51
|
An omniphobic membrane with macro-corrugation for the treatment of real pharmaceutical wastewater via membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
52
|
Afsari M, Li Q, Karbassiyazdi E, Shon HK, Razmjou A, Tijing LD. Electrospun nanofiber composite membranes for geothermal brine treatment with lithium enrichment via membrane distillation. CHEMOSPHERE 2023; 318:137902. [PMID: 36669538 DOI: 10.1016/j.chemosphere.2023.137902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
In this study, a composite electrospun nanofiber membrane was fabricated and used to treat a geothermal brine source with lithium enrichment. An in-situ growth technique was applied to incorporate silica nanoparticles on the surface of nanofibers with (3-Aminopropyl) triethoxysilane as the nucleation site. The fabricated composite nanofiber membrane was heat pressed to enhance the integration of the membrane and its mechanical stability. The fabricated membranes were tested to evaluate their performance in feedwater containing different concentrations of NaCl in the range of 0-100 g/L, and the wetting resistivity of the membranes was examined. Finally, the optimal membrane was applied to treat the simulated geothermal brine. The experimental results revealed that the in-situ growth of nanoparticles and coating of flourosilane agent dramatically improved the separation performance of the membrane with high salt rejection, and adequate flux was achieved. The heat-pressed membrane obtained >99% salt rejection and flux of 14-19 L/m2h at varying feedwater salinity (0-100 g/L), and the concentration of the Li during the 24 h test reached >1100 ppm from the initial 360 ppm. Evaluation of the energy efficiency of the membranes showed that the heat-pressed membrane obtained the optimum energy efficiency in the high concentration of salts. Additionally, the economic analysis indicated that MD could achieve a levelized cost of 2.9 USD/m3 of lithium brine concentration as the heat source is within the feed. Overall, this technology would represent a viable alternative to the solar pond to concentrate Li brine, enabling a compact, efficient, and continuous operating system.
Collapse
Affiliation(s)
- Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Qiyuan Li
- School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales, 2052, Australia
| | - Elika Karbassiyazdi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia.
| |
Collapse
|
53
|
Xu Y, Ren LF, Li J, Wang C, Qiu Y, Shao J, He Y. Anti-Wetting Performance of an Electrospun PVDF/PVP Membrane Modified by Solvothermal Treatment in Membrane Distillation. MEMBRANES 2023; 13:225. [PMID: 36837728 PMCID: PMC9964468 DOI: 10.3390/membranes13020225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane distillation (MD) is attractive for water reclamation due to the fact of its unique characteristics. However, membrane wetting becomes an obstacle to its further application. In this paper, a novel hydrophobic polyvinylidene fluoride/poly(vinyl pyrrolidone) (PVDF/PVP) membrane was fabricated by electrospinning and solvothermal treatment. The electrospun membranes prepared by electrospinning showed a multilevel interconnected nanofibrous structure. Then, a solvothermal treatment introduced the micro/nanostructure to the membrane with high roughness (Ra = 598 nm), thereby the water contact angle of the membrane increased to 158.3 ± 2.2°. Owing to the superior hydrophobicity, the membrane presented high resistance to wetting in both NaCl and SDS solutions. Compared to the pristine PVDF membrane, which showed wetting with a flux decline (120 min for 0.05 mM surfactant solution treatment), the prepared membrane showed outstanding stability over 600 min, even in 0.2 mM surfactant solutions. These results confirm a simple method for anti-wetting hydrophobic membrane preparation, which presented universal significance to direct contact membrane distillation (DCMD) for industrial application.
Collapse
|
54
|
Gryta M. The effects of fibers layer assembled on the capillary membranes applied for separation of brines by membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
55
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
56
|
Chen C, Dai Z, Li Y, Zeng Q, Yu Y, Wang X, Zhang C, Han L. Fouling-free membrane stripping for ammonia recovery from real biogas slurry. WATER RESEARCH 2023; 229:119453. [PMID: 36509033 DOI: 10.1016/j.watres.2022.119453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Hydrophobic gas permeable membranes (GPMs) exhibit great potential in stripping or recovering ammonia from wastewater, but they also suffer from severe fouling issues due to the complex water matrix, since the related process is often operated under highly alkaline conditions (pH > 11). In this study, we proposed a novel membrane stripping process by integrating a cation exchange membrane (CEM) in alkali-driven Donnan dialysis prior to GPM for efficient and robust ammonia recovery from real biogas slurry. During the conventional stripping for diluted biogas slurry, the ammonia removal across GPM finally decreased by 15% over 6 consecutive batches, likely due to the obvious deposition of inorganic species and penetration of organic compounds (rejection of 90% only). In contrast, a constant ammonia removal of 80% and organic matter rejection of more than 99%, as well as negligible fouling of both membranes, were found for the proposed novel stripping process operated over 120 h. Our results demonstrated that additional divalent cations clearly aggravated the fouling of GPM in conventional stripping, where only weak competition across CEM was found in the CEM-GPM hybrid mode. Then, for raw biogas slurry, the new stripping achieved a stable ammonia removal up to 65%, and no fouling occurrence was found, superior to that in the control (declined removal from 87% to 55%). The antifouling mechanism by integrating CEM prior to GPM involves size exclusion and charge repulsion towards varying foulants. This work highlighted that the novel membrane stripping process of hybrid CEM-GPM significantly mitigated membrane fouling and can be regarded as a potential alternative for ammonia recovery from high-strength complex streams.
