51
|
|
52
|
Kim W, Kim SK. Neural circuit remodeling and structural plasticity in the cortex during chronic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:1-8. [PMID: 26807017 PMCID: PMC4722182 DOI: 10.4196/kjpp.2016.20.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/07/2015] [Accepted: 10/05/2015] [Indexed: 11/16/2022]
Abstract
Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
53
|
Matson DJ, Hamamoto DT, Bregman H, Cooke M, DiMauro EF, Huang L, Johnson D, Li X, McDermott J, Morgan C, Wilenkin B, Malmberg AB, McDonough SI, Simone DA. Inhibition of Inactive States of Tetrodotoxin-Sensitive Sodium Channels Reduces Spontaneous Firing of C-Fiber Nociceptors and Produces Analgesia in Formalin and Complete Freund's Adjuvant Models of Pain. PLoS One 2015; 10:e0138140. [PMID: 26379236 PMCID: PMC4575030 DOI: 10.1371/journal.pone.0138140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022] Open
Abstract
While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported "compound 52" aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund's adjuvant (CFA) model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.
Collapse
Affiliation(s)
- David J. Matson
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Darryl T. Hamamoto
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Howard Bregman
- Department of Medicinal Chemistry, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Melanie Cooke
- Department of Pharmaceutics Research & Development, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Erin F. DiMauro
- Department of Medicinal Chemistry, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Liyue Huang
- Department of Pharmacokinetics & Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Danielle Johnson
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Xingwen Li
- Department of Pharmacokinetics & Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Jeff McDermott
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Carrie Morgan
- Department of Pharmaceutics Research & Development, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Ben Wilenkin
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Annika B. Malmberg
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Stefan I. McDonough
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Donald A. Simone
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| |
Collapse
|
54
|
Tan W, Yao WL, Hu R, Lv YY, Wan L, Zhang CH, Zhu C. Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate cortex. Mol Pain 2015; 11:56. [PMID: 26364211 PMCID: PMC4568074 DOI: 10.1186/s12990-015-0058-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022] Open
Abstract
Background Plastic changes in the anterior cingulate cortex (ACC) are critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Cdh1, a co-activator subunit of anaphase-promoting complex/cyclosome (APC/C) regulates synaptic differentiation and transmission. Based on this, we hypothesised that the APC/C–Cdh1 played an important role in long-term plastic changes induced by neuropathic pain in ACC. Results We employed spared nerve injury (SNI) model in rat and found Cdh1 protein level in the ACC was down-regulated 3, 7 and 14 days after SNI surgery. We detected increase in c-Fos expression, numerical increase of organelles, swollen myelinated fibre and axon collapse of neuronal cells in the ACC of SNI rat. Additionally, AMPA receptor GluR1 subunit protein level was up-regulated on the membrane through a pathway that involves EphA4 mediated by APC/C–Cdh1, 3 and 7 days after SNI surgery. To confirm the effect of Cdh1 in neuropathic pain, Cdh1-expressing lentivirus was injected into the ACC of SNI rat. Intra-ACC treatment with Cdh1-expressing lentivirus vectors elevated Cdh1 levels, erased synaptic strengthening, as well as alleviating established mechanical allodynia in SNI rats. We also found Cdh1-expressing lentivirus normalised SNI-induced redistribution of AMPA receptor GluR1 subunit in ACC by regulating AMPA receptor trafficking. Conclusions These results provide evidence that Cdh1 in ACC synapses may offer a novel therapeutic strategy for treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Wei Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wen-Long Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Hu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - You-You Lv
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan-Han Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chang Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
55
|
de Papathanassoglou E. Recent advances in understanding pain: what lies ahead for critical care? Nurs Crit Care 2015; 19:110-3. [PMID: 24734847 DOI: 10.1111/nicc.12097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Meyers RS. A Clinician’s Perspective on Treating Patients Suffering from Insomnia and Pain. JOURNAL OF RATIONAL-EMOTIVE AND COGNITIVE-BEHAVIOR THERAPY 2015. [DOI: 10.1007/s10942-015-0214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Niesters M, Sitsen E, Oudejans L, Vuyk J, Aarts LPHJ, Rombouts SARB, de Rover M, Khalili-Mahani N, Dahan A. Effect of deafferentation from spinal anesthesia on pain sensitivity and resting-state functional brain connectivity in healthy male volunteers. Brain Connect 2015; 4:404-16. [PMID: 24901040 DOI: 10.1089/brain.2014.0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients may perceive paradoxical heat sensation during spinal anesthesia. This could be due to deafferentation-related functional changes at cortical, subcortical, or spinal levels. In the current study, the effect of spinal deafferentation on sensory (pain) sensitivity was studied and linked to whole-brain functional connectivity as assessed by resting-state functional magnetic resonance imaging (RS-fMRI) imaging. Deafferentation was induced by sham or spinal anesthesia (15 mg bupivacaine injected at L3-4) in 12 male volunteers. RS-fMRI brain connectivity was determined in relation to eight predefined and seven thalamic resting-state networks (RSNs) and measured before, and 1 and 2 h after spinal/sham injection. To measure the effect of deafferentation on pain sensitivity, responses to heat pain were measured at 15-min intervals on nondeafferented skin and correlated to RS-fMRI connectivity data. Spinal anesthesia altered functional brain connectivity within brain regions involved in the sensory discriminative (i.e., pain intensity related) and affective dimensions of pain perception in relation to somatosensory and thalamic RSNs. A significant enhancement of pain sensitivity on nondeafferented skin was observed after spinal anesthesia compared to sham (area-under-the-curve [mean (SEM)]: 190.4 [33.8] versus 13.7 [7.2]; p<0.001), which significantly correlated to functional connectivity changes observed within the thalamus in relation to the thalamo-prefrontal network, and in the anterior cingulate cortex and insula in relation to the thalamo-parietal network. Enhanced pain sensitivity from spinal deafferentation correlated with functional connectivity changes within brain regions involved in affective and sensory pain processing and areas involved in descending control of pain.
Collapse
Affiliation(s)
- Marieke Niesters
- 1 Department of Anesthesiology, Leiden University Medical Center , Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Santello M, Nevian T. Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 2015; 86:233-46. [PMID: 25819610 DOI: 10.1016/j.neuron.2015.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/27/2015] [Accepted: 02/20/2015] [Indexed: 12/31/2022]
Abstract
Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.
Collapse
Affiliation(s)
- Mirko Santello
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland; Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| |
Collapse
|
59
|
Abstract
Pain is an important protective system that alerts organisms to actual or possible tissue damage. However, a variety of pathologies can lead to chronic pain that is no longer beneficial. Lesions or diseases of the somatosensory nervous system cause intractable neuropathic pain that occasionally lasts even after the original pathology subsides. Chronic inflammatory diseases like arthritis are also associated with severe pain. Because conventional analgesics such as non-steroidal anti-inflammatory drugs and opioids have limited efficacy and/or severe adverse events associated with long-term use, chronic pain remains a major problem in clinical practice. Recently, causal roles of microRNAs in chronic pain and their therapeutic potential have been emerging. microRNA expressions are altered not only at the primary origin of pain, but also along the somatosensory pathways. Notably, microRNA expressions are differentially affected depending on the causes of chronic pain. This chapter summarizes current insights into the roles of microRNAs in pain based on the underlying pathologies.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
60
|
Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology 2015; 40:488-501. [PMID: 25100669 PMCID: PMC4443964 DOI: 10.1038/npp.2014.198] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 11/08/2022]
Abstract
The occurrence of chronic stress, depression, and anxiety can increase nociception in humans and may facilitate the transition from localized to chronic widespread pain. The mechanisms underlying chronic widespread pain are still unknown, hindering the development of effective pharmacological therapies. Here, we exposed C57BL/6J mice to chronic unpredictable stress (CUS) to investigate how persistent stress affects nociception. Next, mice were treated with multiple intramuscular nerve growth factor (NGF) injections, which induced chronic widespread nociception. Thus, combination of CUS and NGF served as a model where psychophysiological impairment coexists with long-lasting hyperalgesia. We found that CUS increased anxiety- and depression-like behavior and enhanced basal nociception in mice. When co-applied with repeated NGF injections, CUS elicited a sustained long-lasting widespread hyperalgesia. In order to evaluate a potential therapeutic strategy for the treatment of chronic pain associated with stress, we hypothesized that the endocannabinoid system (ECS) may represent a target signaling system. We found that URB597, an inhibitor of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH), and JZL184, an inhibitor of the 2-arachidonoyl glycerol-degrading enzyme monoacylglycerol lipase (MAGL), increased eCB levels in the brain and periphery and were both effective in reducing CUS-induced anxiety measured by the light-dark test and CUS-induced thermal hyperalgesia. Remarkably, the long-lasting widespread hyperalgesia induced by combining CUS and NGF was effectively reduced by URB597, but not by JZL184. Simultaneous inhibition of FAAH and MAGL did not improve the overall therapeutic response. Therefore, our findings indicate that enhancement of anandamide signaling with URB597 is a promising pharmacological approach for the alleviation of chronic widespread nociception in stress-exposed mice, and thus, it could represent a potential treatment strategy for chronic pain associated with neuropsychiatric disorders in humans.
