51
|
McAlary L, Harrison JA, Aquilina JA, Fitzgerald SP, Kelso C, Benesch JL, Yerbury JJ. Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation. Anal Chem 2019; 92:1702-1711. [DOI: 10.1021/acs.analchem.9b01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Julian A. Harrison
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - J. Andrew Aquilina
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Celine Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Justin L.P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Department, University of Oxford, Oxford OX1 3QZ, U.K
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
52
|
Sipe SN, Patrick JW, Laganowsky A, Brodbelt JS. Enhanced Characterization of Membrane Protein Complexes by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 92:899-907. [PMID: 31765130 DOI: 10.1021/acs.analchem.9b03689] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of chemical chaperones to solubilize membrane protein complexes in aqueous solutions has allowed for gas-phase analysis of their native-like assemblies, including rapid evaluation of stability and interacting partners. Characterization of protein primary sequence, however, has thus far been limited. Ultraviolet photodissociation (UVPD) generates a multitude of sequence ions for the E. coli ammonia channel (AmtB), provides improved localization of a possible post-translational modification of aquaporin Z (AqpZ), and surpasses previous reports of sequence coverage for mechanosensitive channel of large conductance (MscL). Variations in UVPD sequence ion abundance have been shown to correspond to structural changes induced upon some perturbation. Preliminary results are reported here for elucidating increased rigidity or flexibility of MscL when bound to various phospholipids.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - John W Patrick
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
53
|
Kostelic MM, Ryan AM, Reid DJ, Noun JM, Marty MT. Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1416-1425. [PMID: 30972726 PMCID: PMC6675625 DOI: 10.1007/s13361-019-02174-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 05/12/2023]
Abstract
Native mass spectrometry (MS) has become an important tool for the analysis of membrane proteins. Although detergent micelles are the most commonly used method for solubilizing membrane proteins for native MS, nanoscale lipoprotein complexes such as nanodiscs are emerging as a promising complementary approach because they solubilize membrane proteins in a lipid bilayer environment. However, prior native MS studies of intact nanodiscs have employed only a limited set of phospholipids that are similar in mass. Here, we extend the range of lipids that are amenable to native MS of nanodiscs by combining lipids with masses that are simple integer multiples of each other. Although these lipid combinations create complex distributions, overlap between resonant peak series allows interpretation of nanodisc spectra containing glycolipids, sterols, and cardiolipin. We also investigate the gas-phase stability of nanodiscs with these new lipids towards collisional activation. We observe that negative ionization mode or charge reduction stabilizes nanodiscs and is essential to preserving labile lipids such as sterols. These new approaches to native MS of nanodiscs will enable future studies of membrane proteins embedded in model membranes that more accurately mimic natural bilayers. Graphical Abstract.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Alex M Ryan
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jibriel M Noun
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
54
|
Walker LR, Marzluff EM, Townsend JA, Resager WC, Marty MT. Native Mass Spectrometry of Antimicrobial Peptides in Lipid Nanodiscs Elucidates Complex Assembly. Anal Chem 2019; 91:9284-9291. [PMID: 31251560 PMCID: PMC6635019 DOI: 10.1021/acs.analchem.9b02261] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are generally cationic and amphipathic peptides that show potential applications to combat the growing threat of antibiotic resistant infections. AMPs are known to interact with bacterial membranes, but their mechanisms of toxicity and selectivity are poorly understood, in part because it is challenging to characterize AMP oligomeric complexes within lipid bilayers. Here, we used native mass spectrometry to measure the stoichiometry of AMPs inserted into lipoprotein nanodiscs with different lipid components. Titrations of increasing peptide concentration and collisional activation experiments reveal that AMPs can exhibit a range of behaviors from nonspecific incorporation into the nanodisc to formation of specific complexes. This new approach to characterizing formation of AMP complexes within lipid membranes will provide unique insights into AMP mechanisms.