Collapse
Affiliation(s)
- Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhinan Dai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yifan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qin Zeng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yang Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
57
|
Zhou H, Ju P, Hu S, Shi L, Yuan W, Chen D, Wang Y, Shi S. Separation of Hydrochloric Acid and Oxalic Acid from Rare Earth Oxalic Acid Precipitation Mother Liquor by Electrodialysis. MEMBRANES 2023; 13:162. [PMID: 36837666 PMCID: PMC9964671 DOI: 10.3390/membranes13020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the hydrochloric acid from rare earth oxalic acid precipitation mother liquor was separated by electrodialysis (ED) with different anion exchange membranes, including selective anion exchange membrane (SAEM), polymer alloy anion exchange membrane (PAAEM), and homogenous anion exchange membrane (HAEM). In addition to actual wastewater, nine types of simulated solutions with different concentrations of hydrochloric acid and oxalic acid were used in the experiments. The results indicated that the hydrochloric acid could be separated effectively by electrodialysis with SAEM from simulated and real rare earth oxalic acid precipitation mother liquor under the operating voltage 15 V and ampere 2.2 A, in which the hydrochloric acid obtained in the concentrate chamber of ED is of higher purity (>91.5%) generally. It was found that the separation effect of the two acids was related to the concentrations and molar ratios of hydrochloric acid and oxalic acid contained in their mixtures. The SEM images and ESD-mapping analyses indicated that membrane fouling appeared on the surface of ACS and CSE at the diluted side of the ED membrane stack when electrodialysis was used to treat the real rare earth oxalic acid precipitation mother liquor. Fe, Yb, Al, and Dy were found in the CSE membrane section, and organic compounds containing carbon and sulfur were attached to the surface of the ACS. The results also indicated that the real rare earth precipitation mother liquor needed to be pretreated before the separation of hydrochloric acid and oxalic acid by electrodialysis.
Collapse
Affiliation(s)
- Hengcheng Zhou
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Peihai Ju
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Shaowei Hu
- Technology Center of Angang Steel Co., Ltd., Anshan 114009, China
| | - Lili Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Dongdong Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Yujie Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoyuan Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
58
|
Lopez KP, Wang R, Hjelvik EA, Lin S, Straub AP. Toward a universal framework for evaluating transport resistances and driving forces in membrane-based desalination processes. SCIENCE ADVANCES 2023; 9:eade0413. [PMID: 36598997 PMCID: PMC9812388 DOI: 10.1126/sciadv.ade0413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desalination technologies using salt-rejecting membranes are a highly efficient tool to provide fresh water and augment existing water supplies. In recent years, numerous studies have worked to advance a variety of membrane processes with different membrane types and driving forces, but direct quantitative comparisons of these different technologies have led to confusing and contradictory conclusions in the literature. In this Review, we critically assess different membrane-based desalination technologies and provide a universal framework for comparing various driving forces and membrane types. To accomplish this, we first quantify the thermodynamic driving forces resulting from pressure, concentration, and temperature gradients. We then examine the resistances experienced by water molecules as they traverse liquid- and air-filled membranes. Last, we quantify water fluxes in each process for differing desalination scenarios. We conclude by synthesizing results from the literature and our quantitative analyses to compare desalination processes, identifying specific scenarios where each process has fundamental advantages.
Collapse
Affiliation(s)
- Kian P. Lopez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Elizabeth A. Hjelvik
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Anthony P. Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| |
Collapse
|
59
|
New Materials and Phenomena in Membrane Distillation. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In recent decades, membrane-based processes have been extensively applied to a wide range of industrial processes, including gas separation, food industry, drug purification, and wastewater treatment. Membrane distillation is a thermally driven separation process, in which only vapour molecules transfer through a microporous hydrophobic membrane. At the operational level, the performance of membrane distillation is negatively affected by wetting and temperature polarization phenomena. In order to overcome these issues, advanced membranes have been developed in recent years. This review, which focuses specifically on membrane distillation presents the basic concepts associated with the mass and heat transfer through hydrophobic membranes, membrane properties, and advances in membrane materials. Photothermal materials for solar-driven membrane distillation applications are also presented and discussed.
Collapse
|
60
|
Mohanadas D, Nordin PMI, Rohani R, Dzulkharnien NSF, Mohammad AW, Mohamed Abdul P, Abu Bakar S. A Comparison between Various Polymeric Membranes for Oily Wastewater Treatment via Membrane Distillation Process. MEMBRANES 2022; 13:46. [PMID: 36676853 PMCID: PMC9864798 DOI: 10.3390/membranes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Oily wastewater (OW) is detrimental towards the environment and human health. The complex composition of OW needs an advanced treatment, such as membrane technology. Membrane distillation (MD) gives the highest rejection percentage of pollutants in wastewater, as the membrane only allows the vapor to pass its microporous membrane. However, the commercial membranes on the market are less efficient in treating OW, as they are prone to fouling. Thus, the best membrane must be identified to treat OW effectively. This study tested and compared the separation performance of different membranes, comparing the pressure-driven performance between the membrane filtration and MD. In this study, several ultrafiltration (UF) and nanofiltration (NF) membranes (NFS, NFX, XT, MT, GC and FILMTEC) were tested for their performance in treating OW (100 ppm). The XT and MT membranes (UF membrane) with contact angles of 70.4 ± 0.2° and 69.6 ± 0.26°, respectively, showed the best performance with high flux and oil removal rate. The two membranes were then tested for long-term performance for two hours with 5000 ppm oil concentration using membrane pressure-filtration and MD. The XT membrane displayed a better oil removal percentage of >99%. MD demonstrated a better removal percentage; the flux reduction was high, with average flux reduction of 82% compared to the membrane pressure-filtration method, which experienced a lower flux reduction of 25%. The hydrophilic MT and XT membranes have the tendency to overcome fouling in both methods. However, for the MD method, wetting occurred due to the feed penetrating the membrane pores, causing flux reduction. Therefore, it is important to identify the performance and characteristics of the prepared membrane, including the best membrane treatment method. To ensure that the MD membrane has good anti-fouling and anti-wetting properties, a simple and reliable membrane surface modification technique is required to be explored. The modified dual layer membrane with hydrophobic/hydrophilic properties is expected to produce effective separation in MD for future study.
