51
|
Zhang M, Li L, Lei L, Kang K, Xiao C. Effectively Decontaminating Protein-Bound Uremic Toxins in Human Serum Albumin Using Cationic Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55354-55364. [PMID: 36484258 DOI: 10.1021/acsami.2c15864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the field of replacement of conventional dialysis treatment, searching superior materials for removal of protein-bound uremic toxins is a challenge on account of strong interactions between proteins and uremic toxins. Herein, we first adopted cationic metal-organic frameworks (MOFs), ZJU-X6 and ZJU-X7, as sorbents to decontaminate uremic toxins (p-cresyl sulfate and indoxyl sulfate). ZJU-X6 and ZJU-X7 exhibited innate advantage for sequestration of uremic toxins by utilizing a positive charge framework with exchangeable anions. Especially, ZJU-X6 showed a higher sorption capacity and faster sorption kinetics than those of most reported materials. Moreover, the cationic MOF materials could selectively remove uremic toxins even if in the presence of competitive chloride ions and proteins. Meanwhile, pair distribution function (PDF) and density functional theory (DFT) were employed to elucidate the sorption mechanism between uremic toxins and sorbents. This work suggests an attractive avenue for constructing new types of sorbents to eliminate uremic toxins for uremia treatment.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou324000, China
| |
Collapse
|
52
|
Kang K, Zhang M, Li L, Lei L, Xiao C. Selective Sequestration of Perrhenate by Cationic Polymeric Networks Based on Elongated Pyridyl Ligands. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
53
|
|
54
|
Efficient As(V) and Hg(Ⅱ) removal from acidic wastewater by a sulphydryl functionalized UIO-66-NH2. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
55
|
Cai Y, Chen Z, Wang S, Chen J, Hu B, Shen C, Wang X. Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Applications of nanomaterial-based chemiluminescence sensors in environmental analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
Das P, Dutta D, Sarkar A, Dubey R, Puzari A. Acrylonitrile Adducts: An Efficient Adsorbent Media for Removal of Iron from Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202203048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Parineeta Das
- Department of Chemistry National Institute of Technology Nagaland, Chumoukedima Nagaland India- 797103
| | - Dhiraj Dutta
- Defence Research Laboratory Post Bag No. 2, Tezpur Assam India- 784001
| | - Ankita Sarkar
- Department of Chemistry National Institute of Technology Nagaland, Chumoukedima Nagaland India- 797103
| | - Rama Dubey
- Defence Research Laboratory Post Bag No. 2, Tezpur Assam India- 784001
| | - Amrit Puzari
- Department of Chemistry National Institute of Technology Nagaland, Chumoukedima Nagaland India- 797103
| |
Collapse
|
58
|
Wei Z, Du Y, Lü XF, Wang W, Del Sole R, Mele G, Jiang ZY. High-performance Fe3O4-terephthalaldehyde magnetic-nanocomposite for removal phenanthrene and 9-phenanthrol: A comprehensive experimental and theoretical analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
59
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
60
|
Tan WB, Luo D, Song W, Lu YY, Cheng N, Zhang JB, Huang T, Wang Y. Polydopamine-assisted polyethyleneimine grafting on electrospun cellulose acetate/TiO2 fibers towards highly efficient removal of Cr(VI). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
0D/1D Bi2O3@TNTs composites synthesized by the decoration of Bi2O3 quantum dots onto titanate nanotubes: synergistic adsorption of U(VI) and tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
62
|
Liu S, Hu Z, Wang J, Tang N, Guo D, Ou H. Eruption pore matrix with cooperative chelating of spatially continued ligands for rapid and selective removal of uranium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
63
|
