51
|
Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread. J Virol 2016; 90:5163-5175. [PMID: 26984724 DOI: 10.1128/jvi.00036-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intercellular nanotube connections have been identified as an alternative pathway for cellular spreading of certain viruses. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nanotubes were observed connecting two distant cells with contiguous membranes, with the core infectious viral machinery (viral RNA, certain replicases, and certain structural proteins) present in/on the intercellular nanotubes. Live-cell movies tracked the intercellular transport of a recombinant PRRSV that expressed green fluorescent protein (GFP)-tagged nsp2. In MARC-145 cells expressing PRRSV receptors, GFP-nsp2 moved from one cell to another through nanotubes in the presence of virus-neutralizing antibodies. Intercellular transport of viral proteins did not require the PRRSV receptor as it was observed in receptor-negative HEK-293T cells after transfection with an infectious clone of GFP-PRRSV. In addition, GFP-nsp2 was detected in HEK-293T cells cocultured with recombinant PRRSV-infected MARC-145 cells. The intercellular nanotubes contained filamentous actin (F-actin) with myosin-associated motor proteins. The F-actin and myosin IIA were identified as coprecipitates with PRRSV nsp1β, nsp2, nsp2TF, nsp4, nsp7-nsp8, GP5, and N proteins. Drugs inhibiting actin polymerization or myosin IIA activation prevented nanotube formation and viral clusters in virus-infected cells. These data lead us to propose that PRRSV utilizes the host cell cytoskeletal machinery inside nanotubes for efficient cell-to-cell spread. This form of virus transport represents an alternative pathway for virus spread, which is resistant to the host humoral immune response. IMPORTANCE Extracellular virus particles transmit infection between organisms, but within infected hosts intercellular infection can be spread by additional mechanisms. In this study, we describe an alternative pathway for intercellular transmission of PRRSV in which the virus uses nanotube connections to transport infectious viral RNA, certain replicases, and certain structural proteins to neighboring cells. This process involves interaction of viral proteins with cytoskeletal proteins that form the nanotube connections. Intercellular viral spread through nanotubes allows the virus to escape the neutralizing antibody response and may contribute to the pathogenesis of viral infections. The development of strategies that interfere with this process could be critical in preventing the spread of viral infection.
Collapse
|
52
|
Pujhari S, Zakhartchouk AN. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis. Arch Virol 2016; 161:1821-30. [DOI: 10.1007/s00705-016-2845-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/26/2016] [Indexed: 12/15/2022]
|
53
|
Eck M, Durán MG, Ricklin ME, Locher S, Sarraseca J, Rodríguez MJ, McCullough KC, Summerfield A, Zimmer G, Ruggli N. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs. Vet Res 2016; 47:33. [PMID: 26895704 PMCID: PMC4761149 DOI: 10.1186/s13567-016-0318-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Collapse
Affiliation(s)
- Melanie Eck
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland. .,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland.
| | - Margarita García Durán
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - Meret E Ricklin
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Samira Locher
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Javier Sarraseca
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - María José Rodríguez
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - Kenneth C McCullough
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland. .,Department of Infectious Disease and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001, Bern, Switzerland.
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| |
Collapse
|
54
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide. Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
55
|
Sun L, Zhou Y, Liu R, Li Y, Gao F, Wang X, Fan H, Yuan S, Wei Z, Tong G. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability. Virus Res 2014; 197:17-25. [PMID: 25499299 DOI: 10.1016/j.virusres.2014.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 11/27/2022]
Abstract
ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30.
Collapse
Affiliation(s)
- Lichang Sun
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, PR China
| | - Yan Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Runxia Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanhua Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaomin Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hongjie Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, PR China
| | - Shishan Yuan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Zuzhang Wei
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China.
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|