51
|
Duan L, Guo L, Wang L, Yin Q, Zhang CM, Zheng YG, Liu EH. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med 2018; 13:60. [PMID: 30524499 PMCID: PMC6278008 DOI: 10.1186/s13020-018-0218-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Traditional Chinese medicines (TCM) have a long history of use because of its potential complementary therapy and fewer adverse effects. However, the toxicity and safety issues of TCM have drawn considerable attention in the past two decades. Metabolomics is an “omics” approach that aims to comprehensively analyze all metabolites in biological samples. In agreement with the holistic concept of TCM, metabolomics has shown great potential in efficacy and toxicity evaluation of TCM. Recently, a large amount of metabolomic researches have been devoted to exploring the mechanism of toxicity induced by TCM, such as hepatotoxicity, nephrotoxicity, and cardiotoxicity. In this paper, the application of metabolomics in toxicity evaluation of bioactive compounds, TCM extracts and TCM prescriptions are reviewed, and the potential problems and further perspectives for application of metabolomics in toxicological studies are also discussed.
Collapse
Affiliation(s)
- Li Duan
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Long Guo
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.,4Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Lei Wang
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Qiang Yin
- Department of Management, Xinjiang Uygur Pharmaceutical Co., Ltd., Wulumuqi, 830001 China
| | - Chen-Meng Zhang
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yu-Guang Zheng
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - E-Hu Liu
- 3State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
52
|
Chen XL, Liu F, Xiao XR, Yang XW, Li F. Anti-inflammatory abietanes diterpenoids isolated from Tripterygium hypoglaucum. PHYTOCHEMISTRY 2018; 156:167-175. [PMID: 30312932 DOI: 10.1016/j.phytochem.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 05/22/2023]
Abstract
Tripterygium hypoglaucum (H. Lév.) Hutch. has been used to remedy rheumatoid arthritis, however, it shows frequent toxicity to the body. In this study, liquid chromatograph-mass spectrometer (LC-MS) was guided to characterize abietanes diterpenoids with anti-inflammatory activity from the stem of T. hypoglaucum. Thirteen undescribed abietanes diterpenoids were isolated and purified, and their chemical structure was identified using various spectroscopic methods. These compounds belonged to abietanes with splitting C ring, abietanes with benzenoid rings, diterpene quinoids, diterpene quinoids with lactone rings, and abietanes with benzenoid and lactone rings, respectively. Lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages was used to evaluate anti-inflammatory activity of the compounds. The results indicated that hypoglicin B-G and hypoglicin J-M exhibited inhibitory activity of NO production with the IC50 values of 6.01, 25.21, 8.29, 3.63, 0.72, 0.89, 36.91, 0.82, 2.85, 11.92 μM, respectively. Among these compounds, compound hypoglicin L showed high anti-inflammatory activity and low toxicity (SI = 5.02 × 104). Further QPCR analysis revealed that hypoglicin D and hypoglicin L can inhibit the mRNA expression of iNOS in LPS-stimulated RAW264.7 cells at doses of 12.5 and 3.13 μM, respectively. Taken together, ten anti-inflammatory diterpenoids were found from T. hypoglaucum in this study.
Collapse
Affiliation(s)
- Xing-Long Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
53
|
Shen F, Xiong Z, Kong J, Wang L, Cheng Y, Jin J, Huang Z. Triptolide impairs thioredoxin system by suppressing Notch1-mediated PTEN/Akt/Txnip signaling in hepatocytes. Toxicol Lett 2018; 300:105-115. [PMID: 30394310 DOI: 10.1016/j.toxlet.2018.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Triptolide (TP) is the main ingredient of Chinese herb Tripterygium wilfordii Hook f. (TWHF). Despite of its multifunction in pharmaceutics, accumulating evidences showed that TP caused obvious hepatotoxicity in clinic. The current study investigated the role of Notch1 signaling in TP-induced hepatotoxicity. Our data indicated that TP inhibited the protein expression of Notch1 and its active form Notch intracellular domain (NICD) leading to increased PTEN (phosphatase and tensin homolog deleted on chromosome ten) expression. Moreover, PTEN triggered Txnip (thioredoxin-interacting protein) activation by inhibiting Akt phosphorylation, which resulted in reduction of Trx (thioredoxin). In conclusion, TP caused liver injury through initiating oxidative stress in hepatocyte. This study indicated the potency of Notch1 to protect against TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhewen Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jiamin Kong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Li Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yisen Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
54
|
Cheng Y, Chen G, Wang L, Kong J, Pan J, Xi Y, Shen F, Huang Z. Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells. Toxicol Lett 2018; 292:136-150. [PMID: 29723566 DOI: 10.1016/j.toxlet.2018.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
Triptolide is a major active ingredient of tripterygium glycosides, used for the therapy of immune and inflammatory diseases. However, its clinical applications are limited by severe male fertility toxicity associated with decreased sperm count, mobility and testicular injures. In this study, we determined that triptoide-induced mitochondrial dysfunction triggered reduction of lactate and dysregulation of fatty acid metabolism in mouse Sertoli cells. First, triptolide induced mitochondrial damage through the suppressing of proliferator-activated receptor coactivator-1 alpha (PGC-1α) activity and protein. Second, mitochondrial damage decreased lactate production and dysregulated fatty acid metabolism. Finally, mitochondrial dysfunction was initiated by the inhibition of sirtuin 1 (SIRT1) with the regulation of AMP-activated protein kinase (AMPK) in Sertoli cells after triptolide treatment. Meanwhile, triptolide induced mitochondrial fatty acid oxidation dysregulation by increasing AMPK phosphorylation. Taken together, we provide evidence that the mechanism of triptolide-induced testicular toxicity under mitochondrial injury may involve a metabolic change.
