51
|
De Clercq E. Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 2010; 30:667-707. [PMID: 19626594 DOI: 10.1002/med.20173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review article presents the fourth part (part D) in the series of stories on antiviral drug discovery. The stories told in part D focus on: (i) the cyclotriazadisulfonamide compounds; (ii) the {5-[(4-bromophenylmethyl]-2-phenyl-5H-imidazo[4,5-c]pyridine} compounds; (iii) (1H,3H-thiazolo[3,4-a]benzimidazole) derivatives; (iv) T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and (v) its structurally closely related analogue pyrazine 2-carboxamide (pyrazinamide); (vi) new strategies for the treatment of hemorrhagic fever virus infections, including, as the most imminent, (vii) dengue fever, (viii) the veterinary use of acyclic nucleoside phosphonates; (ix) the potential (off-label) use of cidofovir in the treatment of papillomatosis, particularly RRP (recurrent respiratory papillomatosis); and (x) finally, the prophylactic use of tenofovir to prevent HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
52
|
Meseda CA, Weir JP. Third-generation smallpox vaccines: challenges in the absence of clinical smallpox. Future Microbiol 2010; 5:1367-82. [DOI: 10.2217/fmb.10.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smallpox, a disease caused by variola virus, is estimated to have killed hundreds of millions to billions of people before it was certified as eradicated in 1980. However, there has been renewed interest in smallpox vaccine development due in part to zoonotic poxvirus infections and the possibility of a re-emergence of smallpox, as well as the fact that first-generation smallpox vaccines are associated with relatively rare, but severe, adverse reactions in some vaccinees. An understanding of the immune mechanisms of vaccine protection and the use of suitable animal models for vaccine efficacy assessment are paramount to the development of safer and effective smallpox vaccines. This article focuses on studies aimed at understanding the immune responses elicited by vaccinia virus and the various animal models that can be used to evaluate smallpox vaccine efficacy. Harnessing this information is necessary to assess the effectiveness and potential usefulness of new-generation smallpox vaccines.
Collapse
Affiliation(s)
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluation & Research, USFDA, 1401 Rockville Pike, HFM-457, Rockville, MD 20852, USA
| |
Collapse
|
53
|
Chapman JL, Nichols DK, Martinez MJ, Raymond JW. Animal models of orthopoxvirus infection. Vet Pathol 2010; 47:852-70. [PMID: 20682806 DOI: 10.1177/0300985810378649] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Smallpox was one of the most devastating diseases known to humanity. Although smallpox was eradicated through a historically successful vaccination campaign, there is concern in the global community that either Variola virus (VARV), the causative agent of smallpox, or another species of Orthopoxvirus could be used as agents of bioterrorism. Therefore, development of countermeasures to Orthopoxvirus infection is a crucial focus in biodefense research, and these efforts rely on the use of various animal models. Smallpox typically presented as a generalized pustular rash with 30 to 40% mortality, and although smallpox-like syndromes can be induced in cynomolgus macaques with VARV, research with this virus is highly restricted; therefore, animal models with other orthopoxviruses have been investigated. Monkeypox virus causes a generalized vesiculopustular rash in rhesus and cynomolgus macaques and induces fatal systemic disease in several rodent species. Ectromelia virus has been extensively studied in mice as a model of orthopoxviral infection in its natural host. Intranasal inoculation of mice with some strains of vaccinia virus produces fatal bronchopneumonia, as does aerosol or intranasal inoculation of mice with cowpox virus. Rabbitpox virus causes pneumonia and fatal systemic infections in rabbits and can be naturally transmitted between rabbits by an aerosol route similar to that of VARV in humans. No single animal model recapitulates all known aspects of human Orthopoxvirus infections, and each model has its advantages and disadvantages. This article provides a brief review of the Orthopoxvirus diseases of humans and the key pathologic features of animal models of Orthopoxvirus infections.