Collapse
Affiliation(s)
- Dharshini Mohanadas
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Puteri Mimie Isma Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Peer Mohamed Abdul
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| |
Collapse
|
61
|
Gryta M. Membrane Distillation Crystallizer Applied for Separation of NaCl Solutions Contaminated with Oil. MEMBRANES 2022; 13:35. [PMID: 36676842 PMCID: PMC9862495 DOI: 10.3390/membranes13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the membrane crystallizer was used to separate a saturated NaCl solution contaminated with an oil emulsion. The crystallizer was connected via a mesh separator with a feed tank in which capillary submerged modules were assembled. The effect of scaling and oil sorption on the wetting of polypropylene (PP) membranes has been investigated during the long-term studies. It has been found that cooling the solution in the crystallizer by 15 K below the feed temperature resulted in intensive NaCl crystallization in the zone below the mesh separator. A result, the salt crystallization on the membrane surface was eliminated. Contamination of saturated brines with oil in the concentration exceeding 100 mg/L caused the oil penetration into the membrane pores. The application of a PP net assembled on the capillary membranes surface reduced the intensity of wetting phenomenon caused by scaling and the oil sorption, which provides a stable membrane module performance during 1300 h test.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
62
|
Wae AbdulKadir WAF, Ahmad AL, Ooi BS. Hydrophobic Montmorillonite/PVDF Membrane: Experimental Investigation of Membrane Synthesis toward Wetting Characterization and Performance via DCMD. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
63
|
Alharthi MS, Bamaga O, Abulkhair H, Organji H, Shaiban A, Macedonio F, Criscuoli A, Drioli E, Wang Z, Cui Z, Jin W, Albeirutty M. Evaluation of a Hybrid Moving Bed Biofilm Membrane Bioreactor and a Direct Contact Membrane Distillation System for Purification of Industrial Wastewater. MEMBRANES 2022; 13:16. [PMID: 36676823 PMCID: PMC9863120 DOI: 10.3390/membranes13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Integrated wastewater treatment processes are accepted as the best option for sustainable and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated successively to obtain the combined advantages of these processes for industrial wastewater treatment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant load on the MBR. Similarly, MBR acts as the second step in the biological treatment and serves as a pretreatment prior to the DCMD step. The latter acts as a final treatment to produce high-quality water. A laboratory scale integrated MBBR/MBR/DCMD experimental system was used for assessing the treatment efficiency of primary treated (PTIWW) and secondary treated (STIWW) industrial wastewater in terms of permeate water flux, effluent quality, and membrane fouling. The removal efficiency of total dissolved solids (TDS) and effluent permeate flux of the three-step process (MBBR/MBR/DCMD) were better than the two-step (MBR/DCMD) process. In the three-step process, the average removal efficiency of TDS was 99.85% and 98.16% when treating STIWW and PTIWW, respectively. While in the case of the two-step process, the average removal efficiency of TDS was 93.83% when treating STIWW. Similar trends were observed for effluent permeate flux values which were found, in the case of the three-step process, 62.6% higher than the two-step process, when treating STIWW in both cases. Moreover, the comparison of the quality of the effluents obtained with the analysed configurations with that obtained by Jeddah Industrial Wastewater Treatment Plant proved the higher performance of the proposed membrane processes.
Collapse
Affiliation(s)
- Mamdouh S. Alharthi
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Omar Bamaga
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Hani Abulkhair
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Husam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Amer Shaiban
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Francesca Macedonio
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Alessandra Criscuoli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mohammed Albeirutty
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
64
|
Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers (Basel) 2022; 14:polym14245439. [PMID: 36559805 PMCID: PMC9782556 DOI: 10.3390/polym14245439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. This paper summarizes different preparation methods of these fluoropolymer membrane, such as non-solvent-induced phase separation (NIPS), thermally-induced phase separation (TIPS), vapor-induced phase separation (VIPS), etc. Hydrophobic modification methods, including surface coating, surface grafting and blending, etc., are also introduced. Moreover, the research advances on the application of less toxic solvents for preparing these membranes are herein reviewed. This review aims to provide guidance to researchers for their future membrane development in membrane distillation and membrane crystallization, using fluoropolymer materials.
Collapse
|
65
|
Zhang Y, Guo F. Breaking the Saturated Vapor Layer with a Thin Porous Membrane. MEMBRANES 2022; 12:1231. [PMID: 36557138 PMCID: PMC9784513 DOI: 10.3390/membranes12121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The main idea of membrane distillation is to use a porous hydrophobic membrane as a barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from a free water surface but introduces solid-liquid interfaces and solid-vapor interfaces to a liquid-vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the membrane's intrinsic properties and the temperature gradient across the membrane. It is interesting and important to know whether the evaporation process of membrane distillation is faster or slower than that of a free-surface evaporation under the same conditions and know the capacity of the transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle experiments with various water surface/membrane interfacial conditions is performed. The effect and mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering model is proposed based on mathematical fitting and audacious simplification, which reflects the capacity of transmembrane flux.