Collapse
|
61
|
Sakai A, Suzuki H. Emerging roles of microRNAs in chronic pain. Neurochem Int 2014; 77:58-67. [DOI: 10.1016/j.neuint.2014.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/19/2022]
|
62
|
Johnson AC, Greenwood-Van Meerveld B. Stress-induced pain: a target for the development of novel therapeutics. J Pharmacol Exp Ther 2014; 351:327-35. [PMID: 25194019 PMCID: PMC4201269 DOI: 10.1124/jpet.114.218065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Although current therapeutics provide relief from acute pain, drugs used for treatment of chronic pain are typically less efficacious and limited by adverse side effects, including tolerance, addiction, and gastrointestinal upset. Thus, there is a significant need for novel therapies for the treatment of chronic pain. In concert with chronic pain, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic pain disorders. Stress exacerbation of chronic pain suggests that centrally acting drugs targeting the pain- and stress-responsive brain regions represent a valid target for the development of novel therapeutics. This review provides an overview of how stress modulates spinal and central pain pathways, identifies key neurotransmitters and receptors within these pathways, and highlights their potential as novel targets for therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Anthony C Johnson
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
63
|
Sustained neuronal hyperexcitability is evident in the thalamus after a transient cervical radicular injury. Spine (Phila Pa 1976) 2014; 39:E870-7. [PMID: 24827526 DOI: 10.1097/brs.0000000000000392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used extracellular electrophysiology to examine neuronal hyperexcitability in the ventroposterolateral nucleus (VPL) of the thalamus in a rat model of painful radiculopathy. OBJECTIVE The goal of this study was to quantify evoked neuronal excitability in the VPL at day 14 after a cervical nerve root compression to determine thalamic processing of persistent radicular pain. SUMMARY OF BACKGROUND DATA Nerve root compression often leads to radicular pain. Chronic pain is thought to induce structural and biochemical changes in the brain affecting supraspinal signaling. In particular, the VPL of the thalamus has been implicated in chronic pain states. METHODS Rats underwent a painful transient C7 nerve root compression or sham procedure. Ipsilateral forepaw mechanical allodynia was assessed on days 1, 3, 5, 7, 10, and 14 and evoked thalamic neuronal recordings were collected at day 14 from the contralateral VPL, whereas the injured forepaw was stimulated using a range of non-noxious and noxious mechanical stimuli. Neurons were classified on the basis of their response to stimulation. RESULTS Behavioral sensitivity was elevated after nerve root compression starting at day 3 and persisted until day 14 (P < 0.049). Thalamic recordings at day 14 demonstrated increased neuronal hyperexcitability after injury for all mechanical stimuli (P < 0.024). In particular, wide dynamic range neurons demonstrated significantly more firing after injury compared with sham in response to von Frey stimulation (P < 0.0001). Firing in low threshold mechanoreceptive neurons was not different between groups. CONCLUSION These data demonstrate that persistent radicular pain is associated with sustained neuronal hyperexcitability in the contralateral VPL of the thalamus. These findings suggest that thalamic processing is altered during radiculopathy and these changes in neuronal firing are associated with behavioral sensitivity. LEVEL OF EVIDENCE N/A.