Collapse
Affiliation(s)
- J L Chapman
- DVM, Major, US Army, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
54
|
Americo JL, Moss B, Earl PL. Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J Virol 2010; 84:8172-80. [PMID: 20519404 PMCID: PMC2916512 DOI: 10.1128/jvi.00621-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022] Open
Abstract
Infection with monkeypox virus (MPXV) causes disease manifestations in humans that are similar, although usually less severe, than those of smallpox. Since routine vaccination for smallpox ceased more than 30 years ago, there is concern that MPXV could be used for bioterrorism. Thus, there is a need to develop animal models to study MPXV infection. Accordingly, we screened 38 inbred mouse strains for susceptibility to MPXV. Three highly susceptible wild-derived inbred strains were identified, of which CAST/EiJ was further developed as a model. Using an intranasal route of infection with an isolate of the Congo Basin clade of MPXV, CAST/EiJ mice exhibited weight loss, morbidity, and death in a dose-dependent manner with a calculated 50% lethal dose (LD(50)) of 680 PFU, whereas there were no deaths of BALB/c mice at a 10,000-fold higher dose. CAST/EiJ mice exhibited greater MPXV sensitivity when infected via the intraperitoneal route, with an LD(50) of 14 PFU. Both routes resulted in MPXV replication in the lung, spleen, and liver. Intranasal infection with an isolate of the less-pathogenic West African clade yielded an LD(50) of 7,600 PFU. The immune competence of CAST/EiJ mice was established by immunization with vaccinia virus, which induced antigen-specific T- and B-lymphocyte responses and fully protected mice from lethal doses of MPXV. The new mouse model has the following advantages for studying pathogenesis of MPXV, as well as for evaluation of potential vaccines and therapeutics: relative sensitivity to MPXV through multiple routes, genetic homogeneity, available immunological reagents, and commercial production.
Collapse
Affiliation(s)
- Jeffrey L. Americo
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia L. Earl
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
55
|
Stabenow J, Buller RM, Schriewer J, West C, Sagartz JE, Parker S. A mouse model of lethal infection for evaluating prophylactics and therapeutics against Monkeypox virus. J Virol 2010; 84:3909-20. [PMID: 20130052 PMCID: PMC2849515 DOI: 10.1128/jvi.02012-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/22/2010] [Indexed: 01/14/2023] Open
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola, the etiological agent of smallpox. In humans, MPXV causes a disease similar to smallpox and is considered to be an emerging infectious disease. Moreover, the use of MPXV for bioterroristic/biowarfare activities is of significant concern. Available small animal models of human monkeypox have been restricted to mammals with poorly defined biologies that also have limited reagent availability. We have established a murine MPXV model utilizing the STAT1-deficient C57BL/6 mouse. Here we report that a relatively low-dose intranasal (IN) infection induces 100% mortality in the stat1(-)(/)(-) model by day 10 postinfection with high infectious titers in the livers, spleens, and lungs of moribund animals. Vaccination with modified vaccinia virus Ankara (MVA) followed by a booster vaccination is sufficient to protect against an intranasal MPXV challenge and induces an immune response more robust than that of a single vaccination. Furthermore, antiviral treatment with CMX001 (HDP-cidofovir) and ST-246 protects when administered as a regimen initiated on the day of infection. Thus, the stat1(-)(/)(-) model provides a lethal murine platform for evaluating therapeutics and for investigating the immunological and pathological responses to MPXV infection.
Collapse
Affiliation(s)
- Jennifer Stabenow
- Department of Molecular Microbiology and Immunology, Department of Comparative Medicine, Saint Louis University Medical School, 1100 S. Grand Blvd., St Louis, Missouri 63104, Seventh Wave Laboratories, LLC, 743 Sprint 40 Park Drive, Suite 209, Chesterfield, Missouri 63005
| | - R. Mark Buller
- Department of Molecular Microbiology and Immunology, Department of Comparative Medicine, Saint Louis University Medical School, 1100 S. Grand Blvd., St Louis, Missouri 63104, Seventh Wave Laboratories, LLC, 743 Sprint 40 Park Drive, Suite 209, Chesterfield, Missouri 63005
| | - Jill Schriewer
- Department of Molecular Microbiology and Immunology, Department of Comparative Medicine, Saint Louis University Medical School, 1100 S. Grand Blvd., St Louis, Missouri 63104, Seventh Wave Laboratories, LLC, 743 Sprint 40 Park Drive, Suite 209, Chesterfield, Missouri 63005
| | - Cheri West
- Department of Molecular Microbiology and Immunology, Department of Comparative Medicine, Saint Louis University Medical School, 1100 S. Grand Blvd., St Louis, Missouri 63104, Seventh Wave Laboratories, LLC, 743 Sprint 40 Park Drive, Suite 209, Chesterfield, Missouri 63005
| | - John E. Sagartz
- Department of Molecular Microbiology and Immunology, Department of Comparative Medicine, Saint Louis University Medical School, 1100 S. Grand Blvd., St Louis, Missouri 63104, Seventh Wave Laboratories, LLC, 743 Sprint 40 Park Drive, Suite 209, Chesterfield, Missouri 63005
| | - Scott Parker
