51
|
Sanchez LM, Goss J, Wagner J, Davies S, Savage DD, Hamilton DA, Clark BJ. Moderate prenatal alcohol exposure impairs performance by adult male rats in an object-place paired-associate task. Behav Brain Res 2018; 360:228-234. [PMID: 30529401 DOI: 10.1016/j.bbr.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Memory impairments, including spatial and object processing, are often observed in individuals with Fetal Alcohol Spectrum Disorders. The neurobiological basis of memory deficits after prenatal alcohol exposure (PAE) is often linked to structural and functional alterations in the medial temporal lobe, including the hippocampus. Recent evidence suggests that the medial temporal lobe plays a critical role in processing high-order sensory stimuli such as complex objects and their associated locations in space. In the first experiment, we tested male rat offspring with moderate PAE in a medial temporal-dependent object-place paired-associate (OPPA) task. The OPPA task requires a conditional discrimination between an identical pair of objects presented at two spatial locations 180° opposite arms of a radial arm maze. Food reinforcement is contingent upon selecting the correct object of the pair for a given spatial location. Adult rats were given a total of 10 trials per day over 14 consecutive days of training. PAE male rats made significantly more errors than male saccharin (SACC) control rats during acquisition of the OPPA task. In Experiment 2, rats performed an object-discrimination task in which a pair of objects were presented in a single arm of the maze. Moderate PAE and SACC control rats exhibited comparable performance. The results suggest that moderate PAE rats can learn to discriminate objects, but are impaired when required to discriminate between objects on the basis of spatial location in the environment.
Collapse
Affiliation(s)
- Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jonathan Goss
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer Wagner
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
52
|
Locus Coeruleus Phasic, But Not Tonic, Activation Initiates Global Remapping in a Familiar Environment. J Neurosci 2018; 39:445-455. [PMID: 30478033 DOI: 10.1523/jneurosci.1956-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Locus coeruleus (LC) neurons, the source of hippocampal norepinephrine (NE), are activated by novelty and changes in environmental contingencies. Based on the role of monoamines in reconfiguring invertebrate networks, and data from mammalian systems, a network reset hypothesis for the effects of LC activation has been proposed. We used the cellular compartmental analysis of temporal FISH technique based on the cellular distribution of immediate early genes to examine the effect of LC activation and inactivation, on regional hippocampal maps in male rats, when LC activity was manipulated just before placement in a second familiar (A/A) and/or novel environment (A/B). We found that bilateral phasic, but not tonic, activation of LC reset hippocampal maps in the A/A condition, whereas silencing the LC with clonidine before placement in the A/B condition blocked map reset and a familiar map emerged in the dentate gyrus, proximal and distal CA1, and CA3c. However, CA3a and CA3b encoded the novel environment. These results support a role for phasic LC responses in generating novel hippocampal sequences during memory encoding and, potentially, memory updating. The silencing experiments suggest that novel environments may not be recognized as different by dentate gyrus and CA1 without LC input. The functional distinction between phasic and tonic LC activity argues that these parameters are critical for determining network changes. These data are consistent with the hippocampus activating internal network representations to encode novel experiential episodes and suggest LC input is critical for this role.SIGNIFICANCE STATEMENT Burst activation of the broadly projecting novelty signaling system of the locus coeruleus initiates new network representations throughout the hippocampus despite unchanged external environments. Tonic activation does not alter network representations in the same condition. This suggests differences in the temporal parameters of neuromodulator network activation are critical for neuromodulator function. Silencing this novelty signaling system prevented the appearance of new network representations in a novel environment. Instead, familiar representations were expressed in a subset of hippocampal areas, with another subset encoding the novel environment. This "being in two places at once" argues for independent functional regions within the hippocampus. These experiments strengthen the view that internal states are major determinants of the brain's construction of environmental representations.
