51
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Supplemental N-acetylcysteine and other measures that boost intracellular glutathione can downregulate interleukin-1β signalling: a potential strategy for preventing cardiovascular events? Open Heart 2017; 4:e000599. [PMID: 28878946 PMCID: PMC5574421 DOI: 10.1136/openhrt-2017-000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 11/03/2022] Open
|
52
|
McCarty MF, O'Keefe JH, DiNicolantonio JJ. Interleukin-1beta may act on hepatocytes to boost plasma homocysteine - The increased cardiovascular risk associated with elevated homocysteine may be mediated by this cytokine. Med Hypotheses 2017; 102:78-81. [PMID: 28478836 DOI: 10.1016/j.mehy.2017.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/11/2017] [Indexed: 11/17/2022]
Abstract
The results of multi-center trials of B vitamin supplementation reveal that, whereas moderately elevated homocysteine predicts increased risk for coronary disease, it does not play a mediating role in this regard. This essay proposes that interleukin-1beta can act on hepatocytes to suppress expression of the hepatocyte-specific forms of methionine adenosyltransferase; this in turn can be expected to decrease hepatic activity of cystathionine-β-synthase, leading to an increase in plasma homocysteine. It is further proposed that interleukin-1beta (IL-1β) is a true mediating risk factor for cardiovascular disease, and that elevated homocysteine predicts coronary disease because it can serve as a marker for increased IL-1β activity. Potent statin therapy may decrease IL-1β production by suppressing inflammasome activation - thereby accounting for the marked protection from cardiovascular events observed in the classic JUPITER study, in which the enrolled subjects had low-normal Low Density Lipoprotein cholesterol but elevated C-reactive protein.
Collapse
|
53
|
Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017; 120:207-228. [PMID: 28057794 DOI: 10.1161/circresaha.116.309726] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- From the Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
54
|
Li R, Zhang Y, Yan H, Xiao H, Ruan Y, Qiu J, Shi L. CYP2J2 participates in atherogenesis by mediating cell proliferation, migration and foam cell formation. Mol Med Rep 2016; 15:643-648. [PMID: 28000856 PMCID: PMC5364824 DOI: 10.3892/mmr.2016.6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is a common pathological basis for the development of various cardiovascular and cerebrovascular diseases, however, currently, no effective treatment against AS has been established. It has previously been suggested that intravascular cytochrome P450 (CYP) oxidase is involved in the pathogenesis of AS. The present study investigated the role of cytochrome P450, family 2, subfamily J, polypeptide 2 (CYP2J2), the most common subtype of CYP oxidase in the human body, in the occurrence and development of AS. CYP2J2 was overexpressed in human umbilical vein endothelial cells (HUVECs), human arterial smooth muscle cells (HASMCs), and human peripheral monocyte‑derived foam cells by lentiviral infection. The mRNA and protein levels were measured by reverse‑transcription quantitative polymerase chain reaction and western blotting, respectively. Cell proliferation and migration were determined by MTS and Transwell assays, respectively. Furthermore, lipid accumulation was detected with Oil red O staining. The concentrations of total and free cholesterol were measured using a quantitation kit. Following lentiviral infection, CYP2J2 was successfully overexpressed in HUVEC, HASMC and foam cells. CYP2J2 overexpression promoted proliferation and migration in HUVECs and suppressed these actions in HASMCs. In addition, it suppressed oxidized low‑density lipoprotein‑induced foam cell formation. In conclusion, it was hypothesized that CYP2J2 may have a protective role in AS, as proliferation of HASMCs and the formation of foam cells are notable characteristics of AS.
Collapse
Affiliation(s)
- Rui Li
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yuan Zhang
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Huacheng Yan
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hua Xiao
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yunjun Ruan
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Jian Qiu
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Shi
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
55
|
de Almeida-Pereira L, Magalhães CF, Repossi MG, Thorstenberg MLP, Sholl-Franco A, Coutinho-Silva R, Ventura ALM, Fragel-Madeira L. Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y 1 Receptor. Mol Neurobiol 2016; 54:5142-5155. [PMID: 27558237 DOI: 10.1007/s12035-016-0059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022]
Abstract
Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPβ-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57KIP2 and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | - Alfred Sholl-Franco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
- Laboratório de Desenvolvimento e Regeneração Neural, Departmento de Neurobiologia, Universidade Federal Fluminense, Cx. Postal 100180, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
56
|
Gendaszewska-Darmach E, Szustak M. Thymidine 5'-O-monophosphorothioate induces HeLa cell migration by activation of the P2Y6 receptor. Purinergic Signal 2016; 12:199-209. [PMID: 26746211 DOI: 10.1007/s11302-015-9492-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
ATP, ADP, UTP, and UDP acting as ligands of specific P2Y receptors activate intracellular signaling cascades to regulate a variety of cellular processes, including proliferation, migration, differentiation, and cell death. Contrary to a widely held opinion, we show here that nucleoside 5'-O-monophosphorothioate analogs, containing a sulfur atom in a place of one nonbridging oxygen atom in a phosphate group, act as ligands for selected P2Y subtypes. We pay particular attention to the unique activity of thymidine 5'-O-monophosphorothioate (TMPS) which acts as a specific partial agonist of the P2Y6 receptor (P2Y6R). We also collected evidence for the involvement of the P2Y6 receptor in human epithelial adenocarcinoma cell line (HeLa) cell migration induced by thymidine 5'-O-monophosphorothioate analog. The stimulatory effect of TMPS was abolished by siRNA-mediated P2Y6 knockdown and diisothiocyanate derivative MRS 2578, a selective antagonist of the P2Y6R. Our results indicate for the first time that increased stability of thymidine 5'-O-monophosphorothioate as well as its affinity toward the P2Y6R may be responsible for some long-term effects mediated by this receptor.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland.
