51
|
Satoh A, Mitogawa K, Makanae A. Regeneration inducers in limb regeneration. Dev Growth Differ 2015; 57:421-429. [PMID: 26100345 DOI: 10.1111/dgd.12230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
Abstract
Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.
Collapse
Affiliation(s)
- Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, kitaku, Okayama, 700-8530, Japan
| | - Kazumasa Mitogawa
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, kitaku, Okayama, 700-8530, Japan
| | - Aki Makanae
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, kitaku, Okayama, 700-8530, Japan
| |
Collapse
|
52
|
Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K. The mammalian blastema: regeneration at our fingertips. ACTA ACUST UNITED AC 2015; 2:93-105. [PMID: 27499871 PMCID: PMC4895320 DOI: 10.1002/reg2.36] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 02/06/2023]
Abstract
In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Mimi C Sammarco
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Lindsay A Dawson
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Paula P Schanes
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ling Yu
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ken Muneoka
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| |
Collapse
|
53
|
Yu L, Yan M, Simkin J, Ketcham PD, Leininger E, Han M, Muneoka K. Angiogenesis is inhibitory for mammalian digit regeneration. ACTA ACUST UNITED AC 2014; 1:33-46. [PMID: 27499862 PMCID: PMC4895301 DOI: 10.1002/reg2.24] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022]
Abstract
The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration.
Collapse
Affiliation(s)
- Ling Yu
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| | - Mingquan Yan
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| | - Jennifer Simkin
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| | - Paulina D Ketcham
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| | - Eric Leininger
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| | - Manjong Han
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| | - Ken Muneoka
- Division of Developmental Biology Department of Cell and Molecular Biology Tulane University New Orleans LA 79118 USA
| |
Collapse
|
54
|
Makanae A, Mitogawa K, Satoh A. Implication of two different regeneration systems in limb regeneration. ACTA ACUST UNITED AC 2014; 1:1-9. [PMID: 27499860 PMCID: PMC4906689 DOI: 10.1002/reg2.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/17/2014] [Accepted: 07/05/2014] [Indexed: 01/24/2023]
Abstract
Limb regeneration is a representative phenomenon of organ regeneration in urodele amphibians, such as an axolotl. An amputated limb starts regenerating from a remaining stump (proximal) to lost finger tips (distal). In the present case, proximal−distal (PD) reorganization takes place in a regenerating tissue, called a blastema. It has been a mystery how an induced blastema recognizes its position and restores an exact replica of missing parts. Recently, a new experimental system called the accessory limb model (ALM) has been established. The gained ALM phenotypes are demanding to reconsider the reorganization PD positional values. Based on the ALM phenotype, it is reasonable to hypothesize that reorganization of positional values has a certain discontinuity and that two different regeneration systems cooperatively reorganize the PD axis to restore an original structure. In this review, PD axis reestablishments are focused on limb regeneration. Knowledge from ALM studies in axolotls and Xenopus is providing a novel concept of PD axis reorganization in limb regeneration.
Collapse
Affiliation(s)
- Aki Makanae
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) 3-1-1 Tsushimanaka Kitaku Okayama 700-8530 Japan
| | - Kazumasa Mitogawa
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) 3-1-1 Tsushimanaka Kitaku Okayama 700-8530 Japan
| | - Akira Satoh
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) 3-1-1 Tsushimanaka Kitaku Okayama 700-8530 Japan
| |
Collapse
|
55
|
Mitogawa K, Hirata A, Moriyasu M, Makanae A, Miura S, Endo T, Satoh A. Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis. ACTA ACUST UNITED AC 2014; 1:26-36. [PMID: 27499859 PMCID: PMC4895307 DOI: 10.1002/reg2.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 11/24/2022]
Abstract
Recently, the accessory limb model (ALM) has become an alternative study system for limb regeneration studies in axolotls instead of using an amputated limb. ALM progresses limb regeneration study in axolotls because of its advantages. To apply and/or to compare knowledge in axolotl ALM studies to other vertebrates is a conceivable next step. First, Xenopus laevis, an anuran amphibian, was investigated. A Xenopus frog has hypomorphic regeneration ability. Its regeneration ability has been considered intermediate between that of non‐regenerative higher vertebrates and regenerative urodele amphibians. Here, we successfully induced an accessory blastema in Xenopus by skin wounding and rerouting of brachial nerve bundles to the wound site, which is the regular ALM surgery. The induced Xenopus ALM blastemas have limited regenerative potential compared with axolotl ALM blastemas. Comparison of ALM blastemas from species with different regenerative potentials may facilitate the identification of the novel expression programs necessary for the formation of cartilage and other tissues during limb regeneration.