Collapse
|
66
|
Hejazi SA, Taghipour F. Polytetrafluoroethylene-based gas diffusion electrode for electrochemical generation of hydrogen peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Hydrophobic metal-organic framework@graphene oxide membrane with enhanced water transport for desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
68
|
Hastuti LP, Kusumaatmaja A, Darmawan A, Kartini I. Durable photocatalytic membrane of PAN/TiO 2/CNT for methylene blue removal through a cross-flow membrane reactor. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2145221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lathifah Puji Hastuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Kusumaatmaja
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adi Darmawan
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang, Indonesia
| | - Indriana Kartini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Indonesia Natural Dye Institute (INDI), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
69
|
Jäger T, Mokos A, Prasianakis NI, Leyer S. Pore-Level Multiphase Simulations of Realistic Distillation Membranes for Water Desalination. MEMBRANES 2022; 12:1112. [PMID: 36363667 PMCID: PMC9693480 DOI: 10.3390/membranes12111112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is operated below boiling point. Since the performance of MD modules is still comparatively low, current research aims to improve the understanding of the membrane structure and its underlying mechanisms at the pore level. Based on existing realistic 3D membrane geometries (up to 0.5 billion voxels with 39nm resolution) obtained from ptychographic X-ray computed tomography, the D3Q27 lattice Boltzmann (LB) method was used to investigate the interaction of the liquid and gaseous phase with the porous membrane material. In particular, the Shan and Chen multi-phase model was used to simulate multi-phase flow at the pore level. We investigated the liquid entry pressure of different membrane samples and analysed the influence of different micropillar structures on the Wenzel and Cassie-Baxter state of water droplets on rough hydrophobic surfaces. Moreover, we calculated the liquid entry pressure required for entering the membrane pores and extracted realistic water contact surfaces for different membrane samples. The influence of the micropillars and flow on the water-membrane contact surface was investigated. Finally, we determined the air-water interface within a partially saturated membrane, finding that the droplet size and distribution correlated with the porosity of the membrane.
Collapse
Affiliation(s)
- Tobias Jäger
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, L-1359 Luxembourg, Luxembourg
| | - Athanasios Mokos
- Transport Mechanisms Group, Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nikolaos I. Prasianakis
- Transport Mechanisms Group, Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Stephan Leyer
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, L-1359 Luxembourg, Luxembourg
| |
Collapse
|
70
|
Zhang J, Wang C, Xing H, Fu Q, Niu C, Lu L. Advances in Asymmetric Wettable Janus Materials for Oil-Water Separation. Molecules 2022; 27:7470. [PMID: 36364297 PMCID: PMC9656448 DOI: 10.3390/molecules27217470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 04/06/2025] Open
Abstract
The frequent occurrence of crude oil spills and the indiscriminate discharge of oily wastewater have caused serious environmental pollution. The existing separation methods have some defects and are not suitable for complex oil-water emulsions. Therefore, the efficient separation of complex oil-water emulsions has been of great interest to researchers. Asymmetric wettable Janus materials, which can efficiently separate complex oil-water emulsions, have attracted widespread attention. This comprehensive review systematically summarizes the research progress of asymmetric wettable Janus materials for oil-water separation in the last decade, and introduces, in detail, the preparation methods of them. Specifically, the latest research results of two-dimensional Janus materials, three-dimensional Janus materials, smart responsive Janus materials, and environmentally friendly Janus materials for oil-water separation are elaborated. Finally, ongoing challenges and outlook for the future research of asymmetric wettable Janus materials are presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingbin Lu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
71
|
Kim KC, Lin X, Li C. Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82632-82659. [PMID: 36219296 PMCID: PMC9552148 DOI: 10.1007/s11356-022-23066-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
Although membrane distillation (MD) is a promising technology for water desalination and industrial wastewater treatment, the MD process is not widely applied in the global water industry due to the lack of a suitable membrane for the MD process. The design and appropriate manufacture are the most important factors for MD membrane optimization. The well-designed porous structure, superhydrophobic surface, and pore-wetting prevention of the membrane are vital properties of the MD membrane. Nowadays, electrospinning that is capable of manufacturing membranes with superhydrophobic or omni phobic properties is considered a promising technology. Electrospun nanofibrous membranes (ENMs) possess the characteristics of cylindrical morphology, re-entrant structure, and easy-shaping for a specific purpose, benefiting the membrane design and modification. Based on that, this review investigates the current state and future progress of the superhydrophobic, multi-layer, and omniphobic ENMs manufactured with various structural designs for seawater desalination and wastewater purification. We expect that this paper will provide some recommendations and guidance for further fabrication research and the configuration design of ENMs in the MD process for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
72
|
Chang J, Chang H, Meng Y, Zhao H, Lu M, Liang Y, Yan Z, Liang H. Effects of surfactant types on membrane wetting and membrane hydrophobicity recovery in direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
73
|
Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
74
|
Yan X, Yang C, Ma C, Tao H, Cheng S, Chen L, Wang G, Lin X, Yao C. A novel janus membrane modified by MXene for enhanced anti-fouling and anti-wetting in direct contact membrane distillation. CHEMOSPHERE 2022; 307:136114. [PMID: 35998734 DOI: 10.1016/j.chemosphere.2022.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling and wetting limit the applications of membrane distillation (MD) for wastewater treatment, especially when treating the wastewater with a high concentration of low surface tension substances such as oil and surfactants. In this paper, virgin polyvinylidene fluoride (PVDF) membrane was modified by polydimethylsiloxane (PDMS) to enhance anti-wetting ability. Then a thin polydopamine (PDA) layer was coated as a reaction platform for further modification. Polyethyleneimine (PEI) was cross-linked with PDA to form a uniform and stable layer, through hydrogen bonds and electrostatic interaction to immobilize hydrophilic MXene, which formed a Janus MXene-PVDF membrane. The MXene layer was the key for superoleophobicity and high liquid entry pressure (LEP) of membrane, capable of mitigating membrane fouling and wetting when dealing with low surface tension wastewater (LSTW). From the experiments results, pristine PVDF membrane showed severe fouling and wetting with flux decline and salt leakage during treatment of LSTW (surfactants containing water, oil-in-water emulsion and sodium dodecyl sulfate stabilized oil-in-water emulsion). However, under the same conditions, the Janus MXene-PVDF membrane exhibited remarkably stable flux (9.3 kg m-2h-1, 9.1 kg m-2h-1, 10.2 kg m-2h-1) and salt rejection (almost 99.9%) after 15 h operation. Excellent fouling and wetting resistance of MXene-PVDF membrane was mainly attributed to its superhydrophilic and superoleophobic top surface (in-air water contact angle: 30.2°, under-water oil contact angle: 169.9°) and hydrophobic substrate (in-air water contact angle: 130.8°), together with high LEP value (91.1 Kpa). This study provides a viable route to fabricated a Janus membrane with outstanding fouling and wetting resistance for LSTW, oily wastewater and it has great potential for sewage treatment in the future.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Hui Tao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xinping Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengzhi Yao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
