51
|
Traccis F, Frau R, Melis M. Gender Differences in the Outcome of Offspring Prenatally Exposed to Drugs of Abuse. Front Behav Neurosci 2020; 14:72. [PMID: 32581736 PMCID: PMC7291924 DOI: 10.3389/fnbeh.2020.00072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Despite great efforts to warn pregnant women that drugs of abuse impact development of the embryo and the fetus, the use of legal and illegal drugs by childbearing women is still a major public health concern. In parallel with well-established teratogenic effects elicited by some drugs of abuse, epidemiological studies show that certain psychoactive substances do not induce birth defects but lead to subtle neurobehavioral alterations in the offspring that manifest as early as during infancy. Although gender differences in offspring susceptibility have not been fully investigated, a number of longitudinal studies indicate that male and female progeny exposed in utero to drugs of abuse show different vulnerabilities to deleterious effects of these substances in cognitive, executive, and behavioral domains. Here, we briefly review the existing literature focusing on gender differences in the neurobehavioral consequences of maternal exposure to drugs of abuse. Overall, the data strongly indicate that male exposed progeny are more susceptible than female to dysfunctions in cognitive processing and emotional regulation. However, insights into the mechanisms determining this natural phenomenon are not currently available. Our analysis prompts future investigations to implement clinical studies including the influence of gender/sex as a biological variable in the outcome of offspring prenatally exposed to drugs of abuse.
Collapse
Affiliation(s)
| | | | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
52
|
Krebs MO, Demars F, Frajerman A, Kebir O, Jay T. [Neurodevelopment and cannabis]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2020; 204:561-569. [PMID: 32308209 PMCID: PMC7162744 DOI: 10.1016/j.banm.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/23/2022]
Abstract
Brain development is a complex phenomenon, stretching from fetal life to adolescence, during which brain maturation proceeds through a series of ordered events including critical periods of plasticity. The brain is particularly sensitive to the environment during these changes. The endocannabinoid system participates directly and indirectly in these plasticity and maturation processes. The main psychoactive component of cannabis, the delta-9-tetrahydrocanabinol, can cross the placental barrier, is present in breastmilk and diffuses in the brain. It interacts with the endocannabinoid signaling, especially through the activation of cannabinoid receptors 1 CB1R, which can lead to abnormal neurodevelopmental processes and neuronal circuits functions. Therefore, exposure to cannabis in utero, in perinatal phase, as well as during the adolescence disrupts the brain maturation and can cause disturbances on the cognitive, psychotic and addictive levels that persist far beyond the period of exposure. Several factors modulate the risk of such complications, but studies performed in animal models as well as in human cohorts have shown that exposure during both the critical perinatal and adolescence phases is a risk factor per se. Current knowledge encourages the dissemination of objective information to young people, to prevent and limit early exposure and its consequences.
Collapse
Affiliation(s)
- M.-O. Krebs
- Pôle hospitalo-universitaire évaluation, prévention et innovation thérapeutique, centre d’évaluation pour jeunes adultes et adolescents (CJAAD), GHU psychiatrie et neurosciences, site Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - F. Demars
- Pôle hospitalo-universitaire évaluation, prévention et innovation thérapeutique, centre d’évaluation pour jeunes adultes et adolescents (CJAAD), GHU psychiatrie et neurosciences, site Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - A. Frajerman
- Pôle hospitalo-universitaire évaluation, prévention et innovation thérapeutique, centre d’évaluation pour jeunes adultes et adolescents (CJAAD), GHU psychiatrie et neurosciences, site Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - O. Kebir
- Pôle hospitalo-universitaire évaluation, prévention et innovation thérapeutique, centre d’évaluation pour jeunes adultes et adolescents (CJAAD), GHU psychiatrie et neurosciences, site Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
- Pôle hospitalo-universitaire 15è, service d’addictologie, GHU psychiatrie et neurosciences, Paris, France
| | - T. Jay
- Pôle hospitalo-universitaire évaluation, prévention et innovation thérapeutique, centre d’évaluation pour jeunes adultes et adolescents (CJAAD), GHU psychiatrie et neurosciences, site Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| |
Collapse
|
53
|