Collapse
Affiliation(s)
- Yisen Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Gaojian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Li Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Jiamin Kong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Ji Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
55
|
Wang Y, Guo SH, Shang XJ, Yu LS, Zhu JW, Zhao A, Zhou YF, An GH, Zhang Q, Ma B. Triptolide induces Sertoli cell apoptosis in mice via ROS/JNK-dependent activation of the mitochondrial pathway and inhibition of Nrf2-mediated antioxidant response. Acta Pharmacol Sin 2018; 39:311-327. [PMID: 28905938 DOI: 10.1038/aps.2017.95] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023] Open
Abstract
Triptolide (TP), an oxygenated diterpene, has a variety of beneficial pharmacodynamic activities but its clinical applications are restricted due to severe testicular injury. This study aimed to delineate the molecular mechanisms of TP-induced testicular injury in vitro and in vivo. TP (5-50000 nmol/L) dose-dependently decreased the viability of TM4 Sertoli cells with an IC50 value of 669.5-269.45 nmol/L at 24 h. TP (125, 250, and 500 nmol/L) dose-dependently increased the accumulation of ROS, the phosphorylation of JNK, mitochondrial dysfunction and activation of the intrinsic apoptosis pathway in TM4 cells. These processes were attenuated by co-treatment with the antioxidant N-acetyl cysteine (NAC, 1 mmol/L). Furthermore, TP treatment inhibited the translocation of Nrf2 from cytoplasm into the nucleus as well as the expression of downstream genes NAD(P)H quinone oxidoreductase1 (NQO1), catalase (CAT) and hemeoxygenase 1 (HO-1), thus abrogating Nrf2-mediated defense mechanisms against oxidative stress. Moreover, siRNA knockdown of Nrf2 significantly potentiated TP-induced apoptosis of TM4 cells. The above results from in vitro experiments were further validated in male mice after oral administration of TP (30, 60, and 120 mg·kg-1·d-1, for 14 d), as evidenced by the detected indexes, including dose-dependently decreased SDH activity, increased MDA concentration, altered testicle histomorphology, elevated caspase-3 activation, apoptosis induction, increased phosphorylation of JNK, and decreased gene expression of NQO1, CAT and HO-1 as well as nuclear protein expression of Nrf2 in testicular tissue. Our results demonstrate that TP activates apoptosis of Sertoli cells and injury of the testis via the ROS/JNK-mediated mitochondrial-dependent apoptosis pathway and down-regulates Nrf2 activation.