75
|
Cao Z, Zhu T. The applications of porous
FO
membranes and polyelectrolyte draw solution in the high‐salinity organic wastewater treatment with a hybrid forward osmosis‐membrane distillation system. J Appl Polym Sci 2022. [DOI: 10.1002/app.53266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zaizhi Cao
- School of Environmental Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | - Tengyi Zhu
- School of Environmental Science and Engineering Yangzhou University Yangzhou Jiangsu China
| |
Collapse
|
76
|
Shi D, Gong T, Qing W, Li X, Shao S. Unique Behaviors and Mechanism of Highly Soluble Salt-Induced Wetting in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14788-14796. [PMID: 36154007 DOI: 10.1021/acs.est.2c03348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Scaling-induced wettinggreatly limits the application of membrane distillation (MD) for the desalination of high-salinity feed. Although highly soluble salts (e.g., NaCl) have high concentrations in this water, their scaling-induced wetting remains overlooked. To unravel the elusive wetting behaviors of highly soluble salts, in this study, we systematically investigated the scaling formation and wetting progress by in situ observation with optical coherence tomography (OCT). Through examining the influence of salt type and vapor flux on the wetting behavior, we revealed that highly soluble salt-induced wetting, especially under high vapor flux, shared several unique features: (1) occurring before the bulk feed reached saturation, (2) no scale layer formation observed, and (3) synchronized wetting progress on the millimeter scale. We demonstrated that a moving scale layer caused these interesting phenomena. The initial high vapor flux induced high concentration and temperature polarizations, which led to crystallization at the gas-liquid interface and the formation of an initial scale layer. On the one hand, this scale layer bridged the water into the hydrophobic pores; on the other hand, it blocked the membrane pores and reduced the vapor flux. In this way, the decreased vapor flux mitigated the concentration/temperature polarizations, and consequently led to the dissolution of the feed-facing side of the scale layer. This dissolution prevented the membrane pores from being completely blocked, facilitating the transportation and crystallization of salts at the distillate-facing side of the scale layer (i.e., the gas-liquid interface), thus the proceeding of the wetting layer.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
77
|
Gao L, Li P, Li H, Fang Y, Lin Y, Zhan Z, Xu Z. Crosslinked
PMIA
ultrafiltration membrane with enhanced permeability via incorporating
TMC
monomer. J Appl Polym Sci 2022. [DOI: 10.1002/app.53235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ling‐Lin Gao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ping‐Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Hua‐Xiang Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yin‐Xin Fang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yu‐Fei Lin
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zi‐Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zhen‐Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
78
|
Dai Y, Liu M, Li J, Kang N, Ahmed A, Zong Y, Tu J, Chen Y, Zhang P, Liu X. Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis. Polymers (Basel) 2022; 14:polym14194246. [PMID: 36236193 PMCID: PMC9571434 DOI: 10.3390/polym14194246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023] Open
Abstract
Graphene-based membranes have unique nanochannels and can offer advantageous properties for the water desalination process. Although tremendous efforts have been devoted to heightening membrane performance and broadening their application, there is still lack of a systematic literature review on the development and future directions of graphene-based membranes for desalination. In this mini-review, literature published between 2011 and 2022 were analyzed by using the bibliometric method. We found that the major contributors to these publications and the highest citations were from China and the USA. Nearly 80% of author keywords in this analysis were used less than twice, showing the broad interest and great dispersion in this field. The recent advances, remaining gaps, and strategies for future research, were discussed. The development of new multifunctional nanocomposite materials, heat-driven/solar-driven seawater desalination, and large-scale industrial applications, will be important research directions in the future. This literature analysis summarized the recent development of the graphene-based membranes for desalination application, and will be useful for researchers in gaining new insights into this field.
Collapse
Affiliation(s)
- Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Miao Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Jingyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ning Kang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Afaque Ahmed
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, China
| | - Jianbo Tu
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, China
| | - Yanzhen Chen
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
- Correspondence: ; Tel.: +86-22-85356239
| |
Collapse
|
79
|
Tang F, Yue J, Tian J, Ge F, Li F, Liu Y, Deng S, Zhang D. Microbial induced phosphate precipitation accelerate lead mineralization to alleviate nucleotide metabolism inhibition and alter Penicillium oxalicum's adaptive cellular machinery. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129675. [PMID: 35907285 DOI: 10.1016/j.jhazmat.2022.129675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Microbial-induced phosphate (P) precipitation (MIPP) based on P-solubilizing microorganisms (PSM) is regarded as a promising approach to bioimmobilize environmental lead (Pb). Nevertheless, the underlying changes of Pb2+ biotoxicity in PSM during MIPP process were rarely discussed. The current study explored the Pb2+ immobilization and metabolic changes in PSM Penicillium oxalicum postexposure to Pb2+ and/or tricalcium phosphate (TCP). TCP addition significantly increased soluble P concentrations, accelerated extracellular Pb mineralization, and improved antioxidative enzyme activities in P. oxalicum during MIPP process. Secondary Pb2+ biomineralization products were measured as hydroxypyromorphite [Pb10(PO4)6(OH)2]. Using untargeted metabolomic and transcriptomics, we found that Pb2+ exposure stimulated the membrane integrity deterioration and nucleotide metabolism obstruction of P. oxalicum. Correspondingly, P. oxalicum could produce higher levels of gamma-aminobutyric acid (GABA) to enhance the adaptive cellular machineries under Pb2+ stress. While the MIPP process improved extracellular Pb2+ mineralization, consequently alleviating the nucleotide metabolism inhibition and membrane deterioration. Multi-omics results suggested that GABA degradation pathway was stimulated for arginine biosynthesis and TCA cycle after Pb2+ mineralization. These results provided new biomolecular information underlying the Pb2+ exposure biotoxicities to microorganisms in MIPP before the application of this approach in environmental Pb2+ remediation.