Collapse
|
64
|
Blom SM, Pfister JP, Santello M, Senn W, Nevian T. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci 2014; 34:5754-64. [PMID: 24760836 PMCID: PMC6608297 DOI: 10.1523/jneurosci.3667-13.2014] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/17/2014] [Accepted: 02/22/2014] [Indexed: 01/21/2023] Open
Abstract
Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.
Collapse
Affiliation(s)
| | | | | | - Walter Senn
- Department of Physiology and
- Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology and
- Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
65
|
Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DME. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NEUROIMAGE-CLINICAL 2014; 4:676-86. [PMID: 24936419 PMCID: PMC4053643 DOI: 10.1016/j.nicl.2014.04.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 01/18/2023]
Abstract
Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter) and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i) to verify the presence of a core set of brain areas commonly modified by chronic pain; ii) to investigate the involvement of these areas in a large-scale network perspective; iii) to study the relationship between altered networks and; iv) to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective. Chronic pain causes both core and pathology-specific. GM alterations in brain networks. Model-based clustering revealed that chronic pain selectively targets brain networks. Chronic pain can be better conceived and studied in a network perspective.
Collapse
Affiliation(s)
- Franco Cauda
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Sara Palermo
- Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Riccardo Torta
- Department of Neuroscience, AOU San Giovanni Battista, Turin, Italy ; Psycho-Oncology and Clinical Psychology Unit, University of Turin, Città della Salute e della Scienza, Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy
| | - Ugo Vercelli
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy
| | - Giuliano Geminiani
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Diana M E Torta
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
66
|
LeBlanc BW, Lii TR, Silverman AE, Alleyne RT, Saab CY. Cortical theta is increased while thalamocortical coherence is decreased in rat models of acute and chronic pain. Pain 2014; 155:773-782. [PMID: 24457192 DOI: 10.1016/j.pain.2014.01.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/28/2023]
Abstract
Thalamocortical oscillations are critical for sensory perception. Although pain is known to disrupt synchrony in thalamocortical oscillations, evidence in the literature is controversial. Thalamocortical coherence has been reported to be increased in patients with neurogenic pain but decreased in a rat model of central pain. Moreover, theta (4 to 8 Hz) oscillations in primary somatosensory (S1) cortex are speculated to predict pain in humans. To date, the link between pain and network oscillations in animal models has been understudied. Thus, we tested the hypothesis that pain disrupts thalamocortical coherence and S1 theta power in two rat models of pain. We recorded electrocorticography (ECoG) waveforms over S1 and local field potentials (LFP) within ventral posterolateral thalamus in freely behaving rats under spontaneous (stimulus-independent) pain conditions. Rats received intradermal capsaicin injection (Cap) in the hindpaw, followed hours later by chronic constriction injury (CCI) of the sciatic nerve lasting several days. Our results show that pain decreases coherence between LFP and ECoG waveforms in the 2- to 30-Hz range, and increases ECoG power in the theta range. These changes are short-lasting after Cap and longer-lasting after CCI. These data might be particularly relevant to preclinical correlates of spontaneous pain-like behavior, with potential implications to clinical biomarkers of ongoing pain.
Collapse
Affiliation(s)
- Brian W LeBlanc
- Department of Neurosurgery, Rhode Island Hospital, and Department of Neuroscience, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology & Rehabilitation, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94122, USA.