Collapse
|
56
|
Luo M, Hua Y, Liang Y, Han J, Liu D, Zhao W, Wang P. Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens Bioelectron 2017; 98:195-201. [DOI: 10.1016/j.bios.2017.06.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
|
57
|
Yu C, Li Y, Liu M, Gao M, Li C, Yan H, Li C, Sun L, Mo L, Wu C, Qi X, Ren J. Critical Role of Hepatic Cyp450s in the Testis-Specific Toxicity of (5R)-5-Hydroxytriptolide in C57BL/6 Mice. Front Pharmacol 2017; 8:832. [PMID: 29209210 PMCID: PMC5702336 DOI: 10.3389/fphar.2017.00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Low solubility, tissue accumulation, and toxicity are chief obstacles to developing triptolide derivatives, so a better understanding of the pharmacokinetics and toxicity of triptolide derivatives will help with these limitations. To address this, we studied pharmacokinetics and toxicity of (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative immunosuppressant in a conditional knockout (KO) mouse model with liver-specific deletion of CYP450 reductase. Compared to wild type (WT) mice, after LLDT-8 treatment, KO mice suffered severe testicular toxicity (decreased testicular weight, spermatocytes apoptosis) unlike WT mice. Moreover, KO mice had greater LLDT-8 exposure as confirmed with elevated AUC and Cmax, increased drug half-life, and greater tissue distribution. γ-H2AX, a marker of meiosis process, its localization and protein level in testis showed a distinct meiosis block induced by LLDT-8. RNA polymerase II (Pol II), an essential factor for RNA storage and synapsis in spermatogenesis, decreased in testes of KO mice after LLDT-8 treatment. Germ-cell line based assays confirmed that LLDT-8 selectively inhibited Pol II in spermatocyte-like cells. Importantly, the analysis of androgen receptor (AR) related genes showed that LLDT-8 did not change AR-related signaling in testes. Thus, hepatic CYP450s were responsible for in vivo metabolism and clearance of LLDT-8 and aggravated testicular injury may be due to increased LLDT-8 exposure in testis and subsequent Pol II reduction.
Collapse
Affiliation(s)
- Cunzhi Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingxia Liu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Man Gao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunzhu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lihan Sun
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Liying Mo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
58
|
Toxic effects of Tripterygium wilfordii Hook F on the reproductive system of adolescent male rats. Biomed Pharmacother 2017; 95:1338-1345. [DOI: 10.1016/j.biopha.2017.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/17/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022] Open
|
59
|
Li M, Hu T, Tie C, Qu L, Zheng H, Zhang J. Quantitative Proteomics and Targeted Fatty Acids Analysis Reveal the Damage of Triptolide in Liver and Kidney. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/25/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Cai Tie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Liang Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
- Pharmaron Beijing Co., Ltd.; BDA; Beijing P.R. China
| | - Hao Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| |
Collapse
|
60
|
Xi C, Peng S, Wu Z, Zhou Q, Zhou J. WITHDRAWN: Toxicity of triptolide and the molecular mechanisms involved. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017:S1382-6689(17)30271-5. [PMID: 29037923 DOI: 10.1016/j.etap.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shaojun Peng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Zhengping Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Qingping Zhou
- Internet and Education Technology Center, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| |
Collapse
|
61
|
Li Y, Liu X, Niu L, Li Q. Proteomics Analysis Reveals an Important Role for the PPAR Signaling Pathway in DBDCT-Induced Hepatotoxicity Mechanisms. Molecules 2017; 22:E1113. [PMID: 28684700 PMCID: PMC6152083 DOI: 10.3390/molecules22071113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
A patented organotin di-n-butyl-di-(4-chlorobenzohydroxamato)tin (DBDCT) with high a antitumor activity was designed, however, its antitumor and toxic mechanisms have not yet been clearly illustrated. Hepatic proteins of DBDCT-treated rats were identified and analyzed using LC-MS/MS with label-free quantitative technology. In total, 149 differentially expressed proteins were successfully identified. Five protein and mRNA expressions were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, including a scavenger receptor (CD36), adipocyte fatty acid binding protein 4 (FABP4), enoyl-CoA hydratase (EHHADH), acetyl-CoA acyltransferase 1 (ACAA1), and phosphoenolpyruvate carboxykinase (PEPCK) in DBDCT-treated Rat Liver (BRL) cells. PPAR-α and PPAR-λ were also significantly decreased at both protein and mRNA levels. Furthermore, compared with the DBDCT treatment group, a special blocking agent of PPAR-λ T0070907 was used to evaluate the relationship between PPAR-λ and its downstream genes. Our studies indicated that DBDCT may serve as a modulator of PPAR-λ, further up-regulating CD36, FABP4 and EHHADH on the PPAR signal pathway.