Wang S, Li Y, Liu Q, Wang J, Zhao Y, Cai Y, Li H, Chen Z. fvPhoto-/electro-/piezo-catalytic elimination of environmental pollutants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Pham VN, Jeon H, Hong S, Lee H. Selective Oxidation of Biomass Molecules via ZnO Nanoparticles Modified Using Charge Mismatch of the Doped Co ions. Inorg Chem 2022; 61:16887-16894. [PMID: 36223637 DOI: 10.1021/acs.inorgchem.2c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A charge mismatch between transition-metal-ion dopants and metal oxide nanoparticles (MO NPs) within an engineered complex engenders a significant number of oxygen vacancies (VO) on the surface of the MO NP construct. To elucidate in-depth the mechanism of this tendency, Co ions with different charge states (Co3+ and Co2+) were doped into ZnO NPs, and their atomic structural changes were correlated with their photocatalytic efficiency. We ascertained that the increase of the Zn-O bond distances was distinctly affected by Co3+-ion doping, and, subsequently, the number of VO was noticeably increased. We further investigated the mechanistic pathways of the photocatalytic oxidation of 2,5-hydroxymethylfurfural (HMF), which have been widely investigated as biomass derivatives because of their potential use as precursors for the synthesis of sustainable alternatives to petrochemical substances. To identify the reaction products in each oxidation step, selective oxidation products obtained from HMF in the presence of pristine ZnO NPs, Co3+- and Co2+-ion-doped ZnO NPs were evaluated. We confirmed that Co3+-ion-doped ZnO NPs can efficiently and selectively oxidize HMF with a good conversion rate (∼40%) by converting HMF to 2,5-furandicarboxylic acid (FDCA). The present study demonstrates the feasibility of improving the production efficiency of FDCA (an alternative energy material) by using enhanced photocatalytic MO NPs with the help of the charge mismatch between MO and metal-ion dopants.
Collapse
Affiliation(s)
- Vy Ngoc Pham
- Department of Chemistry, Sookmyung Women's University, Seoul04310, Republic of Korea
| | - Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, Seoul04310, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, Seoul04310, Republic of Korea
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women's University, Seoul04310, Republic of Korea
| |
Collapse
|
65
|
Zhang Y, Sun H, Gao F, Zhang S, Han Q, Li J, Fang M, Cai Y, Hu B, Tan X, Wang X. Insights into Photothermally Enhanced Photocatalytic U(VI) Extraction by a Step-Scheme Heterojunction. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9790320. [PMID: 36320635 PMCID: PMC9590271 DOI: 10.34133/2022/9790320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
In this work, a CdS/BiVO4 step-scheme (S-scheme) heterojunction with self-photothermally enhanced photocatalytic effect was synthesized and applied for efficient U(VI) photoextraction. Characterizations such as transient absorption spectroscopy and Tafel test together confirmed the formation of S-scheme heterojunctions, which allows CdS/BiVO4 to avoid photocorrosion while retaining the strong reducing capacity of CdS and the oxidizing capacity of BiVO4. Experimental results such as radical quenching experiments and electron spin resonance show that U(VI) is rapidly oxidized by photoholes/•OH to insoluble UO2(OH)2 after being reduced to U(IV) by photoelectrons/•O2 -, which precisely avoids the depletion of electron sacrificial agents. The rapid recombination of electron-hole pairs triggered by the S-scheme heterojunction is found to release large amounts of heat and accelerate the photocatalysis. This work offers a new enhanced strategy for photocatalytic uranium extraction and presents a direction for the design and development of new photocatalysts.
Collapse
Affiliation(s)
- Yifeng Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haorong Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Feixue Gao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuo Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qingzhi Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
66
|
Synthesis of amine-modified graphene integrated membrane as protocols for simultaneous rejection of hydrocarbons, metal ions, and salts from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Deng D, Deng C, Liu T, Xue D, Gong J, Tan R, Mi X, Wang Z, Liu C, Zeng G. Selective Recovery of Copper from Electroplating Sludge by Integrated EDTA Mixed with citric acid Leaching and Electrodeposition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
68
|
Chen H, Yuan C, Peng J, Sun M, Liu SQ, Huang D, Wang S. Reusable Ratiometric Fluorescent Probe for Detection and Removal of Doxycycline Antibiotic Demonstrated by Environmental Samples Investigations. Dalton Trans 2022; 51:14458-14465. [DOI: 10.1039/d2dt02480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetracycline antibiotics residue has attracted worldwide attention due to its serious damage to human health and environment. Herein, by taking the advantage of unique properties of zeolitic imidazolate framework (ZIF),...
Collapse
|