Collapse
Affiliation(s)
- Fei Tang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaru Yue
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
80
|
A novel Cu-BTC@PVA/PVDF Janus membrane with underwater-oleophobic/hydrophobic asymmetric wettability for anti-fouling membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Curcino I, Júnior PC, Gómez AC, Chenche LP, Lima J, Naveira-Cotta C, Cotta R. Analysis of effective thermal conductivity and tortuosity modeling in membrane distillation simulation. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
Cao Z, Hu Y, Zhao H, Cao B, Zhang P. Sulfate mineral scaling: From fundamental mechanisms to control strategies. WATER RESEARCH 2022; 222:118945. [PMID: 35963137 DOI: 10.1016/j.watres.2022.118945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Sulfate scaling, as insoluble inorganic sulfate deposits, can cause serious operational problems in various industries, such as blockage of membrane pores and subsurface media and impairment of equipment functionality. There is limited article to bridge sulfate formation mechanisms with field scaling control practice. This article reviews the molecular-level interfacial reactions and thermodynamic basis controlling homogeneous and heterogeneous sulfate mineral nucleation and growth through classical and non-classical pathways. Common sulfate scaling control strategies were also reviewed, including pretreatment, chemical inhibition and surface modification. Furthermore, efforts were made to link the fundamental theories with industrial scale control practices. Effects of common inhibitors on different steps of sulfate formation pathways (i.e., ion pair and cluster formation, nucleation, and growth) were thoroughly discussed. Surface modifications to industrial facilities and membrane units were clarified as controlling either the deposition of homogeneous precipitates or the heterogeneous nucleation. Future research directions in terms of optimizing sulfate chemical inhibitor design and improving surface modifications are also discussed. This article aims to keep the readers abreast of the latest development in mechanistic understanding and control strategies of sulfate scale formation and to bridge knowledge developed in interfacial chemistry with engineering practice.
Collapse
Affiliation(s)
- Zhiqian Cao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Yandi Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Cao
- KIT Professionals, Inc., Houston, TX, USA
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
| |
Collapse
|
83
|
Zhou W, Zhang X, Gong X, Ding M, Yu J, Zhang S, Ding B. Environmentally Friendly Polyamide Nanofiber Membranes with Interconnective Amphiphobic Channels for Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35287-35296. [PMID: 35866994 DOI: 10.1021/acsami.2c12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seawater desalination is a promising and sustainable solution to alleviate freshwater scarcity; however, most existing desalination membranes suffer from poor channel interconnectivity and toxic solvent processing and encounter a tradeoff dilemma of salt rejection and water flux. Herein, we report a unique and facile one-step green solvent/nonsolvent spinning methodology to assemble environmentally friendly polyamide nanofiber membranes with a precisely designed interconnective/stable channel structure and surface anti-wettability for seawater desalination. Direct electrospinning without any post-treatments via in situ introduction of fluorinated chemicals enables highly interconnective amphiphobic channels within polyamide membranes, and the incorporation of nonsolvent (diacetone alcohol) into polyamide/solvent (ethanol) spinning solutions endows the green alcohol-based polyamide membranes with a stable bonding structure and small pore size. The resultant green solvent/nonsolvent-spun polyamide nanofiber membranes show impressive liquid entry pressure (120.5 kPa) and vapor permeation (12.5 kg m-2 d-1), achieving robust seawater desalination performance with a salt rejection of 99.97% and permeate flux of 47.4 kg m-2 h-1. The facile one-step solvent/nonsolvent spinning strategy, highly interconnective amphiphobic channels, and green solvent-based environmental friendliness in this work can open opportunities for future polyamide membranes for practical applications in water purification.