Collapse
Affiliation(s)
- Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030001, China.
| | - Xinxin Liu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Lin Niu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030001, China.
| |
Collapse
|
62
|
Hu C, Wang Y, Liao Y, Wang J, Sun B. Metabolomic Analysis of Adipose Tissue in Rats Exposed to Triptolide. Chromatographia 2017. [DOI: 10.1007/s10337-017-3328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
63
|
Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother 2017; 90:531-541. [DOI: 10.1016/j.biopha.2017.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023] Open
|
64
|
Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression. Toxicol Appl Pharmacol 2016; 310:32-40. [DOI: 10.1016/j.taap.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
|
65
|
Chen DQ, Chen H, Chen L, Tang DD, Miao H, Zhao YY. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product. Chem Biol Interact 2016; 252:114-30. [DOI: 10.1016/j.cbi.2016.03.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 01/01/2023]
|
66
|
Jiang Z, Huang X, Huang S, Guo H, Wang L, Li X, Huang X, Wang T, Zhang L, Sun L. Sex-Related Differences of Lipid Metabolism Induced by Triptolide: The Possible Role of the LXRα/SREBP-1 Signaling Pathway. Front Pharmacol 2016; 7:87. [PMID: 27065871 PMCID: PMC4814849 DOI: 10.3389/fphar.2016.00087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Triptolide, a diterpenoid isolated from the plant Tripterygium wilfordii Hook. f., exerts a unique bioactive spectrum of anti-inflammatory and anticancer activities. However, triptolide's clinical applications are limited due to its severe toxicities. Fatty liver toxicity occurs in response to triptolide, and this toxic response significantly differs between males and females. This report investigated the pathogenesis underlying the sex-related differences in the dyslipidosis induced by triptolide in rats. Wistar rats were administered 0, 150, 300, or 450 μg triptolide/kg/day by gavage for 28 days. Ultrastructural examination revealed that more lipid droplets were present in female triptolide-treated rats than in male triptolide-treated rats. Furthermore, liver triglyceride, total bile acid and free fatty acid levels were significantly increased in female rats in the 300 and 450 μg/kg dose groups. The expression of liver X receptor α (LXRα) and its target genes, cholesterol 7α-hydroxylase (CYP7A1) and Sterol regulatory element-binding transcription factor 1(SREBP-1), increased following triptolide treatment in both male and female rats; however, the female rats were more sensitive to triptolide than the male rats. In addition, the expression of acetyl-CoA carboxylase 1(ACC1), a target gene of SREBP-1, increased in the female rats treated with 450 μg triptolide/kg/day, and ACC1 expression contributed to the sex-related differences in the triptolide-induced dysfunction of lipid metabolism. Our results demonstrate that the sex-related differences in LXR/SREBP-1-mediated regulation of gene expression in rats are responsible for the sex-related differences in lipid metabolism induced by triptolide, which likely underlie the sex-related differences in triptolide hepatotoxicity. This study will be important for predicting sex-related effects on the pharmacokinetics and toxicity of triptolide and for improving its safety.
Collapse
Affiliation(s)
- Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China
| | - Xiao Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Shan Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Hongli Guo
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
67
|
Luo H, Wu X, Huang H, Chen S, Yang W, Zhang L, Cui H, Yang J, Yang A. Simultaneous determination of triptolide, tripterifordin, celastrol and nine sesquiterpene alkaloids in Tripterygium preparations using high-performance liquid chromatography-triple quadrupole mass spectrometry. J Pharm Biomed Anal 2015; 117:195-204. [PMID: 26363489 DOI: 10.1016/j.jpba.2015.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Tripterygium wilfordii tablet (TWT) and Tripterygium hypoglaucum tablet (THT), the preparations of the two Tripterygium herbs, are well known for the treatment of rheumatoid arthritis and other related inflammatory diseases clinically. In the present study, a high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem triple quadrupole mass spectrometry (QQQ/MS) method was developed for simultaneous quantification of 12 chemical components in Tripterygium preparations. The fragmentation patterns of analytes using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r(2)>0.9991), precision, repeatability, and accuracy (recovery rate between 97.2 and 104.2%). The proposed method was successfully applied for simultaneous quantification of the 12 compounds in Tripterygium preparations from the different manufactures. In addition, to evaluate the quality of Tripterygium preparations, partial least square discrimination analysis (PLS-DA) was performed to differentiate the contents of 12 compounds. In conclusion, the established HPLC/QQQ/MS method was proven to be useful and efficient for quality control of Tripterygium preparations.
Collapse
Affiliation(s)
- Heng Luo
- Center of Instrumental Analysis, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Xia Wu
- Sichuan Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Shuiying Chen
- Funan Jinsha Community Health Service Center of Qingyang District, Chengdu 610072, PR China
| | - Wei Yang
- Sichuan Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Lei Zhang
- Sichuan Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Hongmei Cui
- Center of Instrumental Analysis, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Jun Yang
- Center of Instrumental Analysis, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Andong Yang
- Center of Instrumental Analysis, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China.
| |
Collapse
|