Collapse
Affiliation(s)
- Lawrence R. Walker
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | | | - Julia A. Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | - William C. Resager
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
55
|
Johnson DT, Di Stefano LH, Jones LM. Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool. J Biol Chem 2019; 294:11969-11979. [PMID: 31262727 DOI: 10.1074/jbc.rev119.006218] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a MS-based method that has proved useful in studies of protein structures, interactions, conformations, and protein folding. The success of this method relies on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. FPOP generates these radicals through laser-induced photolysis of hydrogen peroxide. The data obtained provide residue-level resolution of protein structures and interactions on the microsecond timescale, enabling investigations of fast processes such as protein folding and weak protein-protein interactions. An extensive comparison between FPOP and other footprinting techniques gives insight on their complementarity as well as the robustness of FPOP to provide unique structural information once unattainable. The versatility of this method is evidenced by both the heterogeneity of samples that can be analyzed by FPOP and the myriad of applications for which the method has been successfully used: from proteins of varying size to intact cells. This review discusses the wide applications of this technique and highlights its high potential. Applications including, but not limited to, protein folding, membrane proteins, structure elucidation, and epitope mapping are showcased. Furthermore, the use of FPOP has been extended to probing proteins in cells and in vivo These promising developments are also presented herein.
Collapse
Affiliation(s)
- Danté T Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Luciano H Di Stefano
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
56
|
Pukala T. Importance of collision cross section measurements by ion mobility mass spectrometry in structural biology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:72-82. [PMID: 30265417 DOI: 10.1002/rcm.8294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The field of ion mobility mass spectrometry (IM-MS) has developed rapidly in recent decades, with new fundamental advances underpinning innovative applications. This has been particularly noticeable in the field of biomacromolecular structure determination and structural biology, with pioneering studies revealing new structural insight for complex protein assemblies which control biological function. This perspective offers a review of recent developments in IM-MS which have enabled expanding applications in protein structural biology, principally focusing on the quantitative measurement of collision cross sections and their interpretation to describe higher order protein structures.
Collapse
Affiliation(s)
- Tara Pukala
- Discipline of Chemistry, University of Adelaide, North Terrace, Adelaide, South Australia, 5005
| |
Collapse
|
57
|
|
58
|
Du Y, Duc NM, Rasmussen SGF, Hilger D, Kubiak X, Wang L, Bohon J, Kim HR, Wegrecki M, Asuru A, Jeong KM, Lee J, Chance MR, Lodowski DT, Kobilka BK, Chung KY. Assembly of a GPCR-G Protein Complex. Cell 2019; 177:1232-1242.e11. [PMID: 31080064 DOI: 10.1016/j.cell.2019.04.022] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.
Collapse
Affiliation(s)
- Yang Du
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Søren G F Rasmussen
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniel Hilger
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xavier Kubiak
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Liwen Wang
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Bohon
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marcin Wegrecki
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Awuri Asuru
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kyung Min Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - David T Lodowski
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Brian K Kobilka
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
59
|
Patrick JW, Laganowsky A. Generation of Charge-Reduced Ions of Membrane Protein Complexes for Native Ion Mobility Mass Spectrometry Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:886-892. [PMID: 30887461 PMCID: PMC6504596 DOI: 10.1007/s13361-019-02187-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 05/15/2023]
Abstract
Recent advances in native mass spectrometry (MS) have enabled the elucidation of how small molecule binding to membrane proteins modulates their structure and function. The protein-stabilizing osmolyte, trimethylamine oxide (TMAO), exhibits attractive properties for native MS studies. Here, we report significant charge reduction, nearly threefold, for three membrane protein complexes in the presence of this osmolyte without compromising mass spectral resolution. TMAO improves the ability to resolve individual lipid-binding events to the ammonia channel (AmtB) by over 200% compared to typical native conditions. The generation of ions with compact structure and access to a larger number of lipid-binding events through the incorporation of TMAO increases the utility of IM-MS for structural biology studies. Graphical Abstract.