Collapse
Affiliation(s)
- Wen Zhou
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinxin Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
84
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
85
|
Kravets LI, Yarmolenko MA, Rogachev AV, Gainutdinov RV, Altynov VA, Lizunov NE. Formation of Hydrophobic and Superhydrophobic Coatings on Track-Etched Membrane Surfaces to Create Composite Membranes for Water Desalination. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
86
|
Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.2.13668.350-362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A photocatalytic membrane combining photocatalyst and membrane technology based on polyacrylonitrile (PAN) and TiO2/CNT has been developed. Such combination is to overcome fouling formation on the membrane, thus prolonging the membrane lifetime and enhancing the efficiency on the waste treatment. PAN nanofiber was prepared by electrospinning method. The precursor solution was dissolved PAN and dispersed TiO2/CNT in N,N-Dimethylformamide (DMF). PAN concentration in the precursor solution was varied at 4.5, 5.5, 6.5, 7.5, and 8.5%. The effect of PAN concentration on the fiber morphology and pore size was discussed. The performance of the resulted membrane on methylene blue (MB) removal was also investigated on a cross-flow system. SEM images of the resulted membrane identified that PAN nanofiber was successfully fabricated with random orientation. The PAN 6.5% showed the highest diffraction intensity of the anatase crystalline phase of TiO2. The additions of CNT and TiO2 lead to the formation of a cluster of beads as confirmed by TEM. Increasing the concentration of PAN increased the fiber diameter from 206 to 506 nm, slightly decreased the surface area and pore size, respectively, from 32.739 to 21.077 m2.g−1 and from 6.38 to 4.75 nm. The PAN/TiO2/CNT nanofibers show type IV of the adsorption-desorption N2 isotherms with the H1 hysteresis loops. Membrane PAN/TiO2/CNT at PAN concentration of 6.5% shows the optimum performance on the MB color removal by maintaining the percentage of rejection (%R) at 90% for 240 min and permeability of 750 LMH. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
87
|
Wang F, Liu J, Li D, Liu Z, Zhang J, Ding P, Liu G, Feng Y. High-Efficiency Water Recovery from Urine by Vacuum Membrane Distillation for Space Applications: Water Quality Improvement and Operation Stability. MEMBRANES 2022; 12:629. [PMID: 35736336 PMCID: PMC9230999 DOI: 10.3390/membranes12060629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Water recovery by membrane distillation (MD) is an attractive alternative to existing urine treatment systems because it could improve the water recovery rate and reliability in space missions. However, there are few studies of urine MD, particularly on the removal of the remaining contaminants from distillate water and the assessment of its long-term performance. In this study, the influences of various operation parameters on distillate water quality and operation stability were investigated in batch mode. The low pH of feedstock reduced the conductivity and total ammonium nitrogen (TAN) in distillate water because the low pH promoted the ionization of ammonia to ammonium ions. However, the low pH also facilitated the formation of free chlorine hydride, which resulted in the minor deterioration of the conductivity in the distillate due to the increasing volatility of chlorine hydride in the feedstock. Thirty batches of vacuum membrane distillation (VMD) experiments demonstrated that the permeate flux and the distillate water quality slightly decreased due to the small range of membrane wetting but still maintained an over 94.2% and 95.8% removal efficiency of the total organic carbon (TOC) and TAN, and the conductivity was <125 μs cm−1 in the distillate water after 30 test batches. VMD is a feasible option for urine treatment in space missions.
Collapse
Affiliation(s)
- Fei Wang
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China;
| | - Junfeng Liu
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| | - Da Li
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| | - Zheng Liu
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin 300192, China; (Z.L.); (G.L.)
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| | - Ping Ding
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China;
| | - Guochang Liu
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin 300192, China; (Z.L.); (G.L.)
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| |
Collapse
|
88
|
Rezaei M, Hashemifard SA, Abbasi M. On performance of polycarbonate/silica aerogel nanoparticle mixed matrix hollow fiber membrane coated with polydimethylsiloxane for membrane distillation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohsen Rezaei
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| | - Seyed Abdollatif Hashemifard
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| | - Mohsen Abbasi
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| |
Collapse
|
89
|
Zhu Z, Sun Y, Yu H, Li M, Jie X, Kang G, Cao Y. Effect of polytetrafluoroethylene hollow fiber microstructure on formaldehyde carbonylation performance in membrane contactor. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Hung TS, Bilad MR, Shamsuddin N, Suhaimi H, Ismail NM, Jaafar J, Ismail AF. Confounding Effect of Wetting, Compaction, and Fouling in an Ultra-Low-Pressure Membrane Filtration: A Review. Polymers (Basel) 2022; 14:polym14102073. [PMID: 35631955 PMCID: PMC9145490 DOI: 10.3390/polym14102073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ultra-low-pressure membrane (ULPM) filtration has emerged as a promising decentralized water and wastewater treatment method. It has been proven effective in long-term filtration under stable flux without requiring physical or chemical cleaning, despite operating at considerably lower flux. The use of ultra-low pressure, often simply by hydrostatic force (often called gravity-driven membrane (GDM) filtration), makes it fall into the uncharted territory of common pressure-driven membrane filtration. The applied polymeric membrane is sensitive to compaction, wetting, and fouling. This paper reviews recent studies on membrane compaction, wetting, and fouling. The scope of this review includes studies on those phenomena in the ULPM and how they affect the overall performance of the system. The performance of GDM systems for water and wastewater treatment is also evaluated. Finally, perspectives on the future research direction of ULPM filtration are also detailed.
Collapse
Affiliation(s)
- Tok Sheng Hung
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
- Correspondence: (N.S.); (N.M.I.)
| | - Hazwani Suhaimi
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
| | - Noor Maizura Ismail
- Faculty of Engineering, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
- Correspondence: (N.S.); (N.M.I.)
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (J.J.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (J.J.); (A.F.I.)
| |
Collapse
|
91
|
Zhong L, Zhang X, Ma J, Liu D, Liu D, Wang Y, Cui F, Wang W. Synergy of feed-side aeration and super slippery interface in membrane distillation for enhanced water flux and scaling mitigation. WATER RESEARCH 2022; 215:118246. [PMID: 35259560 DOI: 10.1016/j.watres.2022.118246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) is an acknowledged promising technology for desalinating hypersaline brine, and as such can be a suitable candidate to further concentrate the seawater discharged from reverse osmosis process. Mineral scaling represents a major constraint against the application of MD for further desalination of concentrated seawater, especially when considering CaSO4 (gypsum) and NaCl. Up until now, it has been difficult to rely solely on membrane modification to mitigate CaSO4 scaling. Permeate-side aeration can lessen CaSO4 scaling, but does not permit to increase the water flux. Herein, we proposed the synergy of feed-side aeration and super slippery interface to perform concentrated seawater desalination via direct contact membrane distillation. The results of this study show that this synergistic effect could significantly increase the water flux, which was approximately 1.5 times higher in comparison to the membrane without aeration. Moreover, the synergistic effect effectively alleviates the complex scaling of concentrated seawater, achieving 90 wt% water recovery rate. Based on the observed results, we elucidated the mechanisms governing the enhanced water flux and scaling mitigation driven by the synergistic effect. In addition, we studied the optimal working condition for this system, unveiling that low-intensity large bubbles are more suitable as they lead to a better equilibrium between the economics and functionality of the process.
