El-Sherbiny M, Eldosoky M, El-Shafey M, Othman G, Elkattawy HA, Bedir T, Elsherbiny NM. Vitamin D nanoemulsion enhances hepatoprotective effect of conventional vitamin D in rats fed with a high-fat diet.
Chem Biol Interact 2018;
288:65-75. [PMID:
29653100 DOI:
10.1016/j.cbi.2018.04.010]
[Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND
Non-alcoholic fatty liver disease (NAFLD) is associated with hyperlipidemia, obesity and type II diabetes. Due to increasing prevalence of these diseases globally, NAFLD is considered as a common form of chronic liver diseases. Vitamin D is a fat soluble vitamin with reported anti-inflammatory, anti-oxidant and immune modulating activity. Hypovitaminosis D often coexists with NAFLD and various studies reported beneficial role of vitamin D in modulating NAFLD. However, variable oral bioavailability, poor water solubility, and chemical degradation hinder the clinical application of vitamin D.
PURPOSE
We evaluated the potential protective effect of Vitamin D nanoemulsion (developed by sonication and pH-Shifting of pea protein isolate and canola oil) compared to conventional vitamin D against liver injury in rats fed with high fat diet (HFD).
METHODS
We analyzed liver function enzymes, lipid profile, lipid metabolism, levels and histopathology of inflammation and fibrosis in rat liver tissues.
RESULTS
HFD fed rats exhibited deterioration of liver function, poor lipid profile, decreased fatty acid oxidation and up-regulation of inflammatory cytokines and extracellular matrix deposition. Vitamin D administration reduced elevated liver enzymes, improved lipid profile, enhanced fatty acid oxidation and attenuated liver inflammation and fibrosis. Interestingly, vitamin D nanoemulsion was superior to conventional vitamin D with remarkable hepatoprotective effect against HFD-induced liver injury.
CONCLUSION
This study demonstrated vitamin D nanoemulsion as a more efficient formulation with more prominent hepatoprotective effect against HFD-induced liver injury compared to conventional oral vitamin D.
Collapse