Collapse
Affiliation(s)
- Kazumasa Mitogawa
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Ayako Hirata
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Miyuki Moriyasu
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Aki Makanae
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Shinichirou Miura
- Division of Liberal Arts, Aichi Gakuin UniversityNissinAichi470‐0195Japan
| | - Tetsuya Endo
- Division of Liberal Arts, Aichi Gakuin UniversityNissinAichi470‐0195Japan
| | - Akira Satoh
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| |
Collapse
|
56
|
Guo FJ, Xiong Z, Han X, Liu C, Liu Y, Jiang R, Zhang P. XBP1S, a BMP2-inducible transcription factor, accelerates endochondral bone growth by activating GEP growth factor. J Cell Mol Med 2014; 18:1157-71. [PMID: 24636354 PMCID: PMC4508155 DOI: 10.1111/jcmm.12261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/24/2014] [Indexed: 01/22/2023] Open
Abstract
We previously reported that transcription factor XBP1S binds to RUNX2 and enhances chondrocyte hypertrophy through acting as a cofactor of RUNX2. Herein, we report that XBP1S is a key downstream molecule of BMP2 and is required for BMP2-mediated chondrocyte differentiation. XBP1S is up-regulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern during skeletal development. XBP1S stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo. In addition, XBP1S activates granulin-epithelin precursor (GEP), a growth factor known to stimulate chondrogenesis, and endogenous GEP is required, at least in part, for XBP1S-stimulated chondrocyte hypertrophy, mineralization and endochondral bone formation. Furthermore, XBP1S enhances GEP-stimulated chondrogenesis and endochondral bone formation. Collectively, these findings demonstrate that XBP1S, a BMP2-inducible transcription factor, positively regulates endochondral bone formation by activating GEP chondrogenic growth factor.
Collapse
Affiliation(s)
- Feng-Jin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Lorda-Diez CI, Montero JA, Choe S, Garcia-Porrero JA, Hurle JM. Ligand- and stage-dependent divergent functions of BMP signaling in the differentiation of embryonic skeletogenic progenitors in vitro. J Bone Miner Res 2014; 29:735-48. [PMID: 24038612 DOI: 10.1002/jbmr.2077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key molecules in the differentiation of skeletal tissues. We have investigated whether differentiation of limb embryonic mesodermal progenitors into different connective tissue lineages depends on specific stimulation of distinct BMP ligands or on the differential response of target cells to a common BMP stimulus. We show that Bmp2,4,5,7 and Gdf5 exhibit differential expression domains during the formation of tendons, cartilages, and joint tissues in digit development, but their respective effects on digit progenitors cell cultures cannot sustain the divergent differentiation of these cells into tendons, joints, and cartilage. However, the influence of BMPs differs based on the culture length. Early cultures respond to any of the BMPs by inducing chondrogenic factors and inhibiting fibrogenic and osteogenic markers. Later, a second phase of the culture occurs when BMPs attenuate their prochondrogenic influence and promote the fibrogenic marker Scleraxis. At advanced culture stages, BMPs inhibit prochondrogenic and profibrogenic markers and promote osteogenic markers. The switch from the prochondrogenic to the profibrogenic response appears critically dependent on the basal expression of Noggin. Thus, the differential regulation of Scleraxis at these stages was abrogated by treatments with a BMP-analogous compound (AB204) that escapes NOGGIN antagonism. Gene regulation experiments in absence of protein synthesis during the first period of culture indicate that BMPs activate at the same time master chondrogenic and fibrogenic genes together with cofactors responsible for driving the signaling cascade toward chondrogenesis or fibrogenesis. Gene-silencing experiments indicate that Id2 is one of the factors limiting the profibrogenic influence of BMPs. We propose that connective tissues are dynamic structures composed of cartilage, fibrous tissue, and bone that form in successive steps from the differentiation of common progenitors. This sequential differentiation is regulated by BMPs through a process that is dependent on the basal expression of BMP cofactors or signaling modulators.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
58
|
