51
|
Shin SY, Park JS, Park HB, Moon KB, Kim HS, Jeon JH, Cho HS, Lee HJ. FERONIA Confers Resistance to Photooxidative Stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:714938. [PMID: 34335672 PMCID: PMC8320354 DOI: 10.3389/fpls.2021.714938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 05/15/2023]
Abstract
Plants absorb light energy required for photosynthesis, but excess light can damage plant cells. To protect themselves, plants have developed diverse signaling pathways which are activated under high-intensity light. Plant photoprotection mechanisms have been mainly investigated under conditions of extremely high amount of light; thus, it is largely unknown how plants manage photooxidative damage under moderate light intensities. In the present study, we found that FERONIA (FER) is a key protein that confers resistance to photooxidative stress in plants under moderate light intensity. FER-deficient mutants were highly susceptible to increasing light intensity and exhibited photobleaching even under moderately elevated light intensity (ML). Light-induced expression of stress genes was largely diminished by the fer-4 mutation. In addition, excitation pressure on Photosystem II was significantly increased in fer-4 mutants under ML. Consistently, reactive oxygen species, particularly singlet oxygen, accumulated in fer-4 mutants grown under ML. FER protein abundance was found to be elevated after exposure to ML, which is indirectly affected by the ubiquitin-proteasome pathway. Altogether, our findings showed that plants require FER-mediated photoprotection to maintain their photosystems even under moderate light intensity.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hye-Bin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
52
|
Peng T, Kang JL, Xiong XT, Cheng FT, Zhou XJ, Dai WS, Wang M, Li ZY, Su HN, Zhong BL. Integrated Transcriptomics and Metabolomics Analyses Provide Insights Into the Response of Chongyi Wild Mandarin to Candidatus Liberibacter Asiaticus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:748209. [PMID: 34721476 PMCID: PMC8551615 DOI: 10.3389/fpls.2021.748209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is the causative agent of Huanglongbing (HLB), which has caused great economic losses to the citrus industry. The molecular mechanism of the host response to CLas in wild citrus germplasm has been reported less. Eighteen weeks after inoculation via grafting, all the CLas-inoculated Chongyi wild mandarin (Citrus reticulata) were positive and showed severe anatomical aberrations, suggesting its susceptibility to HLB. Transcriptomics and metabolomics analyses of leaves, barks, and roots from mock-inoculated (control) and CLas-inoculated seedlings were performed. Comparative transcriptomics identified 3,628, 3,770, and 1,716 differentially expressed genes (DEGs) between CLas-infected and healthy tissues in the leaves, barks, and roots, respectively. The CLas-infected tissues had higher transcripts per kilobase per million values and more genes that reached their maximal expression, suggesting that HLB might cause an overall increase in transcript accumulation. However, HLB-triggered transcriptional alteration showed tissue specificity. In the CLas-infected leaves, many DEGs encoding immune receptors were downregulated. In the CLas-infected barks, nearly all the DEGs involved in signaling and plant-pathogen interaction were upregulated. In the CLas-infected roots, DEGs encoding enzymes or transporters involved in carotenoid biosynthesis and nitrogen metabolism were downregulated. Metabolomics identified 71, 62, and 50 differentially accumulated metabolites (DAMs) in the CLas-infected leaves, barks and roots, respectively. By associating DEGs with DAMs, nitrogen metabolism was the only pathway shared by the three infected tissues and was depressed in the CLas-infected roots. In addition, 26 genes were determined as putative markers of CLas infection, and a hypothesized model for the HLB susceptibility mechanism in Chongyi was proposed. Our study may shed light on investigating the molecular mechanism of the host response to CLas infection in wild citrus germplasm.
Collapse
Affiliation(s)
- Ting Peng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- *Correspondence: Ting Peng orcid.org/0000-0002-3084-6328
| | - Jing-Liang Kang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, Ganzhou, China
| | - Xin-Ting Xiong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fang-Ting Cheng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Juan Zhou
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Wen-Shan Dai
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, Ganzhou, China
| | - Min Wang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, Ganzhou, China
| | - Zhong-Yang Li
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Hua-Nan Su
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ba-Lian Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Ba-Lian Zhong
| |
Collapse
|