Brancato A, Castelli V, Lavanco G, Marino RAM, Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J Psychopharmacol 2020; 34:663-679. [PMID: 32338122 DOI: 10.1177/0269881120916135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cannabinoid consumption during pregnancy has been increasing on the wave of the broad-based legalisation of cannabis in Western countries, raising concern about the putative detrimental outcomes on foetal neurodevelopment. Indeed, since the endocannabinoid system regulates synaptic plasticity, emotional and cognitive processes from early stages of life interfering with it and other excitability endogenous modulators, such as neuropeptide Y (NPY), might contribute to the occurrence of a vulnerable phenotype later in life. AIMS This research investigated whether in utero exposure to Δ9-tetrahydrocannabinol (THC) may induce deficits in emotional/cognitive processes and alcohol vulnerability in adolescent offspring. NPY and excitatory postsynaptic density (PSD) machinery were measured as markers of neurobiological vulnerability. METHODS Following in utero THC exposure (2 mg/kg delivered subcutaneously), preadolescent male rat offspring were assessed for: behavioural reactivity in the open field test, neutral declarative memory and aversive limbic memory in the Novel Object and Emotional Object Recognition tests, immunofluorescence for NPY neurons and the PSD proteins Homer-1, 1b/c and 2 in the prefrontal cortex, amygdala and nucleus accumbens at adolescence (cohort 1); and instrumental learning, alcohol taking, relapse and conflict behaviour in the operant chamber throughout adolescence until early adulthood (cohort 2). RESULTS In utero THC-exposed adolescent rats showed: (a) increased locomotor activity; (b) no alteration in neutral declarative memory; (c) impaired aversive limbic memory; (d) decreased NPY-positive neurons in limbic regions; (e) region-specific variations in Homer-1, 1b/c and 2 immunoreactivity; (f) decreased instrumental learning and increased alcohol drinking, relapse and conflict behaviour in the operant chamber. CONCLUSION Gestational THC impaired the formation of memory traces when integration between environmental encoding and emotional/motivational processing was required and promoted the development of alcohol-addictive behaviours. The abnormalities in NPY signalling and PSD make-up may represent the common neurobiological background, suggesting new targets for future research.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosa Anna Maria Marino
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, USA
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| |
Collapse
|
54
|
Reid HMO, Lysenko-Martin MR, Snowden TM, Thomas JD, Christie BR. A Systematic Review of the Effects of Perinatal Alcohol Exposure and Perinatal Marijuana Exposure on Adult Neurogenesis in the Dentate Gyrus. Alcohol Clin Exp Res 2020; 44:1164-1174. [PMID: 32246781 PMCID: PMC7905844 DOI: 10.1111/acer.14332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Marijuana and alcohol are both substances that, when used during pregnancy, may have profound effects on the developing fetus. There is evidence to suggest that both drugs have the capacity to affect working memory, one function of the hippocampal formation; however, there is a paucity of data on how perinatal exposure to alcohol or cannabis impacts the process of adult neurogenesis. METHODS This systematic review examines immunohistochemical data from adult rat and mouse models that assess perinatal alcohol or perinatal marijuana exposure. A comprehensive list of search terms was designed and used to search 3 separate databases. All results were imported to Mendeley and screened by 2 authors. Consensus was reached on a set of final papers that met the inclusion criteria, and their results were summarized. RESULTS Twelve papers were identified as relevant, 10 of which pertained to the effects of perinatal alcohol on the adult hippocampus, and 2 pertained to the effects of perinatal marijuana on the adult hippocampus. Cellular proliferation in the dentate gyrus was not affected in adult rats and mice exposed to alcohol perinatally. In general, perinatal alcohol exposure did not have a significant and reliable effect on the maturation and survival of adult born granule neurons in the dentate gyrus. In contrast, interneuron numbers appear to be reduced in the dentate gyrus of adult rats and mice exposed perinatally to alcohol. Perinatal marijuana exposure was also found to reduce inhibitory interneuron numbers in the dentate gyrus. CONCLUSIONS Perinatal alcohol exposure and perinatal marijuana exposure both act on inhibitory interneurons in the hippocampal formation of adult rats. These findings suggest simultaneous perinatal alcohol and marijuana exposure (SAM) may have a dramatic impact on inhibitory processes in the dentate gyrus.