Liao J, Hu N, Zhou N, Lin L, Zhao C, Yi S, Fan T, Bao W, Liang X, Chen H, Xu W, Chen C, Cheng Q, Zeng Y, Si W, Yang Z, Huang W. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One 2014; 9:e89025. [PMID: 24551211 PMCID: PMC3923876 DOI: 10.1371/journal.pone.0089025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) is one of the key chondrogenic growth factors involved in the cartilage regeneration. However, it also exhibits osteogenic abilities and triggers endochondral ossification. Effective chondrogenesis and inhibition of BMP2-induced osteogenesis and endochondral ossification can be achieved by directing the mesenchymal stem cells (MSCs) towards chondrocyte lineage with chodrogenic factors, such as Sox9. Here we investigated the effects of Sox9 on BMP2-induced chondrogenic and osteogenic differentiation of MSCs. We found exogenous overexpression of Sox9 enhanced the BMP2-induced chondrogenic differentiation of MSCs in vitro. Also, it inhibited early and late osteogenic differentiation of MSCs in vitro. Subcutaneous stem cell implantation demonstrated Sox9 potentiated BMP2-induced cartilage formation and inhibited endochondral ossification. Mouse limb cultures indicated that BMP2 and Sox9 acted synergistically to stimulate chondrocytes proliferation, and Sox9 inhibited BMP2-induced chondrocytes hypertrophy and ossification. This study strongly suggests that Sox9 potentiates BMP2-induced MSCs chondrogenic differentiation and cartilage formation, and inhibits BMP2-induced MSCs osteogenic differentiation and endochondral ossification. Thus, exogenous overexpression of Sox9 in BMP2-induced mesenchymal stem cells differentiation may be a new strategy for cartilage tissue engineering.
Collapse
Affiliation(s)
- Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nian Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangbo Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixiong Yi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxu Fan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Bao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongming Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weike Si
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Zhong Yang
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
59
|
Lee J, Marrero L, Yu L, Dawson LA, Muneoka K, Han M. SDF-1α/CXCR4 signaling mediates digit tip regeneration promoted by BMP-2. Dev Biol 2013; 382:98-109. [PMID: 23916851 DOI: 10.1016/j.ydbio.2013.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/29/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
Previously we demonstrated that BMP signaling is required for endogenous digit tip regeneration, and that treatment with BMP-2 or -7 induces a regenerative response following amputation at regeneration-incompetent levels (Yu et al., 2010, 2012). Both endogenous regeneration and BMP-induced regeneration are associated with the transient formation of a blastema, however the formation of a regeneration blastema in mammals is poorly understood. In this study, we focus on how blastema cells respond to BMP signaling during neonatal digit regeneration in mice. First, we show that blastema cells retain regenerative properties after expansion in vitro, and when re-introduced into the amputated digit, these cells display directed migration in response to BMP-2. However, in vitro studies demonstrate that BMP-2 alone does not influence blastema cell migration, suggesting a requirement of another pivotal downstream factor for cell recruitment. We show that blastema cell migration is stimulated by the cytokine, SDF-1α, and that SDF-1α is expressed by the wound epidermis as well as endothelial cells of the blastema. Blastema cells express both SDF-1α receptors, CXCR4 and CXCR7, although the migration response is inhibited by the CXCR4-specific antagonist, AMD3100. Mice treated with AMD3100 display a partial inhibition of skeletal regrowth associated with the regeneration response. We provide evidence that BMP-2 regulates Sdf-1α expression in endothelial cells but not cells of the wound epidermis. Finally, we show that SDF-1α-expressing COS1 cells engrafted into a regeneration-incompetent digit amputation wound resulted in a locally enhanced population of CXCR4 positive cells, and induced a partial regenerative response. Taken together, this study provides evidence that one downstream mechanism of BMP signaling during mammalian digit regeneration involves activation of SDF-1α/CXCR4 signaling by endothelial cells to recruit blastema cells.
Collapse
Affiliation(s)
- Jangwoo Lee
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
60
|
Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice. PLoS One 2013; 8:e59105. [PMID: 23527099 PMCID: PMC3601098 DOI: 10.1371/journal.pone.0059105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/11/2013] [Indexed: 02/06/2023] Open
Abstract
The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.
Collapse
|
61
|
Wu Y, Wang K, Karapetyan A, Fernando WA, Simkin J, Han M, Rugg EL, Muneoka K. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration. PLoS One 2013; 8:e54764. [PMID: 23349966 PMCID: PMC3548775 DOI: 10.1371/journal.pone.0054764] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue cells that are associated with their regenerative capabilities.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Karen Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Adrine Karapetyan
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
| | | | - Jennifer Simkin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Manjong Han
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Elizabeth L. Rugg
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
| | - Ken Muneoka
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|