51
|
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 2011; 354:173-90. [PMID: 21466800 DOI: 10.1016/j.ydbio.2011.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl₂), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl₂ disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl₂ sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl₂ sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.
Collapse
Affiliation(s)
- E Röttinger
- Kewalo Marine Laboratory, PBRC, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
52
|
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 2010; 6:e1001259. [PMID: 21203442 PMCID: PMC3009687 DOI: 10.1371/journal.pgen.1001259] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022] Open
Abstract
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band") region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Collapse
Affiliation(s)
- Alexandra Saudemont
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Flavien Mekpoh
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Magali Quirin
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - François Lapraz
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Ryan Range
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Arnaud Oisel
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Patrick Wincker
- Génoscope (CEA), UMR8030, CNRS and Université d'Evry, Evry, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
53
|
Yaguchi S, Yaguchi J, Angerer RC, Angerer LM, Burke RD. TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo. Dev Biol 2010; 347:71-81. [PMID: 20709054 DOI: 10.1016/j.ydbio.2010.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/17/2010] [Accepted: 08/06/2010] [Indexed: 11/24/2022]
Abstract
The ciliary band is a distinct region of embryonic ectoderm that is specified between oral and aboral ectoderm. Flask-shaped ciliary cells and neurons differentiate in this region and they are patterned to form an integrated tissue that functions as the principal swimming and feeding organ of the larva. TGFβ signaling, which is known to mediate oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation. We have used morpholino knockdown and ectopic expression of RNA to alter TGFβ signaling at the level of ligands, receptors, and signal transduction components and assessed the differentiation and patterning of the ciliary band cells and associated neurons. We propose that the primary effects of these signals are to position the ciliary cells, which in turn support neural differentiation. We show that Nodal signaling, which is known to be localized by Lefty, positions the oral margin of the ciliary band. Signaling from BMP through Alk3/6, affects the position of the oral and aboral margins of the ciliary band. Since both Nodal and BMP signaling produce ectoderm that does not support neurogenesis, we propose that formation of a ciliary band requires protection from these signals. Expression of BMP2/4 and Nodal suppress neural differentiation. However, the response to receptor knockdown or dominant-negative forms of signal transduction components indicate signaling is not acting directly on unspecified ectoderm cells to prevent their differentiation as neurons. Instead, it produces a restricted field of ciliary band cells that supports neurogenesis. We propose a model that incorporates spatially regulated control of Nodal and BMP signaling to determine the position and differentiation of the ciliary band, and subsequent neural patterning.
Collapse
|
54
|
Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 2010; 344:377-89. [PMID: 20488174 DOI: 10.1016/j.ydbio.2010.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022]
Abstract
The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution.
Collapse
|
55
|
Reichard-Brown JL, Spinner H, McBride K. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development. ACTA ACUST UNITED AC 2010; 86:496-505. [PMID: 20025048 DOI: 10.1002/bdrb.20215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Clinical use of thalidomide has increased drastically, pushing the questions concerning the teratogenic mechanisms of this drug back to the forefront. Progress in understanding the teratogenic mechanisms has been slow, with the lack of non-primate vertebrate animal models susceptible to the classic reduction deformities remaining a concern. Sea urchin embryos have been used as model organisms for developmental studies for the last century. Like vertebrates, they are deuterostomes and share similar developmental and signaling pathways suggesting they may be an effective system for thalidomide studies. Therefore, we tested sea urchin embryos to see if they were sensitive to the effects of thalidomide. METHODS Sea urchin embryos were obtained using standard spawning and fertilization techniques. Thalidomide dissolved in DMSO was added to embryo cultures either at fertilization or during early cleavage. Samples of the embryos were evaluated during specific development stages. RESULTS Lytechinus pictus embryos exposed to 400 microM thalidomide at fertilization or within a window during early cleavage (2-6 hours post-fertilization) exhibit significant levels of abnormal embryos (60-82%) at the pluteus stage, compared to controls levels (< or =10%). Strongylocentrotus purpuratus embryos exposed at initial fertilization or during early cleavage (2-6 hours post-fertilization) exhibit similar responses with significant abnormal levels ranging from (55-70%) at pluteus stage. CONCLUSIONS Both species of sea urchin tested were susceptible to thalidomide-induced teratogenesis during cleavage (4-16 cell stages). This response during cleavage stages warrants further study and indicates that sea urchin embryos may prove to be a useful tool for studying thalidomide effects early in development.
Collapse
Affiliation(s)
- Jan L Reichard-Brown
- Department of Biology, Susquehanna University, Selinsgrove, Pennsylvania 17870, USA.
| | | | | |
Collapse
|
56
|
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009; 7:e1000248. [PMID: 19956794 PMCID: PMC2772021 DOI: 10.1371/journal.pbio.1000248] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023] Open
Abstract
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Collapse
Affiliation(s)
- François Lapraz
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
57
|
Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 2009; 136:1179-89. [PMID: 19270175 PMCID: PMC2685935 DOI: 10.1242/dev.032300] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2009] [Indexed: 11/20/2022]
Abstract
Two major signaling centers have been shown to control patterning of sea urchin embryos. Canonical Wnt signaling in vegetal blastomeres and Nodal signaling in presumptive oral ectoderm are necessary and sufficient to initiate patterning along the primary and secondary axes, respectively. Here we define and characterize a third patterning center, the animal pole domain (APD), which contains neurogenic ectoderm, and can oppose Wnt and Nodal signaling. The regulatory influence of the APD is normally restricted to the animal pole region, but can operate in most cells of the embryo because, in the absence of Wnt and Nodal, the APD expands throughout the embryo. We have identified many constituent APD regulatory genes expressed in the early blastula and have shown that expression of most of them requires Six3 function. Furthermore, Six3 is necessary for the differentiation of diverse cell types in the APD, including the neurogenic animal plate and immediately flanking ectoderm, indicating that it functions at or near the top of several APD gene regulatory networks. Remarkably, it is also sufficient to respecify the fates of cells in the rest of the embryo, generating an embryo consisting of a greatly expanded, but correctly patterned, APD. A fraction of the large group of Six3-dependent regulatory proteins are orthologous to those expressed in the vertebrate forebrain, suggesting that they controlled formation of the early neurogenic domain in the common deuterostome ancestor of echinoderms and vertebrates.
Collapse
Affiliation(s)
- Zheng Wei
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|