|
Is thirty-two three tens and two ones? The embedded structure of cardinal numbers. Cognition 2020; 203:104331. [PMID: 32590201 DOI: 10.1016/j.cognition.2020.104331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 01/29/2023]
Abstract
The acquisition and representation of natural numbers have been a central topic in cognitive science. However, a key question in this topic about how humans acquire the capacity to understand that numbers make 'infinite use of finite means' (or that numbers are generative) has been left unanswered. While previous theories rely on the idea of the successor principle, we propose an alternative hypothesis that children's understanding of the syntactic rules for building complex numerals-or numerical syntax-is a crucial foundation for the acquisition of number concepts. In two independent studies, we assessed children's understanding of numerical syntax by probing their knowledge about the embedded structure of cardinal numbers using a novel task called Give-a-number Base-10 (Give-N10). In Give-N10, children were asked to give a large number of items (e.g., 32 items) from a pool that is organized in sets of ten items. Children's knowledge about the embedded structure of numbers (e.g., knowing that thirty-two items are composed of three tens and two ones) was assessed from their ability to use those sets. Study 1 tested English-speaking 4- to 10-year-olds and revealed that children's understanding of the embedded structure of numbers emerges relatively late in development (several months into kindergarten), beyond when they are capable of making a semantic induction over a local sequence of numbers. Moreover, performance in Give-N10 was predicted by other task measures that assessed children's knowledge about the syntactic rules that govern numerals (such as counting fluency), demonstrating the validity of the measure. In Study 2, this association was tested again in monolingual Korean kindergarteners (5-6 years), as we aimed to test the same effect in a language with a highly regular numeral system. It replicated the association between Give-N10 performance and counting fluency, and it also demonstrated that Korean-speaking children understand the embedded structure of cardinal numbers earlier in the acquisition path than English-speaking peers, suggesting that regularity in numerical syntax facilitates the acquisition of generative properties of numbers. Based on these observations and our theoretical analysis of the literature, we propose that the syntax for building complex numerals, not the successor principle, represents a structural platform for numerical thinking in young children.
Collapse
|
59
|
Testolin A. The Challenge of Modeling the Acquisition of Mathematical Concepts. Front Hum Neurosci 2020; 14:100. [PMID: 32265678 PMCID: PMC7099599 DOI: 10.3389/fnhum.2020.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 01/29/2023] Open
Abstract
As a full-blown research topic, numerical cognition is investigated by a variety of disciplines including cognitive science, developmental and educational psychology, linguistics, anthropology and, more recently, biology and neuroscience. However, despite the great progress achieved by such a broad and diversified scientific inquiry, we are still lacking a comprehensive theory that could explain how numerical concepts are learned by the human brain. In this perspective, I argue that computer simulation should have a primary role in filling this gap because it allows identifying the finer-grained computational mechanisms underlying complex behavior and cognition. Modeling efforts will be most effective if carried out at cross-disciplinary intersections, as attested by the recent success in simulating human cognition using techniques developed in the fields of artificial intelligence and machine learning. In this respect, deep learning models have provided valuable insights into our most basic quantification abilities, showing how numerosity perception could emerge in multi-layered neural networks that learn the statistical structure of their visual environment. Nevertheless, this modeling approach has not yet scaled to more sophisticated cognitive skills that are foundational to higher-level mathematical thinking, such as those involving the use of symbolic numbers and arithmetic principles. I will discuss promising directions to push deep learning into this uncharted territory. If successful, such endeavor would allow simulating the acquisition of numerical concepts in its full complexity, guiding empirical investigation on the richest soil and possibly offering far-reaching implications for educational practice.
Collapse
Affiliation(s)
- Alberto Testolin
- Department of General Psychology, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
60
|
van den Berg FCG, de Weerd P, Jonkman LM. Number-related Brain Potentials Are Differentially Affected by Mapping Novel Symbols on Small versus Large Quantities in a Number Learning Task. J Cogn Neurosci 2020; 32:1263-1275. [PMID: 32073349 DOI: 10.1162/jocn_a_01546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nature of the mapping process that imbues number symbols with their numerical meaning-known as the "symbol-grounding process"-remains poorly understood and the topic of much debate. The aim of this study was to enhance insight into how the nonsymbolic-symbolic number mapping process and its neurocognitive correlates might differ between small (1-4; subitizing range) and larger (6-9) numerical ranges. Hereto, 22 young adults performed a learning task in which novel symbols acquired numerical meaning by mapping them onto nonsymbolic magnitudes presented as dot arrays (range 1-9). Learning-dependent changes in accuracy and RT provided evidence for successful novel symbol quantity mapping in the subitizing (1-4) range only. Corroborating these behavioral results, the number processing related P2p component was only modulated by the learning/mapping of symbols representing small numbers 1-4. The symbolic N1 amplitude increased with learning independent of symbolic numerical range but dependent on the set size of the preceding dot array; it only occurred when mapping on one to four item dot arrays that allow for quick retrieval of a numeric value, on the basis of which, with learning, one could predict the upcoming symbol causing perceptual expectancy violation when observing a different symbol. These combined results suggest that exact nonsymbolic-symbolic mapping is only successful for small quantities 1-4 from which one can readily extract cardinality. Furthermore, we suggest that the P2p reflects the processing stage of first access to or retrieval of numeric codes and might in future studies be used as a neural correlate of nonsymbolic-symbolic mapping/symbol learning.
Collapse
|
61
|
Yeo DJ, Price GR. Probing the mechanisms underlying numerosity-to-numeral mappings and their relation to math competence. PSYCHOLOGICAL RESEARCH 2020; 85:1248-1271. [PMID: 32060699 DOI: 10.1007/s00426-020-01299-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based "associative" and holistic "structural" mapping) and their roles in the estimation-and-math relation. Specifically, mappings for small numbers (e.g., 1-10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of estimates), whereas holistic "structural" mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a numeral "response grid" (akin to a ruler) to an analog "mental number line" upon calibration. In 57 adults, we used pre- and post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typical at the individual level, which calls into question the nature of "holistic structural mapping". A parsimonious explanation to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing numerosity-numeral mappings through the use of multiple strategies from trial to trial.
Collapse
Affiliation(s)
- Darren J Yeo
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Division of Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639818, Singapore
| | - Gavin R Price
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.
| |
Collapse
|
62
|
Nieder A. Neural constraints on human number concepts. Curr Opin Neurobiol 2019; 60:28-36. [PMID: 31810008 DOI: 10.1016/j.conb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
63
|
Wilkey ED, Ansari D. Challenging the neurobiological link between number sense and symbolic numerical abilities. Ann N Y Acad Sci 2019; 1464:76-98. [PMID: 31549430 DOI: 10.1111/nyas.14225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
A significant body of research links individual differences in symbolic numerical abilities, such as arithmetic, to number sense, the neurobiological system used to approximate and manipulate quantities without language or symbols. However, recent findings from cognitive neuroscience challenge this influential theory. Our current review presents an overview of evidence for the number sense account of symbolic numerical abilities and then reviews recent studies that challenge this account, organized around the following four assertions. (1) There is no number sense as traditionally conceived. (2) Neural substrates of number sense are more widely distributed than common consensus asserts, complicating the neurobiological evidence linking number sense to numerical abilities. (3) The most common measures of number sense are confounded by other cognitive demands, which drive key correlations. (4) Number sense and symbolic number systems (Arabic digits, number words, and so on) rely on distinct neural mechanisms and follow independent developmental trajectories. The review follows each assertion with comments on future directions that may bring resolution to these issues.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Daniel Ansari
- Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|