Collapse
Affiliation(s)
- John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
- Janssen Research & Development, 1400 Mckean Road, Spring House, PA, 19477, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.
| |
Collapse
|
60
|
Bolla JR, Agasid MT, Mehmood S, Robinson CV. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Annu Rev Biochem 2019; 88:85-111. [PMID: 30901263 DOI: 10.1146/annurev-biochem-013118-111508] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
61
|
Marklund EG, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Curr Opin Struct Biol 2019; 54:50-58. [PMID: 30743182 DOI: 10.1016/j.sbi.2018.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
Abstract
Structural dynamics underpin biological function at the molecular level, yet many biophysical and structural biology approaches give only a static or averaged view of proteins. Native mass spectrometry yields spectra of the many states and interactions in the structural ensemble, but its spatial resolution is limited. Conversely, molecular dynamics simulations are innately high-resolution, but have a limited capacity for exploring all structural possibilities. The two techniques hence differ fundamentally in the information they provide, returning data that reflect different length scales and time scales, making them natural bedfellows. Here we discuss how the combination of native mass spectrometry with molecular dynamics simulations is enabling unprecedented insights into a range of biological questions by interrogating the motions of proteins, their assemblies, and interactions.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75 123, Uppsala, Sweden.
| | - Justin Lp Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
62
|
Walko M, Hewitt E, Radford SE, Wilson AJ. Design and synthesis of cysteine-specific labels for photo-crosslinking studies. RSC Adv 2019; 9:7610-7614. [PMID: 35521201 PMCID: PMC9061181 DOI: 10.1039/c8ra10436k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/23/2019] [Indexed: 12/31/2022] Open
Abstract
Chemical cross-linking mass-spectrometry (XL-MS) represents a powerful methodology to map ligand/biomacromolecule interactions, particularly where conventional methods such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy or cryo-electron microscopy (EM) are not feasible. In this manuscript, we describe the design and synthesis of two new photo-crosslinking reagents that can be used to specifically label free thiols through either maleimido or methanethiosulfonate groups and facilitate PXL-MS workflows. Both crosslinkers are based on light sensitive diazirines – precursors of highly reactive carbenes which offer additional advantages over alternative crosslinking groups such as benzophenones and aryl nitrenes given the controlled rapid and more indiscriminate reactivity. The design and synthesis of cysteine specific diazirine containing labels is described.![]()
Collapse
Affiliation(s)
- Martin Walko
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural Molecular Biology
| | - Eric Hewitt
- Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Molecular and Cellular Biology
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Molecular and Cellular Biology
| | - Andrew J. Wilson
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural Molecular Biology
| |
Collapse
|
63
|
Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Rapid Mapping of Protein Interactions Using Tag-Transfer Photocrosslinkers. Angew Chem Int Ed Engl 2018; 57:16688-16692. [PMID: 30393918 PMCID: PMC6348423 DOI: 10.1002/anie.201809149] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Indexed: 12/31/2022]
Abstract
Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).
Collapse
Affiliation(s)
- Jim E. Horne
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Martin Walko
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Mark A. Levenstein
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
64
|
Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Rapid Mapping of Protein Interactions Using Tag‐Transfer Photocrosslinkers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jim E. Horne
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Martin Walko
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Mark A. Levenstein
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- School of Mechanical EngineeringUniversity of Leeds Leeds LS2 9JT UK
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of Leeds Leeds LS2 9JT UK
| | - Andrew J. Wilson
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| |
Collapse
|
65
|
Martin EM, Jackson MP, Gamerdinger M, Gense K, Karamonos TK, Humes JR, Deuerling E, Ashcroft AE, Radford SE. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J Biol Chem 2018; 293:8554-8568. [PMID: 29650757 PMCID: PMC5986199 DOI: 10.1074/jbc.ra117.001568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.
Collapse
Affiliation(s)
- Esther M Martin
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Matthew P Jackson
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Martin Gamerdinger
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Karina Gense
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Theodoros K Karamonos
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Julia R Humes
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Elke Deuerling
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Alison E Ashcroft
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|