Abstract
Mathes and Nahai introduced the conventional reconstructive ladder in 1982 to address tissue defects starting with primary and secondary closure of wounds followed by autologous skin grafting. Regional and local pedicled flaps, tissue expansion and free tissue transfer were further steps. Despite enormous achievements and refinements in these techniques, clinical situations and problems occur beyond the scope of these conventional reconstructive measures. Composite tissue allotransplantation (CTA) of partial faces or of unilateral or bilateral forearms and upper arms, are a novel part of transplantation medicine. The initially reported clinical results are encouraging, especially in light of the initial clinical reports of organ transplantation. However, short and long term problems such as potential tumor induction by immunosuppression and chronic rejection must be taken into consideration. Given the fact that patients receiving CTA have already undergone various reconstructive procedures before, patients often gain tremendous improvement in the quality of life. Robots such as the Da Vinci system for surgeons and the Penelope assistant robot have found their way into the surgical routine. While even microsurgical anastomosis has been accomplished using the Da Vinci system, the total amount of time and resources spent is beyond being practical at present. Regeneration and tissue engineering are of distinct interest in reconstructive surgery. Adipose-derived stem cell transfer is able not only to improve contour defects by volume effects, but also to improve the quality of the overlying skin. Therefore we would propose that these novel techniques, CTA, robotics, regeneration and tissue engineering should be considered as potential future integral cogs in the reconstructive mechanism for the 21st century with the patient being at the centre of the reconstructive efforts.
Collapse