| | - Marcin Szustak
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| |
Collapse
|
57
|
Role of PI3K/Akt signal pathway on proliferation of mesangial cell induced by HMGB1. Tissue Cell 2016; 48:121-5. [PMID: 26822343 DOI: 10.1016/j.tice.2015.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
Mesangial cell (MC) proliferation is an important event in LN. Our previous studies have shown that extracellular High Mobility Group Box-1 protein (HMGB1) plays a critical role in pathophysiological mechanism of lupus nephritis (LN) and HMGB1 could induce MC proliferation. The purpose of this study is to investigate the effect of phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signal pathway activation on mesangial cell proliferation induced by HMGB1 and whether Toll-like receptor 2 (TLR2) plays an important role in this progress. The results showed that HMGB1 induced overexpression of p85, p110 and p-Akt in mouse mesangial cell (MMC) and increased the proliferative level of MMC cells. In addition, HMGB1 induced a physical interaction between TLR2 and p85. The TLR2 neutralization antibody and LY294002 both reduced the MMC proliferation levels induced by HMGB1 and also blocked the HMGB1-dependent phosphorylation of the Akt. Thus, HMGB1 increases interaction between TLR2 with p85 and in sequence phosphorylates Akt at ser473, thereafter mediates MMC proliferation, which contributed significantly to the pathophysiology of MMCs dysfunction.
Collapse
|
58
|
Yu J, Ok SH, Kim WH, Cho H, Park J, Shin IW, Lee HK, Chung YK, Choi MJ, Kwon SC, Sohn JT. Dexmedetomidine-Induced Contraction in the Isolated Endothelium-Denuded Rat Aorta Involves PKC-δ-mediated JNK Phosphorylation. Int J Med Sci 2015; 12:727-36. [PMID: 26392810 PMCID: PMC4571550 DOI: 10.7150/ijms.11952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Vasoconstriction mediated by the highly selective alpha-2 adrenoceptor agonist dexmedetomidine leads to transiently increased blood pressure and severe hypertension. The dexmedetomidine-induced contraction involves the protein kinase C (PKC)-mediated pathway. However, the main PKC isoform involved in the dexmedetomidine-induced contraction remains unknown. The goal of this in vitro study was to examine the specific PKC isoform that contributes to the dexmedetomidine-induced contraction in the isolated rat aorta. The endothelium-denuded rat aorta was suspended for isometric tension recording. Dexmedetomidine dose-response curves were generated in the presence or absence of the following inhibitors: the pan-PKC inhibitor, chelerythrine; the PKC-α and -β inhibitor, Go6976; the PKC-α inhibitor, safingol; the PKC-β inhibitor, ruboxistaurin; the PKC-δ inhibitor, rottlerin; the c-Jun NH2-terminal kinase (JNK) inhibitor, SP600125; and the myosin light chain kinase inhibitor, ML-7 hydrochloride. Western blot analysis was used to examine the effect of rottlerin on dexmedetomidine-induced PKC-δ expression and JNK phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) and to investigate the effect of dexmedetomidine on PKC-δ expression in VSMCs transfected with PKC-δ small interfering RNA (siRNA) or control siRNA. Chelerythrine as well as SP600125 and ML-7 hydrochloride attenuated the dexmedetomidine-induced contraction. Go6976, safingol, and ruboxistaurin had no effect on the dexmedetomidine-induced contraction, whereas rottlerin inhibited the dexmedetomidine-induced contraction. Dexmedetomidine induced PKC-δ expression, whereas rottlerin and PKC-δ siRNA transfection inhibited dexmedetomidine-induced PKC-δ expression. Dexmedetomidine also induced JNK phosphorylation, which was inhibited by rottlerin. Taken together, these results suggest that the dexmedetomidine-induced contraction involves PKC-δ-dependent JNK phosphorylation in the isolated rat aorta.
Collapse
Affiliation(s)
- Jongsun Yu
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Seong-Ho Ok
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Won Ho Kim
- 2. Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Hyunhoo Cho
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jungchul Park
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Il-Woo Shin
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Heon Keun Lee
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Young-Kyun Chung
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Mun-Jeoung Choi
- 4. Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seong-Chun Kwon
- 5. Department of Physiology, Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung, 25601, Korea
| | - Ju-Tae Sohn
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea ; 6. Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|