- Department of Molecular Microbiology and Immunology, Department of Comparative Medicine, Saint Louis University Medical School, 1100 S. Grand Blvd., St Louis, Missouri 63104, Seventh Wave Laboratories, LLC, 743 Sprint 40 Park Drive, Suite 209, Chesterfield, Missouri 63005
| |
Collapse
|
56
|
Kastenmayer RJ, Moak HB, Jeffress EJ, Elkins WR. Management and care of African dormice (Graphiurus kelleni). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2010; 49:173-6. [PMID: 20353691 PMCID: PMC2846004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/02/2009] [Accepted: 10/12/2009] [Indexed: 05/29/2023]
Abstract
African dormice (Graphiurus spp.) are small nocturnal rodents that currently are uncommon in laboratory settings. Their use may increase as they have recently been shown to develop an infection with monkeypox virus and may prove to be a valuable animal model for infectious disease research. Because African dormice are not commercially available, an extensive breeding colony is required to produce the animals needed for research use. Husbandry modifications that increased the production of offspring were the use of a high-protein diet, increased cage enrichment, and decreased animal density. To optimize consumption of a high-protein diet, we tested the palatability of several high-protein foods in a series of preference trials. Dormice preferred wax worm larva, cottage cheese, roasted soy nuts, and canned chicken. Issues related to medical management of Graphiurus kelleni include potential complications from traumatic injury. The development of a program for the husbandry and care of African dormice at our institution typifies the experiences of many laboratory animal facilities that are asked to support the development of animal models using novel species.
Collapse
Affiliation(s)
- Robin J Kastenmayer
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Comparative Medicine Branch. Bethesda, Maryland
| | - Hannah B Moak
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Comparative Medicine Branch. Bethesda, Maryland
| | - Erin J Jeffress
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Comparative Medicine Branch. Bethesda, Maryland
| | - William R Elkins
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Comparative Medicine Branch. Bethesda, Maryland
| |
Collapse
|
57
|
Hutson CL, Abel JA, Carroll DS, Olson VA, Braden ZH, Hughes CM, Dillon M, Hopkins C, Karem KL, Damon IK, Osorio JE. Comparison of West African and Congo Basin monkeypox viruses in BALB/c and C57BL/6 mice. PLoS One 2010; 5:e8912. [PMID: 20111702 PMCID: PMC2811726 DOI: 10.1371/journal.pone.0008912] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/02/2010] [Indexed: 11/19/2022] Open
Abstract
Although monkeypox virus (MPXV) studies in wild rodents and non-human primates have generated important knowledge regarding MPXV pathogenesis and inferences about disease transmission, it might be easier to dissect the importance of virulence factors and correlates of protection to MPXV in an inbred mouse model. Herein, we compared the two clades of MPXV via two routes of infection in the BALB/c and C57BL/6 inbred mice strains. Our studies show that similar to previous animal studies, the Congo Basin strain of MPXV was more virulent than West African MPXV in both mouse strains as evidenced by clinical signs. Although animals did not develop lesions as seen in human MPX infections, localized signs were apparent with the foot pad route of inoculation, primarily in the form of edema at the site of inoculation; while the Congo Basin intranasal route of infection led to generalized symptoms, primarily weight loss. We have determined that future studies with MPXV and laboratory mice would be very beneficial in understanding the pathogenesis of MPXV, in particular if used in in vivo imaging studies. Although this mouse model may not suffice as a model of human MPX disease, with an appropriate inbred mouse model, we can unravel many unknown aspects of MPX pathogenesis, including virulence factors, disease progression in rodent hosts, and viral shedding from infected animals. In addition, such a model can be utilized to test antivirals and the next generation of orthopoxvirus vaccines for their ability to alter the course of disease.
Collapse
Affiliation(s)
- Christina L Hutson
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Osorio JE, Iams KP, Meteyer CU, Rocke TE. Comparison of monkeypox viruses pathogenesis in mice by in vivo imaging. PLoS One 2009; 4:e6592. [PMID: 19668372 PMCID: PMC2719101 DOI: 10.1371/journal.pone.0006592] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 06/06/2009] [Indexed: 12/05/2022] Open
Abstract
Monkeypox viruses (MPXV) cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358) and West African (MPXV-2003-USA-044) clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+) and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI). However, infection in severe combined immune deficient (SCID) BALB/c mice resulted in 100% lethality. Intraperitoneal (IP) injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (+/-0) days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05) mean time-to-death (11+/-0 days) for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses.
Collapse
Affiliation(s)
- Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| | | | | | | |
Collapse
|