| | | |
Collapse
|
68
|
Sanoja R, Taepavarapruk N, Benda E, Tadavarty R, Soja PJ. Enhanced excitability of thalamic sensory neurons and slow-wave EEG pattern after stimuli that induce spinal long-term potentiation. J Neurosci 2013; 33:15109-19. [PMID: 24048841 PMCID: PMC6618413 DOI: 10.1523/jneurosci.2110-13.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/24/2013] [Accepted: 08/13/2013] [Indexed: 11/21/2022] Open
Abstract
Spinal nociceptive neurons are well known to undergo a process of long-term potentiation (LTP) following conditioning by high-frequency sciatic nerve stimulation (HFS) at intensities recruiting C-fibers. However, little if any information exists as to whether such HFS conditioning that produces spinal LTP affects sensory transmission at supraspinal levels. The present study explored this possibility. Conventional extracellular recording methods were used to examine the consequences of HFS versus sham HFS conditioning on individual wide-dynamic range thalamic neurons located in the ventro-postero-lateral (VPL) nucleus in isoflurane-anesthetized rats. Following HFS, the ongoing firing rate and stimulus-evoked (brush, pinch, sciatic nerve) responses were markedly enhanced as were responses to juxtacellular, microiontophoretic applications of glutamate. These HFS-induced enhancements lasted throughout the recording period. Sham stimuli had no effect on VPL neuron excitability. Cortical electroencephalographic (EEG) wave activities were also measured around HFS in conjunction with VPL neuron recordings. The cortical EEG pattern under baseline conditions consisted of recurring short duration bursts of high-amplitude slow waves followed by longer periods of flat EEG. Following HFS, the EEG shifted to a continuous large-amplitude, slow-wave pattern within the 0.5-8.0 Hz bandwidth lasting throughout the recording period. Sham HFS did not alter EEG activity. Sciatic nerve conditioning at A-δ fiber strength, known to reverse spinal LTP, did not alter enhanced neuronal excitability or the EEG slow-wave pattern induced by HFS. These data support the concept that HFS conditioning of the sciatic nerve, which leads to spinal LTP, is associated with distinct, long-lasting changes in the excitability of neurons comprising thalamocortical networks.
Collapse
Affiliation(s)
- Raul Sanoja
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Niwat Taepavarapruk
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Elke Benda
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Ramakrishna Tadavarty
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Peter J. Soja
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| |
Collapse
|
69
|
Cardoso-Cruz H, Lima D, Galhardo V. Impaired spatial memory performance in a rat model of neuropathic pain is associated with reduced hippocampus-prefrontal cortex connectivity. J Neurosci 2013; 33:2465-80. [PMID: 23392675 PMCID: PMC6619155 DOI: 10.1523/jneurosci.5197-12.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/11/2012] [Indexed: 01/28/2023] Open
Abstract
Chronic pain patients commonly complain of working memory deficits, but the mechanisms and brain areas underlying this cognitive impairment remain elusive. The neuronal populations of the mPFC and dorsal CA1 (dCA1) are well known to form an interconnected neural circuit that is crucial for correct performance in spatial memory-dependent tasks. In this study, we investigated whether the functional connectivity between these two areas is affected by the onset of an animal model of peripheral neuropathic pain. To address this issue, we implanted two multichannel arrays of electrodes in the mPFC and dCA1 of rats and recorded the neuronal activity during a food-reinforced spatial working memory task in a reward-based alternate trajectory maze. Recordings were performed for 3 weeks, before and after the establishment of the spared nerve injury model of neuropathy. Our results show that the nerve lesion caused an impairment of working memory performance that is temporally associated with changes in the mPFC populational firing activity patterns when the animals navigated between decision points-when memory retention was most needed. Moreover, the activity of both recorded neuronal populations after the nerve injury increased their phase locking with respect to hippocampal theta rhythm. Finally, our data revealed that chronic pain reduces the overall amount of information flowing in the fronto-hippocampal circuit and induces the emergence of different oscillation patterns that are well correlated with the correct/incorrect performance of the animal on a trial-by-trial basis. The present results demonstrate that functional disturbances in the fronto-hippocampal connectivity are a relevant cause for pain-related working memory deficits.
Collapse
Affiliation(s)
- Helder Cardoso-Cruz
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto, 4200-319 Porto, and
- Instituto de Biologia Molecular e Celular (IBMC), Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4200-319 Porto, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto, 4200-319 Porto, and
- Instituto de Biologia Molecular e Celular (IBMC), Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4200-319 Porto, Portugal
| | - Vasco Galhardo
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto, 4200-319 Porto, and
- Instituto de Biologia Molecular e Celular (IBMC), Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|