Collapse
Affiliation(s)
- Hannah M O Reid
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Melanie R Lysenko-Martin
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Taylor M Snowden
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Center for Behavioral Teratology, (JDT), San Diego State University, San Diego, California
| | - Brian R Christie
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, (BRC), University of British Columbia, Victoria, British Columbia
| |
Collapse
|
55
|
Prenatal cannabis exposure and suicide. Asian J Psychiatr 2020; 50:101985. [PMID: 32135485 DOI: 10.1016/j.ajp.2020.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 11/24/2022]
|
56
|
Tirado-Muñoz J, Lopez-Rodriguez AB, Fonseca F, Farré M, Torrens M, Viveros MP. Effects of cannabis exposure in the prenatal and adolescent periods: Preclinical and clinical studies in both sexes. Front Neuroendocrinol 2020; 57:100841. [PMID: 32339546 DOI: 10.1016/j.yfrne.2020.100841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
Cannabis is the most commonly used illicit drug among adolescents and young adults, including pregnant women. There is substantial evidence for a significant association between prenatal cannabis exposure and lower birth weight in offspring, and mixed results regarding later behavioural outcomes in the offspring. Adolescent cannabis use, especially heavy use, has been associated with altered executive function, depression, psychosis and use of other drugs later in life. Human studies have limitations due to several confounding factors and have provided scarce information about sex differences. In general, animal studies support behavioural alterations reported in humans and have revealed diverse sex differences and potential underlying mechanisms (altered mesolimbic dopaminergic and hippocampal glutamatergic systems and interference with prefrontal cortex maturation). More studies are needed that analyse sex and gender influences on cannabis-induced effects with great clinical relevance such as psychosis, cannabis use disorder and associated comorbidities, to achieve more personalized and accurate treatments.
Collapse
Affiliation(s)
- Judith Tirado-Muñoz
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Francina Fonseca
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Magi Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germas Trias (HUGTP-IGTP), Badalona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Torrens
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
57
|
Abstract
The use of medical cannabis in children is rapidly growing. While robust evidence currently exists only for pure cannabidiol (CBD) to treat specific types of refractory epilepsy, in most cases, artisanal strains of CBD-rich medical cannabis are being used to treat children with various types of refractory epilepsy or irritability associated with autism spectrum disorder (ASD). Other common pediatric disorders that are being considered for cannabis treatment are Tourette syndrome and spasticity. As recreational cannabis use during youth is associated with serious adverse events and medical cannabis use is believed to have a relatively high placebo effect, decisions to use medical cannabis during childhood and adolescence should be made with caution and based on evidence. This review summarizes the current evidence for safety, tolerability, and efficacy of medical cannabis in children with epilepsy and in children with ASD. The main risks associated with use of Δ9-tetrahydrocannabinol (THC) and CBD in the pediatric population are described, as well as the debate regarding the use of whole-plant extract to retain a possible "entourage effect" as opposed to pure cannabinoids that are more standardized and reproducible.
Collapse
Affiliation(s)
- Adi Aran
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
58
|
Shum C, Dutan L, Annuario E, Warre-Cornish K, Taylor SE, Taylor RD, Andreae LC, Buckley NJ, Price J, Bhattacharyya S, Srivastava DP. Δ 9-tetrahydrocannabinol and 2-AG decreases neurite outgrowth and differentially affects ERK1/2 and Akt signaling in hiPSC-derived cortical neurons. Mol Cell Neurosci 2020; 103:103463. [PMID: 31917333 DOI: 10.1016/j.mcn.2019.103463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Endocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the decrease in neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in developing human neurons.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Emily Annuario
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Samuel E Taylor
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | - Ruth D Taylor
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | - Laura C Andreae
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | | | - Jack Price
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; National Institute for Biological Standards and Control, South Mimms, UK
| | | | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
59
|
Interference with the Cannabinoid Receptor CB1R Results in Miswiring of GnRH3 and AgRP1 Axons in Zebrafish Embryos. Int J Mol Sci 2019; 21:ijms21010168. [PMID: 31881740 PMCID: PMC6982252 DOI: 10.3390/ijms21010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of GnRH and AgRP neurons, forebrain neurons that control respectively reproduction and appetite. We pharmacologically and genetically interfered with CB1R in zebrafish strains with fluorescently labeled GnRH3 and the AgRP1 neurons. By applying CB1R antagonists we observed a reduced number of GnRH3 neurons, fiber misrouting and altered fasciculation. Similar phenotypes were observed by CB1R knockdown. Interfering with CB1R also resulted in a reduced number, misrouting and poor fasciculation of the AgRP1 neuron’s axonal projections. Using a bioinformatic approach followed by qPCR validation, we have attempted to link CB1R functions with known guidance and fasciculation proteins. The search identified stathmin-2, a protein controlling microtubule dynamics, previously demonstrated to be coexpressed with CB1R and now shown to be downregulated upon interference with CB1R in zebrafish. Together, these results raise the likely possibility that embryonic exposure to low doses of CB1R-interfering compounds could impact on the development of the neuroendocrine systems controlling sexual maturation, reproduction and food intake.
Collapse
|
60
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2019; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|