Collapse
|
53
|
Memel M, Ryan L. Visual integration of objects and scenes increases recollection-based responding despite differential MTL recruitment in young and older adults. Hippocampus 2018; 28:886-899. [PMID: 29999561 DOI: 10.1002/hipo.23011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 11/08/2022]
Abstract
Unitization, the process of encoding previously independent units as one coherent representation, improves associative memory in both young and older adults, or in some cases, differentially benefits older adults. Unitization of verbal associative pairs may reduce reliance on the hippocampus (HC) for successful encoding and recognition by shifting to familiarity-based processing mediated by perirhinal cortex (PRC). However, this shift was not observed in a recent study of visual associative memory, with equivalent activation in HC and PRC during encoding of visually integrated (unitized) and nonintegrated object and scene pairs. Furthermore, behavioral findings from this study suggested an increase in recollection rather than familiarity during recognition of visually integrated pairs. The present study extends our previous work by focusing on the influence of visual integration on fMRI activation during associative recognition, rather than encoding and these patterns between young and older adults. In contrast to our findings from encoding, visual integration reduced HC and PRC activation during retrieval of object and scene associative pairs across both age groups. However, visual integration increased the correlation between bilateral HC and left parahippocampal (PHC) activation and behavioral performance among older adults, consistent with an increased reliance on recollection. In contrast, visual integration reduced the correlation between HC activation and behavioral performance in young adults, more consistent with findings from the verbal unitization literature. Taken together, these results suggest that associative memory for visually integrated pairs may involve differential recruitment of medial temporal regions in young and older adults.
Collapse
Affiliation(s)
| | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, Arizona
| |
Collapse
|
54
|
Sakimoto Y, Sakata S. The role of the hippocampal theta rhythm in non-spatial discrimination and associative learning task. Neurosci Biobehav Rev 2018; 110:92-99. [PMID: 30261198 DOI: 10.1016/j.neubiorev.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/24/2018] [Accepted: 09/22/2018] [Indexed: 01/18/2023]
Abstract
The configural association theory and the conflict resolution model propose that hippocampal function is involved in learning negative patterning tasks (A+, B+, AB-). The first theory suggests a critical role of the hippocampus in the formation of configural representations of compound stimuli, in which stimuli A and B are presented simultaneously. The second theory hypothesizes that the hippocampus is important for inhibiting the response to a stimulus that is in conflict with response tendencies. Although these theories propose different interpretations of the link between hippocampal function and non-spatial discrimination tasks, they both predict that the hippocampus is involved in the information processing of compound stimuli in negative patterning tasks. Recently, our electrophysiological approach has shown that the hippocampal theta power correlate with response inhibition in a negative patterning task, positive patterning, simultaneous/serial feature negative task. These findings provide strong support for the assumption of the conflict resolution model that the role of the hippocampus in learning is to inhibit responses to conflicting stimuli during non-spatial stimulus discrimination tasks.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan.
| | - Shogo Sakata
- Department of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
55
|
Hernandez AR, Reasor JE, Truckenbrod LM, Campos KT, Federico QP, Fertal KE, Lubke KN, Johnson SA, Clark BJ, Maurer AP, Burke SN. Dissociable effects of advanced age on prefrontal cortical and medial temporal lobe ensemble activity. Neurobiol Aging 2018; 70:217-232. [PMID: 30031931 PMCID: PMC6829909 DOI: 10.1016/j.neurobiolaging.2018.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
The link between age-related cellular changes within brain regions and larger scale neuronal ensemble dynamics critical for cognition has not been fully elucidated. The present study measured neuron activity within medial prefrontal cortex (PFC), perirhinal cortex (PER), and hippocampal subregion CA1 of young and aged rats by labeling expression of the immediate-early gene Arc. The proportion of cells expressing Arc was quantified at baseline and after a behavior that requires these regions. In addition, PER and CA1 projection neurons to PFC were identified with retrograde labeling. Within CA1, no age-related differences in neuronal activity were observed in the entire neuron population or within CA1 pyramidal cells that project to PFC. Although behavior was comparable across age groups, behaviorally driven Arc expression was higher in the deep layers of both PER and PFC and lower in the superficial layers of these regions. Moreover, age-related changes in activity levels were most evident within PER cells that project to PFC. These data suggest that the PER-PFC circuit is particularly vulnerable in advanced age.
Collapse
Affiliation(s)
- Abbi R Hernandez
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Jordan E Reasor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Leah M Truckenbrod
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Keila T Campos
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Quinten P Federico
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Kaeli E Fertal
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Katelyn N Lubke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Sarah A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Andrew P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Institute on Aging, University of Florida, Gainesville, FL.
| |
Collapse
|