Collapse
Affiliation(s)
- Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoxin Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Wang
- School of Materials Science and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
92
|
Zhao Y, Xing X, Xu C, He Y, Yang C, Zheng J, Hu Z. ZnO Nanorod Induced Omniphobic Polypropylene Membrane for Improved Antiwetting Performance in Membrane Distillation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurong Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xing Xing
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yali He
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chen Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianzhong Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
93
|
Sun C, Lyu Q, Si Y, Tong T, Lin LC, Yang F, Tang CY, Dong Y. Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5775-5785. [PMID: 35465657 DOI: 10.1021/acs.est.1c08842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite increasing sustainable water purification, current desalination membranes still suffer from insufficient permeability and treatment efficiency, greatly hindering extensive practical applications. In this work, we provide a new membrane design protocol and molecule-level mechanistic understanding of vapor transport for the treatment of hypersaline waters via a membrane distillation process by rationally fabricating more robust metal-based carbon nanotube (CNT) network membranes, featuring a superhydrophobic superporous surface (80.0 ± 2.3% surface porosity). With highly permeable ductile metal hollow fibers as substrates, the construction of a superhydrophobic (water contact angle ∼170°) CNT network layer endows the membranes with not only almost perfect salt rejection (over 99.9%) but a promising water flux (43.6 L·m-2·h-1), which outperforms most existing inorganic distillation membranes. Both experimental and molecular dynamics simulation results indicate that such an enhanced water flux can be ascribed to an ultra-low liquid-solid contact interface (∼3.23%), allowing water vapor to rapidly transport across the membrane structure via a combined mechanism of Knudsen diffusion (more dominant) and viscous flow while efficiently repelling high-salinity feed via forming a Cassie-Baxter state. A more hydrophobic surface is more in favor of not only water desorption from the CNT outer surface but superfast and frictionless water vapor transport. By constructing a new superhydrophobic triple-phase interface, the conceptional design strategy proposed in this work can be expected to be extended to other membrane material systems as well as more water treatment applications.
Collapse
Affiliation(s)
- Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Lyu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yiran Si
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
94
|
Abd Aziz MH, Pauzan MAB, Mohd Hisam NAS, Othman MHD, Adam MR, Iwamoto Y, Hafiz Puteh M, Rahman MA, Jaafar J, Fauzi Ismail A, Agustiono Kurniawan T, Abu Bakar S. Superhydrophobic ball clay based ceramic hollow fibre membrane via universal spray coating method for membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
95
|
Li J, Ren LF, Huang M, Yang J, Shao J, He Y. Facile preparation of omniphobic PDTS-ZnO-PVDF membrane with excellent anti-wetting property in direct contact membrane distillation (DCMD). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
96
|
Apel PY, Velizarov S, Volkov AV, Eliseeva TV, Nikonenko VV, Parshina AV, Pismenskaya ND, Popov KI, Yaroslavtsev AB. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
97
|
Jeevadason AW, Padmini S, Bharatiraja C, Kabeel AE. A review on diverse combinations and Energy-Exergy-Economics (3E) of hybrid solar still desalination. DESALINATION 2022; 527:115587. [DOI: 10.1016/j.desal.2022.115587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
98
|
Jiao L, Meng L, Yan K, Wang J, Li G, Yao Z, Sun Z, Zhang L. Micromechanism Underlying Wetting Behavior of the Vacuum Membrane Distillation during Desalination. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Jiao
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lida Meng
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Kangkang Yan
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Jing Wang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Zhikan Yao
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Zhilin Sun
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| |
Collapse
|
99
|
Tomczak W, Gryta M. The Impact of Operational Parameters on Polypropylene Membrane Performance during the Separation of Oily Saline Wastewaters by the Membrane Distillation Process. MEMBRANES 2022; 12:membranes12040351. [PMID: 35448321 PMCID: PMC9027506 DOI: 10.3390/membranes12040351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
In the present study, membrane distillation (MD) was applied for the treatment of oily saline wastewaters produced on ships sailing the Baltic Sea. For comparison purposes, experiments were also carried out with model NaCl solutions, the Baltic Seawater and oil in water emulsions. The commercial Accurel PP V8/2 membranes (Membrana GmbH, Germany) were used. In order to investigate the impact of the operational parameters on the process performance, the experiments were conducted under various values of the feed flow velocity (from 0.03 to 0.12 m/s) and the feed temperature (from 323 to 343 K). The obtained results highlight the potential of PP membranes application for a stable and reliable long-term treatment of oily wastewater. It was demonstrated that the permeate flux increased significantly with increasing feed temperature. However, the lower temperature ensured the limited scaling phenomenon during the treatment of oily wastewaters. Likewise, increasing the feed flow velocity was beneficial to the increase in the flux. Moreover, it was found that performing a cyclic rinsing of the module with a 3% HCl solution is an effective method to maintain a satisfactory module performance. The present study sheds light on improving the MD for the treatment of oily wastewaters.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence: (W.T.); (M.G.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
- Correspondence: (W.T.); (M.G.)
| |
Collapse
|
100
|
Membrane distillation technology for molecular separation: A review on the fouling, wetting and transport phenomena. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118115] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|